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Abstract

Background: West Nile virus (WNV) is an emerging zoonotic pathogen which is harmful to human and animal
health. Effective vaccination in susceptible hosts should protect against WNV infection and significantly reduce viral
transmission between animals and from animals to humans. A versatile vaccine suitable for different species that can
be delivered via flexible routes remains an essential unmet medical need. In this study, we developed a recombinant
avirulent Newcastle disease virus (NDV) LaSota strain expressing WNV premembrane/envelope (PrM/E) proteins
(designated rLa-WNV-PrM/E) and evaluated its immunogenicity in mice, horses, chickens, ducks and geese.

Results: Mouse immunization experiments disclosed that rLa-WNV-PrM/E induces significant levels of WNV-neutralizing
antibodies and E protein-specific CD4+ and CD8+ T-cell responses. Moreover, recombinant rLa-WNV-PrM/E elicited
significant levels of WNV-specific IgG in horses upon delivery via intramuscular immunization, and in chickens, ducks
and geese via intramuscular, oral or intranasal immunization.

Conclusions: Our results collectively support the utility of rLa-WNV-PrM/E as a promising WNV veterinary vaccine
candidate for mammals and poultry.

Keywords: West Nile fever, Newcastle disease virus vectored vaccine, Neutralizing antibody, T cell response, Mammal,
Poultry

Background
West Nile virus (WNV) is the causative agent of West Nile
fever (WNF), a major emerging zoonotic disease shown to
have a significant negative impact on both human and ani-
mal health since the first recorded case in Uganda in 1937.
WNV is a member of the genus Flavivirus belonging to the
family Flaviviridae. The virus is one of the most widespread
arthropod-transmitted pathogens, and is extensively distrib-
uted worldwide throughout Africa, Europe, Asia and North
America. WNV has a broad host spectrum comprising sev-
eral species of birds (including poultry), mammals, amphib-
ians and reptiles. Culex mosquitoes play an important role
as the primary global WNV transmission vector, and are

responsible for the incidental infection of humans and
horses, which are considered dead-end hosts of WNV [1–
4].
Vaccination in sensitive host animals, especially those

abundant in number and closely associated with
humans, such as horses, poultry and other bird species,
should protect against WNV infection and significantly
reduce transmission between animals and from animals
to humans. Currently, several injection-delivered vac-
cines [5–8] are licensed for horses, but not other sensi-
tive host animals. A versatile vaccine suitable for
different species that can be delivered via flexible admin-
istration routes therefore remains an unmet medical
requirement.
Newcastle disease virus (NDV) has been actively de-

veloped and evaluated as a vaccine vector for the control
of human and animal diseases [9–16]. NDV vector
vaccines can be effectively delivered via intramuscular or
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intratracheal inoculation in mammals and intramuscular,
intranasal or oral (through water or feed) inoculation in
poultry [11, 12, 17–21]. In the current study, we gener-
ated a recombinant nonvirulent NDV LaSota virus strain
expressing WNV pre-membrane (PrM) and envelope
protein (E), two surface glycoproteins that form a het-
erodimer on the viral surface [22] and are responsible
for eliciting the majority of protective immune responses
[23]. Immunogenicity of the recombinant NDV in mam-
mals and poultry delivered via different immunization
routes was further evaluated.

Methods
Construction of recombinant NDV LaSota virus
The chemically synthesized mammalian codon-
optimized WNV PrM/E gene (strain NY99, GenBank
No. DQ211652.1) was cloned and inserted into the Pme
I site between the P and M genes of full-length genomic
cDNA of NDV LaSota [11]. The resultant plasmid was
co-transfected with eukaryotic plasmids expressing NDV
nucleoprotein (NP), phosphate protein (P) and large
polymerase protein (L), following an established protocol
[11]. The rescued recombinant virus was designated rLa-
WNV-PrM/E. Expression of WNV PrM and E proteins
was confirmed via indirect immunofluorescence and
western blot assays. Mouse anti-WNV E monoclonal
antibody (developed in our laboratory), mouse anti-PrM
monoclonal antibody [24] and chicken anti-NDV serum
[11] was used as primary antibodies. Fluorescein isothio-
cyanate (FITC)-conjugated goat anti-mouse antibody
(Sigma, St. Louis, MO) and Tetramethylrhodamine
(TRITC)-conjugated rabbit anti-chicken antibody (Sigma,
St. Louis, MO) was used as secondary antibodies for
immunofluorescence assay. Chicken anti-NDV serum and
mouse anti-WNV serum (developed in our labora-
tory) were used as primary antibodies, horseradish-
peroxidase (HRP)-conjugated goat anti-chicken IgG
and goat anti-mouse IgG (SouthernBiotech, Birming-
ham, AL) were used as secondary antibodies for west-
ern blot assay.
To determine the pathogenicity of rLa-WNV-PrM/E in

poultry, mean death time, intracerebral pathogenicity
index, and intravenous pathogenicity index were deter-
mined in embryonated specific pathogen-free (SPF) chick-
ens or eggs according to the OIE Manual [25]. To assess
pathogenicity in mouse, ten 6-week-old female C57BL/6
mice (Vital River, Beijing, China) were inoculated intra-
muscularly with 0.1 ml diluted allantoic fluid containing
1 × 108 EID50 (50 % Embryo Infectious Dose) rLa-WNV-
PrM/E and intranasally with 0.03 ml diluted allantoic fluid
containing 3 × 107 EID50 rLa-WNV-PrM/E. Mice were ex-
amined daily for 3 weeks for signs of illness, weight loss or
death.

Animal immunization studies
For mouse immunization, ten 6-week-old female C57BL/6
mice (Vital River, Beijing, China) were intramuscularly
vaccinated with 0.1 ml diluted allantoic fluid containing
1 × 108 EID50 rLa-WNV-PrM/E twice with a 3-week inter-
val. Splenocytes for assay of E protein-specific CD4+ and
CD8+ T-cell responses were harvested 10 days after the
first or second dose. Serum samples for the serological
assay were prepared 2 weeks after each dose.
For horse immunization, five adult horses were intramus-

cularly inoculated with 2 ml diluted allantoic fluid contain-
ing 2 × 109 EID50 rLa-WNV-PrM/E, and five administered
with 2 ml phosphate-buffered saline (PBS) as the control
group. Three weeks after the first dose, a booster with the
same vaccine was delivered using the same dosage and
route. Serum samples were collected for serological assay
2 weeks after each immunization.
For poultry immunization, three groups (ten per group)

of 4-week-old SPF chickens were assessed: intramuscular
inoculation with 0.1 ml diluted allantoic fluid containing
1 × 108 EID50 rLa-WNV-PrM/E (Group One), oral
inoculation with 10 ml diluted allantoic fluid containing
1 × 1010 EID50 rLa-WNV-PrM/E mixed with 500 g chicken
feed and 300 ml water (Group Two), whereby feeding was
stopped 5 h before inoculation, and intramuscular and oral
inoculation with PBS (Group Three). Three groups (ten per
group) of 4-week-old SPF ducks were immunized following
the above procedure. For immunization of geese, four
groups (15 per group) of 4-week-old birds were examined:
intramuscular inoculation with 0.5 ml diluted allantoic
fluid containing 5 × 108 EID50 rLa-WNV-PrM/E (Group
One), intranasal inoculation with 0.5 ml diluted allantoic
fluid containing 5 × 108 EID50 rLa-WNV-PrM/E via eye
drops and nostril instillation (Group Two), oral inocula-
tion with 0.5 ml diluted allantoic fluid containing 5 × 108

EID50 rLa-WNV-PrM/E via buccal cavity instillation
(Group Three), and intramuscular inoculation with 0.5 ml
PBS (Group Four). Three weeks after the first dose, chick-
ens, ducks and geese were boosted with the vaccine using
the same doses and routes. Serum samples were collected
for serological assay 2 weeks after each immunization. All
poultry were housed in the Experimental Animal Center
of Harbin Veterinary Research Institute.

Analysis of WNV-specific IgG, neutralizing and NDV HI
antibodies
Enzyme-linked immunosorbent assay (ELISA) for deter-
mining antigen-specific IgG in mouse serum was per-
formed as described previously [26]. Briefly, purified
mammalian cells producing WNV virus-like particles
(4 μg/ml, containing PrM and E proteins, unpublished)
were used as coating antigen. Antibodies were detected
using HRP-labeled goat anti-mouse IgG (SouthernBiotech,
Birmingham, AL) secondary antibody. A standard curve
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was generated by coating with serially diluted mouse IgG
(Southern Biotech, Birmingham, AL) at known concentra-
tions. A linear equation was obtained based on the standard
IgG concentration and their O.D values, thus the concen-
tration of WNV-specific IgG was calculated according to
the linear equation based on their O.D values and
expressed as the amount of IgG per ml of serum (ng/ml).
The above coating antigen was also used for ELISA detec-
tion of WNV-specific IgG in horse and poultry sera. HRP-
labeled goat anti-horse IgG (SouthernBiotech, Birming-
ham, AL) and goat anti-chicken IgG (SouthernBiotech, Bir-
mingham, AL) were used as secondary antibodies for
horse and chicken serum detection, and mouse anti-duck
IgG (AbD Serotec, Oxford, UK) and HRP-labeled goat
anti-mouse IgG (SouthernBiotech, Birmingham, AL)
for duck and goose serum detection. Due to the lack
of purified IgG for these animals, results were
expressed as O.D. values relative to negative controls.

Mouse serum neutralizing antibody levels were deter-
mined using the WNV plaque reduction neutralization test
(PRNT) in the Biosafety Level 3 facility of Beijing Institute
of Microbiology and Epidemiology. Briefly, 320 μl of 10-
fold serially diluted mouse serum (heat-inactivated at 56 °C
for 30 min before use) was mixed with 320 μl medium con-
taining 150 plaque-forming units (PFU) of WNV (strain
NY99) and incubated at 37 °C for 1 h. Next, the mixture
was added to BHK-21 cells in the wells of a six-well plate
and incubated at 37 °C for 1 h. Following removal of the
mixture, cells washed three times with PBS. Cells were
overlaid with 2 ml DMEM-agarose, and incubation contin-
ued at 37 °C. After 72 h, cells were fixed with 4 % parafor-
maldehyde and subsequently stained with 1.5 % crystal
violet to visualize plaques. Neutralization titers were
expressed as the reciprocal of the highest dilution of serum
showing at least 50 % reduction in number of plaques,
compared with the negative control. Neutralizing
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Fig. 1 Generation of recombinant NDV expressing WNV PrM/E. Schematic representation of the rLa genome with the Pme I restriction site
introduced between the P and M genes for WNV PrM/E gene insertion (a). Western blot (b) and immunofluorescence staining for detection of
WNV PrM/E expression in rLa-WNV-PrM/E- infected BHK-21 cells (c)
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antibodies of chicken, duck, goose and horse sera were not
assessed due to unavailability of the BSL-3 facility during
the experimental period. NDV hemagglutinin inhibition
(HI) antibodies of immunized animals were determined fol-
lowing a previously described protocol [11].

Flow cytometric analysis of the mouse CD4+ and CD8+ T-
cell response
The WNV E protein-specific CD4+ and CD8+ T-cell
response in C57BL/6 mice was determined via flow
cytometry using established protocols [27]. rLa-WNV-
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Fig. 2 Humoral responses in mice. Mice were intramuscularly inoculated with two doses of rLa-WNV-PrM/E with a 3-week interval. Serum ELISA
antibody to WNV E (a), neutralizing antibody against WNV (b) and neutralizing antibody to NDV (c) were assessed at different times post-inoculation.
Data are presented as mean ± SD for each group. (a), (b), and (c): p < 0.01, significance of the differences in antibody amounts between the first and
second dose
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PrM/E-immunized mice were sacrificed on day 10 after the
first and second immunizations. Mouse splenocytes were
prepared as documented by Ye et al. [28]. Briefly, spleens
were removed from euthanized mice, cut into small sec-
tions, and homogenized by gentle rubbing. After low-speed
centrifugation, the supernatant was removed, cells gently
re-suspended in red blood cell lysis buffer (Sigma), and in-
cubated on ice for 1 min. Splenocytes (1 × 106) were stimu-
lated with 20 μg/ml WNV E-specific CD4 peptide
(PVGRLVTVNPFVSVA, H-2b, [29]) or CD8 peptide
(LGMSNRDFL, H-2Db, [30] for 6 h in presence of 10 ng/
ml Brefeldin A (eBioscience, San Diego, CA) to assess the
CD4+ and CD8+ T-cell response, respectively. Cells were
washed twice with PBS containing 3 % fetal calf serum and
subsequently stained with Peridinin-Chlorophyll-Protein-
Complex (PerCP)-conjugated rat anti-mouse CD4 (or
CD8) and phycoerythrin (PE)-conjugated rat anti-mouse
CD3 antibody (BD Pharmingen, San Diego, CA). Next, cells
were fixed and permeabilized with Fix&Perm Buffer
(eBioscience, San Diego, CA) and stained for intracellular
interferon-gamma (IFN-γ) with an allophycocyanin (APC)-
conjugated rat anti-mouse IFN-γ antibody (BD Pharmin-
gen). The levels of CD4+ or CD8+ T-cell responses were
determined using flow cytometry on a BD FACSAria Sta-
tion (BD Immunocytometry Systems, San Jose, CA). Data
were analyzed with FlowJo software (Treestar Inc, Ashland,
OR).

Statistical analysis
Data on virus titers, antibody titers and mouse T cell
responses were analyzed using two-tailed Student’s t test
with the Excel program (Microsoft, Redmond, WA). To de-
scribe the p value significance, the following convention
was used: not significant, p > 0.05; significant, p ≤ 0.05;
highly significant, p ≤ 0.01.

Results
Generation of rLa-WNV-PrM/E virus and in vitro
characterization
Recombinant NDV expressing WNV PrM/E proteins was
generated by inserting the PrM/E gene between the P and
M genes in NDV genome cDNA (Fig. 1a). The presence of
PrM/E was confirmed via RT-PCR. PrM/E protein expres-
sion was confirmed via western blot and indirect immuno-
fluorescence staining of rLa-WNV-PrM/E-infected BHK-21
cells. Western blot detected the presence of both E
(~45 kDa) and PrM (~25 kDa) proteins (Fig. 1b), which
were further confirmed via indirect immunofluorescence
with specific monoclonal antibodies against each protein.
As expected, rLa-infected BHK-21 cells were not stained
(Fig. 1c).
The growth titer of rLa-WNV-PrM/E in embryonated

chicken eggs was comparable to that of parental rLaSota.
Genetic stability of rLa-WNV-PrM/E was assessed by serial
passage of the virus in SPF chicken eggs, and confirmed
with RT-PCR and immunofluorescence (data not shown).
Mean death time (>120 h), intracerebral pathogenicity
index (=0), and intravenous pathogenicity index (=0) results
demonstrated the lentogenic nature of rLa-WNV-PrM/E in
poultry (data not shown). The genetic stability of WNV
PrM/E gene within rLa-WNV-PrM/E was assessed by seri-
ally passage (at least 10 passages) of the virus in embryo-
nated SPF chicken eggs, the presence and expression of
PrM/E was confirmed by RT-PCR and indirect immuno-
fluorescence assay. The results demonstrated the PrM/E
gene can be stably maintained and expressed. Ten mice re-
ceiving intramuscular inoculation at a dose of 1 × 108 EID50

and intranasal inoculation of 3 × 107 EID50 rLa-WNV-
PrM/E survived with no abnormalities during the 2-week
observation period. No significant differences in weight
gain were observed after inoculation. Our results indicate
rLa-WNV-PrM/E is safe for mice (data not shown).

Fig. 3 T-cell responses in mice. Mice were sacrificed at the tenth day post-immunization, and their splenocytes were prepared and stimulated
with E protein CD4 or CD8 epitope peptide. Cells were stained for cell surface CD4 or CD8 as well as intracellular IFN-γ protein before flow cytometry
analysis. Statistical results (percentages) of E protein- specific IFN-γ-producing CD4+ T cells (a) and CD8+ T cells (b) are shown. Data are presented as
mean ± SD of five mice for each group. (a), (b): p < 0.05, significance of the differences in values between the first and second dose
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The recombinant virus induces significant WNV-specific
humoral and T-cell responses in mice
WNV-specific IgG (Fig. 2a) was detected using ELISA. Not-
ably, the IgG antibody level was significantly boosted after
the second dose (p < 0.01). Serum neutralizing antibodies
were analyzed with a WNV plaque reduction assay. As
shown in Fig. 2b, WNV-neutralizing antibodies were de-
tected after the first dose, and significantly boosted after the
second dose (p < 0.01). NDV neutralizing antibodies were
also detected after the first dose, and significantly boosted
after the second dose (p < 0.01) (Fig. 2c).
The WNV E protein-specific CD4 epitope (PVGRLV

TVNPFVSVA, H-2b, [29] and CD8 epitope (LGMSNRDFL,

H-2Db, [30] were used to assess rLa-WNV-PrM/E-induced
specific T-cell responses in mice. As shown in Fig. 3, rLa-
WNV-PrM/E immunization induced significant epitope-
specific IFN-γ-producing CD4+ and CD8+ T-cell responses
after the first dose, which were significantly boosted after
the second dose (p < 0.05).

rLa-WNV-PrM/E administered via different immunization
routes induces significant WNV IgG antibody production
in horses and poultry
Given that rLa-WNV-PrM/E induces good humoral
responses in mice, we performed horse immunization
with the vaccine. Horses received two doses of the
vaccine via the intramuscular route with a 3-week inter-
val. WNV-specific IgG was detected after the first dose,
and significantly boosted after the second dose (p < 0.01)
(Fig. 4a). HI antibodies against NDV were also detected
in horse after the first dose, and significantly boosted
after the second dose (p < 0.01) (Fig. 4b). To determine
whether rLa-WNV-PrM/E induces an immune response
in poultry, SPF chickens were intramuscularly or orally
inoculated with the recombinant virus twice with a 3-
week interval. In intramuscularly immunized chickens,
the WNV-specific IgG was detected after the first dose,
and significantly boosted after the second dose (p < 0.05)
(Fig. 5a I). In orally immunized chickens, IgG was also
detected after the first dose, but only slightly boosted
after the second dose (Fig. 5a II). NDV HI antibodies
was detected after the first dose, and significantly
boosted after the second dose (p < 0.05) in intramuscularly
immunized chickens (Fig. 5b I). In orally immunized
chickens, NDV HI antibody was also detected after the
first dose, but only slightly boosted after the second dose
with no statistical significance (Fig. 5b II). The same
immunization procedure was performed for ducks. WNV
IgG in intramuscularly (Fig. 6a I) and orally (Fig. 6a II)
immunized duck sera was induced after the first dose, and
boosted significantly after the second dose (p < 0.05).
NDV HI antibodies were detected after the first dose, and
significantly boosted after the second dose in
intramuscularly (Fig. 6b I) and orally immunized ducks
(p < 0.01) (Fig. 6b II). Groups of outbred geese were ei-
ther intramuscularly, intranasally or orally inoculated
with rLa-WNV-PrM/E. Intramuscularly immunized
geese produced detectable WNV IgG after the first
dose, which was significantly boosted after the second
dose (p < 0.05) (Fig. 7a I). Intranasally (Fig. 7a II) and
orally (Fig. 7a III) immunized geese also produced a
detectable level of IgG after the first dose, which was
only slightly boosted after the second dose (p > 0.05).
NDV HI antibodies were detected after the first dose,
and significantly boosted after the second dose in
intramuscularly (Fig. 7b I), intranasally (Fig. 7b II) and
orally (Fig. 7b III) immunized geese (p < 0.01).
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Discussion
WNV is an important zoonotic pathogen widely distrib-
uted geographically, with emergence of increasingly
neuroevasive strains. Here, a recombinant NDV LaSota
virus expressing WNV PrM and E proteins, rLa-WNV-
PrM/E, was constructed as a candidate veterinary vac-
cine for WNV prevention and control. rLa-WNV-PrM/E
elicited significant levels of neutralizing antibodies and
WNV-specific T-cell responses in mice, as well as
WNV-specific IgG in horses, chickens, ducks, and geese,
support the immunogenicity of the newly generated
recombinant virus in mammals and poultry.
Mice are sensitive to WNV infection, and thus com-

monly used as the model animal for WNV vaccine
evaluation and other related studies. In our experiments,
mice intramuscularly inoculated with rLa-WNV-PrM/E
produced significant WNV-neutralizing antibodies and
specific IgG. Neutralizing antibodies play a crucial role
in WNV control and clearance [31]. We used the 50 %
plaque reduction assay for determining the levels of neu-
tralizing antibody against WNV NY99 in mice sera. This
method is recommended by WHO for testing the po-
tency of Japanese encephalitis vaccine. The cut-off value

for testing serum seroprotection is 1 log10 (a ten-fold
dilution of serum that reduces plaque formation by 50 %
is sufficient for protection against viral challenge) [32].
In an earlier study, mice immunized actively or passively
that possessed WNV-neutralizing antibodies higher than
1 log10 were protected against the lethal WNV challenge
[33]. In our experiments, the neutralizing antibody titer
of rLa-WNV-PrM/E-immunized mice reached up to 1.3
log10 after the first dose. After administration of the
second dose, the neutralizing antibody titer was
significantly boosted (~2.2 log10), implying that rLa-
WNV-PrM/E confers robust protection against lethal
WNV infection in mice. In sera of mice, high levels
of anti-WNV E IgG were elicited after the first dose, which
were significantly boosted after the second dose. IgG find-
ings were in accordance with the neutralizing antibody
pattern, indicating a linear correlation in rLa-WNV-PrM/
E-immunized animals. T-cell responses are additionally
critical in controlling WNV infection. CD4+ T-cells play a
dominant protective role in viral clearance via facilitating
antibody responses and sustaining WNV-specific CD8+ T-
cell responses in the central nervous system (CNS) [34].
The efficacy of CD8+ T cells in controlling WNV infection
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has also been characterized. An earlier study showed that
while neutralizing antibodies play a central role in termin-
ating WNV viremia, CD8+ T-cells are essential for pre-
venting sustained WNV infection in peripheral and CNS
compartments [35]. Live vector vaccines have a significant
advantage in that they effectively elicit cellular responses
[36–38]. In our experiments, rLa-WNV-PrM/E induced
high levels of WNV-specific CD4+ and CD8+ T-cell
responses. Although a challenge study was not conducted
at this time due to the unavailability of the BSL-3 labora-
tory, given the neutralizing antibody and T-cell response
results, we presume that the rLa-WNV-PrM/E could con-
fer protection in mice. Intramuscularly immunized horses
produced WNV specific IgG following the first dose,
which was significantly boosted after the second dose.
Considering the close association between IgG and
neutralizing antibody levels, we propose that horses
acquire protective immunity after vaccination. Further
neutralization assays and challenge studies are required to
confirm the efficacy of the vaccine in horses.
Vaccination of sensitive hosts not only protects the

animal itself but also prevents transmission of WNV
from animals to humans. Several veterinary WNV
vaccines are currently available, including inactivated

whole virus vaccine [5, 39, 40], DNA vaccines [41–43],
recombinant canarypox-vectored vaccine [6, 44] and
recombinant Yellow Fever 17D vaccine [45, 46]. Notably,
canarypox-vectored WNV vaccine has been shown to
effectively elicit WNV-specific neutralizing antibodies
and confer protection in horses, geese, cats and dogs
against lethal WNV challenge [6, 44, 47, 48]. These
vaccines require delivery via intramuscular inoculation.
The current study demonstrated that rLa-WNV-PrM/E
is immunogenic in not only mice, horses and poultry
when administered intramuscularly, but also in poultry
upon delivery via intranasal or oral inoculation. Based
on the collective findings, we propose that rLa-WNV-
PrM/E is a promising veterinary candidate vaccine for
multiple mammalian and avian species that can be
delivered via flexible inoculation routes.
Domestic poultry, such as chickens, ducks and geese,

are susceptible to WNV and develop clinical signs and
viremia (usually sufficient to infect mosquitoes), thus
contributing to WNV transmission. Chickens are widely
used as sentinel animals in the early warning of WNV
prevalence [2, 49–52]. Several studies have additionally
provided evidence of the susceptibility of domestic or
captive ducks to WNV [3, 53, 54]. Ducks develop high-
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titer viremia in blood and are capable of shedding virus
orally [55]. Geese are also susceptible to WNV, especially
young geese, and develop a variety of neurological signs,
often resulting in a significant number of deaths [4, 56, 57].
Geese represent another experimental animal model for
WNV vaccine evaluation [58–60]. Notably, WNV human
infection and isolation of the virus has recently been
reported in mosquitoes in the Xinjiang Uygur
Autonomous Region in Northwest China [61, 62].
China has an estimated 12 billion or more poultry,
including four billion ducks and geese. Many domes-
tic birds, especially ducks and geese, are raised in
backyards and open ranges under poor biosecurity
conditions and live in high-density groups close to
large human populations. Since these birds may
serve as important amplifying hosts of WNV, control
of WNV circulation in birds is important for public
health. For economic reasons, poultry farmers are
generally unwilling to pay additional vaccine and
labor costs for vaccination solely against WNV. As
NDV is one of the most lethal and economically
important pathogens for poultry (at least chickens
and geese), farmers use live vaccines, such as LaSota
strain, to protect against infection. In our study,

most domestic poultry showed NDV HI antibody
titters higher than 4 log2 after vaccination, irrespect-
ive of the delivery route (Figs. 5b, 6b and 7b). A HI
antibody titer higher than 3 log2 is usually sufficient
to protect poultry from lethal challenge of NDV. In
this scenario, farmers will not need to pay additional
vaccine and labor costs to protect against WNV
infection by using rLa-WNV-PrM/E instead of NDV
live vaccine for routine vaccination. Moreover, oral
and intranasal immunization routes are more con-
venient than intramuscular immunization for poultry
as well as water fowl and migratory and resident
wild birds.

Conclusions
In summary, rLa-WNV-PrM/E vaccination in susceptible
animals is important for protection against WNV infection.
Our findings demonstrate that rLa-WNV-PrM/E delivered
via multiple immunization routes is immunogenic in both
mammals and poultry.
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