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Abstract

Purpose: Prostate motion during radiation therapy (ie, intrafraction motion) can cause unwanted
loss of radiation dose to the prostate and increased dose to the surrounding organs at risk.
A compact but general statistical description of this motion could be useful for simulation of
radiation therapy delivery or margin calculations. We investigated whether prostate motion could
be modeled with a random walk model.
Methods and materials: Prostate motion recorded during 548 radiation therapy fractions in 17
patients was analyzed and used for input in a random walk prostate motion model. The recorded
motion was categorized on the basis of whether any transient excursions (ie, rapid prostate motion
in the anterior and superior direction followed by a return) occurred in the trace and transient
motion. This was separately modeled as a large step in the anterior/superior direction followed by a
returning large step. Random walk simulations were conducted with and without added artificial
transient motion using either motion data from all observed traces or only traces without transient
excursions as model input, respectively.
Results: A general estimate of motion was derived with reasonable agreement between
simulated and observed traces, especially during the first 5 minutes of the excursion-free
simulations. Simulated and observed diffusion coefficients agreed within 0.03, 0.2 and
0.3 mm2/min in the left/right, superior/inferior, and anterior/posterior directions, respectively.
A rapid increase in variance at the start of observed traces was difficult to reproduce and
seemed to represent the patient’s need to adjust before treatment. This could be estimated
somewhat using artificial transient motion.
Conclusions: Random walk modeling is feasible and recreated the characteristics of the
observed prostate motion. Introducing artificial transient motion did not improve
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the overall agreement, although the first 30 seconds of the traces were better reproduced.
The model provides a simple estimate of prostate motion during delivery of radiation
therapy.
Keywords: intrafraction motion, random walk, motion management
ª 2017 the Authors. Published by Elsevier Inc. on behalf of the American Society for
Radiation Oncology. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

External radiation therapy targets the tumor while
attempting to spare the surrounding healthy tissue.
Tumor motion during radiation therapy delivery (ie,
intrafraction motion) requires additional margins and
leads to irradiation of healthy tissue both from enlarged
margins and because surrounding tissue may drift into
the high-dose area. Prostate cancer is commonly treated
with radiation therapy, and prostate motion has been
investigated in several studies with a wide range of
localization modalities, including x-ray imaging,1

magnetic resonance imaging,2 ultrasound,3 and electro-
magnetic monitoring.4-6 The impact of motion in radia-
tion therapy has been studied from treatment margin and
dosimetric perspectives.7-11 Several methods have been
proposed for motion compensation in various stages of
clinical implementation.12-15

Several investigations have been conducted on biome-
chanical modeling of pelvic organs and their interaction,
with some focusing specifically on the implementations
and implications of radiation therapy.16-20 Söhn et al
modeled prostate motion on the basis of principal
component analysis to determine eigenmodes for inter-
fractional motion and deformation of the prostate, rectum,
and bladder.21 A study by Ballhausen et al proposed a
random walk model to describe intrafraction prostate
motion using population-based drift vectors, diffusion
constants, and Monte Carlo simulations.22

A random walk is a model in which the object of
interest is subject to external forces and moves stochas-
tically in accordance with probability distributions. The
motion is characterized by each step being independent of
previous steps, whereas the displacement at a certain time
is dependent on the displacement at an earlier time. The
variance in position for many samples increases linearly
with time. The authors considered intrafraction motion as
a time-dependent process with displacements that accu-
mulate over time and argued that the random walk model
would be suitable because it does not require knowledge
of the external forces that affect the prostate.

A follow-up study used ultrasound to record prostate
motion during 84 radiation therapy fractions for 6
patients.23 The motion data were analyzed to find the best
fit to 3 models: a static noise model in which each posi-
tion is independent of the previous position, a stationary
process model in which the prostate moves unobstructed
within a certain volume, and a random walk model. The
random walk model was favored for all 6 patients, and the
variance was found to continuously increase within the
investigated timeframe (5-8 minutes).

Using real-time electromagnetic guided prostate posi-
tioning during radiation therapy, Langen et al noted 2
main types of prostate motion: a sudden, transient motion
and a slow, drifting motion.4 The former was mostly
directed anteriorly and superiorly and the latter inferiorly
and posteriorly (see Fig 1 in Langen et al4). The suggested
mechanisms for the motion were changes in rectal volume
and bladder filling, pushing the prostate anteriorly/
superiorly and posteriorly/inferiorly, respectively.

In this study, we aim to simulate prostate motion using
a random walk model with simulation parameters on the
basis of observed motion with special attention to
modeling the transient motion that occurred in the
observed data. Whereas Ballhausen et al22 primarily
recreated the motion characteristics of time averages, this
study will analyze each observed prostate motion trace to
use as input for the model and compare the simulations
with the observed data at a time resolution of seconds.
Furthermore, we intend to differentiate between the slow
and rapid motion components (ie, transient motion and
prostate drift). The purpose of this study is to test whether
it is possible to recreate the properties of patient data
using a random walk model, if necessary with simulated
transient motion.

Methods and materials

A dataset of prostate motion traces recorded with
electromagnetic tracking at 10 Hz during 548 radiation
therapy fractions (mean length 607 seconds) for 17
patients was used in this study.4 The traces contained only
translational information, and prostate rotation was thus
not considered in this study. The motion traces were set to
start at the origin at the beginning of the trace and were
filtered with an averaging filter with a filter length of 10
data points (average time scale of 1 seconds) to remove
high-frequency noise. A single observer qualitatively
categorized the traces (Fig 1) by reviewing all traces and
deciding whether transient motion was present. The
review was done 3 times, and the majority decision was
used. Transient motion was considered as rapid motion

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Examples of observed (top) and simulated (bottom) prostate motion with (left, arrow) and without (right) a transient
excursion. The simulated traces were selected from the large number of simulated traces to resemble the observed traces.
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(ie, occurring within a few seconds) of at least a few
millimeters in the anterior/superior direction followed by
a return to approximately the original position. The
returning motion could be as fast as or sometimes
comparably slower than the initial transient motion. The
categorization allowed for the use of a subgroup of the
traces as input for the random walk and for comparison of
simulated traces with a subgroup of observed traces.
Random walk model

The random walk model was essentially a Monte Carlo
model that repeatedly selected a step size and direction on
the basis of a set of fixed probabilities. The probabilities
were obtained by analysis of the observed traces (all
traces [nZ 548], excursion-free traces only [nZ 320], or
traces with excursions only [n Z 228]). Two matrices
were calculated from the observed traces that were used as
input for the model: a matrix that described the proba-
bility of prostate motion in all combinations of the car-
dinal directions as well as no motion and continuous step
size distributions (one for each direction) with the
observed length of the prostate motion steps between each
sampling point. The actual matrix values are given in the
online supplement. The motion traces were simulated one
at a time by step-wise motion with the direction sampled
on the basis of a random number from the direction matrix
and the step size randomly sampled from the step size
distributions. The simulations were conducted with the
same time steps as the observed traces (0.1 seconds dur-
ing 600 seconds and for 548 traces).

The transient motion in the observed traces occurred
over several consecutive sampling points. With a random
walk model, using small steps only, a simulation of the
observed traces was found to be challenging because the
same direction with several relatively large and improb-
able consecutive steps was required to reproduce them
(Fig 1). Therefore, the possibility of adding artificial
transient motion was added to the model (Fig 1).
A random number was generated to decide whether a
transient motion step, directed superiorly and anteriorly,
would occur instead of a random walk step. The size of
the large step was randomly chosen between 0 mm and a
maximum step length of 5.5 mm to maximize the agree-
ment with the observed traces (Fig 1).

The same step was used for the 2 directions, whereas
the left/right direction was unaffected (in agreement with
the observation that transient excursions had a very small
impact on the left/right position of the prostate). The
probability of transient motion was set to give the
approximately same number of excursions as the
observed traces (0.12 min�1 for simulations compared
with 0.11 min�1 for the observed traces, motivated by the
choice of not having a minimum value for the size of the
simulated transient motion). The method is illustrated in
Figure 2. After the transient motion occurred within the
model, the likelihood of a new (second) transient step was
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Figure 2 Overview of the steps in the random walk simulation. Artificial transient motion was created with a large step, alternately
directed anteriorly/superiorly and then posteriorly/inferiorly. For simulations 1 and 3, the probability of transient motion was set to 0.
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increased by a factor of 10 (Fig S1). When the second
transient step would occur, it would be assigned the exact
opposite direction and the same magnitude as the initial
first transient motion, thus effectively returning the pros-
tate to its approximate starting position.
Simulations

Four simulations with different combinations of input
parameters and choice of evaluation were used in this
study and are presented in Table 1. For each simulation,
548 motion traces were obtained with the random walk
model and evaluated against observed traces. The purpose
of each simulation was as follows:

� Simulation 1: to reproduce the motion of all observed
traces without artificial transient excursions
Table 1 Performed simulations using either motion data from all
input

Simulation Input parameters Simulate

1 All traces No
2 No excursion traces Yes
3 No excursion traces No
4 All traces Yes

Note: Artificial transient excursions were added to emulate the transient ex
obtained with the random walk model.
� Simulation 2: to reproduce the motion of all observed
traces using artificial transient excursions

� Simulation 3: to reproduce the motion of excursion-
free observed traces without artificial transient
excursions

� Simulation 4: to reproduce the motion of observed
traces with excursions using artificial transient
excursions
Evaluation

To quantify the agreement between simulated and
observed traces, 2 metrics were calculated: the difference
between the average position of the simulated traces and
the average position of the observed traces and the dif-
ference in the position variance among the simulated
traces and the position variance among the observed
observed traces or only traces without transient excursions as

d Excursions Comparison

All traces (n Z 548)
All traces (n Z 548)
No-excursion traces (n Z 320)
With-excursion traces (n Z 228)

cursions in the observed data. For each simulation, 548 traces were
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Figure 3 Time-resolved results from simulations 1 (left) and 2 (right; solid lines), comparing metrics from simulated traces (nZ 548)
to the observed traces (nZ 548; dashed lines). Simulation 1 used a random walk model with model input from all traces, and simulation
2 added artificial transient excursions and used observed traces without excursions as model input.
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traces. For the first metric, the average of the difference
was evaluated, but for the second metric, the standard
deviation of the difference was evaluated. For both met-
rics, the evaluation was done for each 100-second interval
up to 600 seconds.

The diffusion coefficient was calculated in each
dimension for each set of traces (either simulated or
observed) according to:

DZ
1

2
,
x2

t
; ð1Þ

where D is the diffusion coefficient, and x2 is the average
of the squared displacement at time t for all traces in the
dataset (either simulated or observed). The diffusion
coefficient was calculated at t Z 4 min and t Z 8
minutes, which was chosen to reflect an intermediate and
a long time elapsed since patient setup (where the prostate
displacement was assumed to be 0).

Results

The 548 prostate motion traces in the dataset lasted an
average of 10.1 minutes. Among these, 228 had one or
several excursions (the maximum number for a single
trace was 13), whereas 320 had no transient excursions
(Fig 1). The overall probability of transient motion was
0.11 min�1. In general, there was a good agreement
between simulated and observed traces (Figs 3 and 4).
Simulations 1 and 2, which attempted to recreate the
behavior of all observed traces, showed similar agreement
of the average position (average difference in the
0-600esecond interval of 0.06 mm and 0.07 mm,
respectively; Fig S2), but simulation 2 better reproduced
the rapid increase in variance at the start of the observed
traces (Fig 3).

For simulation 3, the random walk without added
transient excursions was compared with observed traces
without transient excursions. Excellent agreement with
the observed traces was observed, especially for the 0 to
300 seconds time interval (Fig 4, left). After approxi-
mately 400 seconds, the variance of the observed traces
seemed to reach toward a threshold whereas the variance
of the simulated traces, in accordance with the random
walk model, increased linearly. Lastly, for simulation 4,
artificial transient excursions were added to the model,
all traces were used as input, and the results were
compared with the observed traces with excursions. The
average position of the observed traces could not be
reproduced (average difference 0.19 mm). However,



-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2

0 100 200 300 400 500 600
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0 100 200 300 400 500 600

0

2

4

6

8

10

0 100 200 300 400 500 600
0

1

2

3

4

5

0 100 200 300 400 500 600

Simulation #3 Simulation #4

Time (s) Time (s)

Av
er

ag
e 

po
si

tio
n 

(m
m

)

Av
er

ag
e 

po
si

tio
n 

(m
m

)

Va
ria

nc
e 

of
 p

os
iti

on
 (m

m
2 )

Va
ria

nc
e 

of
 p

os
iti

on
 (m

m
2 )

Time (s) Time (s)

LR observed SI observed AP observed

LR simulated SI simulated AP simulated

Figure 4 Results from simulations 3 (left) and 4 (right; dashed lines) compared with the observed traces (solid lines). Simulation 3
used a random walk model with input from and was compared with traces without transient excursions. Simulation 4 used the random
walk model with input from all traces with added artificial excursions and was compared with motion traces that contained one or
several excursions. Note the different scales on the Y axes.
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some qualitative agreement with the observed variance
could be seen (Fig 4; right).

The calculated diffusion coefficients for the simula-
tions and the corresponding dataset of observed traces
agreed well (Table 2), especially for simulation 3 at 4
minutes and simulation 4 at 8 minutes. The difference
between simulated and observed diffusion coefficients
was less than 0.03, 0.2 and 0.3 mm2/min in the left/right,
superior/inferior, and anterior/posterior directions,
respectively. Even though the difference was the smallest
for simulation 3 at 4 minutes, it was also the largest at 8
minutes for simulation 3 (Fig 4; left).

The differences between repeated simulations with
548 simulated traces were small enough to be disregarded
(Fig S1).
Discussion

The aim of this study was to model observed prostate
motion using a random walk model either with or without
artificial transient excursions. The observed motion con-
sisted of motion data from radiation therapy regimens for
17 patients. Two simulations in this study aimed to model
the motion in the entire dataset using a random walk
model with input from all observed traces and using a
random walk model with input from only excursion-free
traces while adding artificial transient excursions. Both
approaches resulted in reasonable agreement, suggesting
the applicability of a random walk approach to modeling
prostate motion, even if it includes transient excursions
(ie, large and rapid prostate movements).

A characteristic of the random walk model is that the
displacement variance increases linearly with time with
no maximum. There was a quick increase in variance at
the start of the observed traces, which was better repro-
duced with added transient motion than without it.
Meanwhile, for the observed traces without transient
motion, the variance increased linearly for several
minutes but seemed to reach a maximum toward the end
of the traces (Fig 4; left). The attempt to model the motion
of the excursion-free traces produced excellent agreement
for the approximately first 5 minutes and gave further
reason to consider the random walk model as a viable
alternative for prostate motion modeling for the timespan
of a conventional radiation therapy fraction. With the
increased availability of flattening filter free beams, 5
minutes also will remain the relevant timeframe for
hypofractionated prostate treatments. The difference
between the observed traces in Figures 3 (right) and 4



Table 2 Diffusion coefficients, D (mm2/min), for observed
and simulated traces, calculated with equation (1)

Simulated D Observed D

LR SI AP LR SI AP

t Z 4 min
Simulation 1 0.01 0.33 0.36 0.01 0.38 0.57
Simulation 2 0.01 0.39 0.45 0.01 0.38 0.57
Simulation 3 0.01 0.19 0.22 0.02 0.19 0.26
Simulation 4 0.01 0.59 0.99 0.01 0.74 1.22

t Z 8 min
Simulation 1 0.03 0.65 0.86 0.01 0.54 0.81
Simulation 2 0.03 0.62 0.76 0.01 0.54 0.81
Simulation 3 0.03 0.53 0.65 0.02 0.37 0.40
Simulation 4 0.03 0.79 1.56 0.01 0.81 1.56

LR, left/right; SI, superior/inferior; AP, anterior/posterior.

Advances in Radiation Oncology: JulyeSeptember 2017 Intrafraction motion with a random walk model 435
(right) is that excursion-free traces have been removed in
the latter. When comparing the figures, it is clear that
the large variation in variance was due to transient
excursions.

Using a random walk model to simulate prostate
motion was recently proposed by Ballhausen et al.22,23

The authors showed that treatment margins calculated
assuming a random walk are smaller than those calculated
on the basis of a Gaussian approximation22 and give
compelling support for the use of a random walk model
on the basis of prostate motion from 6 patients.23 The
present study complements those results by isolating the
effect of transient excursions on the applicability of the
random walk model. Clearly, any random walk model
will find it difficult to recreate the rapid motion shown in
Figure 1A, and a fit to prostate motion including such
motion might overestimate the effect of the drifting
component of prostate motion.

Despite these challenges, reasonable agreement was
achieved with the random walk model in this study (Fig 3;
left). Even better agreement was found between simulated
motion and excursion-free motion, which further suggests
that the random walk model is suited for modeling
prostate drift. Approximately half of the traces had one or
several transient excursions with an average of 0.11
excursions per minute. As long as the prostate quickly
returns to its original position, these would have a
marginal impact on treatment and the required margins. If,
however, the timing of pretreatment imaging happens to
coincide with an excursion or the prostate does not
quickly return to its original position, the prostate will be
misplaced during that treatment fraction.

Intrafraction prostate motion is arguably becoming
more relevant with the increased prevalence of daily
pretreatment prostate imaging. Interfraction correction (ie,
correcting the target position before treatment) can be
considered a first-order correction and intrafraction a
second-order correction. Intrafraction corrections should
ideally include not only translations but also rotations and
deformations. Studies that model deformation are, to the
authors’ knowledge, limited to interfractional motion.21

Modeling intrafraction motion with rotations and
deformations as well as translations is a potential topic of
future research. Other potential areas of improvement
include a more sophisticated model of long-term trends
(eg, where variance may subside with time as observed
for the excursion-free traces), a more sophisticated model
of short-term noise (eg, the patient is getting comfortable),
and patient-specific modeling.

Conclusions

The random walk model could successfully recreate
the characteristics of observed prostate motion from 17
patients, especially when considering only motion from
treatment fractions without transient excursions during the
first 5 minutes. Although the motion model cannot predict
the exact noisy trajectory for any given patient, the model
agrees well with the time-average trends. The transient
excursions caused a rapid increase in prostate displace-
ment variance, which was difficult to recreate without the
use of artificial excursions. The overall agreement was,
however, still satisfactory. This suggests that the random
walk model is applicable for prostate motion modeling
and can be used for simulations of radiation therapy
delivery or treatment margin calculation.
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