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Abstract: Traffic violations usually caused by aggressive driving behavior are often seen as a primary
contributor to traffic crashes. Violations are either caused by an unintentional or deliberate act of drivers
that jeopardize the lives of fellow drivers, pedestrians, and property. This study is aimed to investigate
different traffic violations (overspeeding, wrong-way driving, illegal parking, non-compliance traffic
control devices, etc.) using spatial analysis and different machine learning methods. Georeferenced
violation data along two expressways (S308 and S219) for the year 2016 was obtained from the traffic
police department, in the city of Luzhou, China. Detailed descriptive analysis of the data showed
that wrong-way driving was the most common violation type observed. Inverse Distance Weighted
(IDW) interpolation in the ArcMap Geographic Information System (GIS) was used to develop violation
hotspots zones to guide on efficient use of limited resources during the treatment of high-risk sites.
Lastly, a systematic Machine Learning (ML) framework, such as K Nearest Neighbors (KNN) models
(using k = 3, 5, 7, 10, and 12), support vector machine (SVM), and CN2 Rule Inducer, was utilized
for classification and prediction of each violation type as a function of several explanatory variables.
The predictive performance of proposed ML models was examined using different evaluation metrics,
such as Area Under the Curve (AUC), F-score, precision, recall, specificity, and run time. The results
also showed that the KNN model with k = 7 using manhattan evaluation had an accuracy of 99%
and outperformed the SVM and CN2 Rule Inducer. The outcome of this study could provide the
practitioners and decision-makers with essential insights for appropriate engineering and traffic control
measures to improve the safety of road-users.

Keywords: aggressive driving; traffic violations; inverse distance weighted (IDW) interpolation;
geographic information system (GIS); machine learning

1. Introduction

Road transport is considered the backbone of the nation’s economy. In China, rapid economic
growth during the past three decades has brought a revolution in the transportation industry.
The motorization rate has witnessed exponential growth, particularly in urban areas. Though this
rapid expansion of urban transport infrastructure has inarguable benefits for various businesses, it has
caused serious agony in the form of extreme traffic congestion, limited parking facilities, increases air
pollution, and noise pollution, as well as safety concerns. For example, a study reported that a total

Int. J. Environ. Res. Public Health 2020, 17, 5193; doi:10.3390/ijerph17145193 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-9143-8328
https://orcid.org/0000-0001-7284-7348
https://orcid.org/0000-0001-5664-1112
http://dx.doi.org/10.3390/ijerph17145193
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/17/14/5193?type=check_update&version=2


Int. J. Environ. Res. Public Health 2020, 17, 5193 2 of 16

of 244,937 road accidents occurred in China in 2018, resulting in 63,194 deaths, 258,532 injuries, and
an overall direct economic loss of 1.38 billion yuan [1]. Road safety has become a global challenge
in the era of rapid motorization. Traffic crashes severely affect public health, and further pose huge
socio-economic losses every year. It is estimated that around 1.35 million people are killed, and over
50 million others sustain injuries due to traffic crashes every year, causing over $520 billion losses
to the global economy [2]. It is essential to explore the underlying factors and to identify high-risk
zones to mitigate the burden of such unfortunate events. Numerous studies have examined the
factors contributing to crash occurrences and their severity outcome; however, crashes are random
events having spatio-temporal variations that warrant comprehensive investigation under given
circumstances [3,4]. Several previous studies suggest that driver-related factors (mainly including
distractions, fatigue driving, drunk driving, non-compliance to traffic rules) are responsible for over
90% of total crashes [5,6]. Among all driver attributes, only a few studies have focused on analyzing
drivers’ violation patterns usually caused by aggressive driving behavior [7,8]. Alonso et al. conducted
a questionnaire-based study to investigate the tendencies and perceptions of a sample of Spanish
drivers (n = 1100) toward traffic norms [9]. It was concluded that the vast majority of respondents
believed that the established norms were effective in improving road safety.

Association of aggressive driving behavior and traffic violation with crash characteristics has been
the subject of burning research in recent years. Studies suggest that several factors are responsible
for traffic violations inspired by aggressive driving behavior. The key in this regard may be grouped
into four categories: psychological (aggressive nature, anxiety, stress, hatred, competition, gender),
social (the presence of passengers in the vehicle; the gender and age of the individuals demonstrated
aggressiveness), temporal (time pressure and daytime), and environment-related factors (road conditions,
traffic density, and weather) [10,11]. A series of research investigated the association between crashes
and traffic violations. Studies reported that drivers involved in deadly crashes were found to have more
charges of traffic violations than non-guilty drivers [12,13]. Similarly, previous research also showed that
drivers who were previously involved in frequent violations were at high risk of involving subsequent
crash [14,15]. It is acknowledged that inexperienced drivers (particularly young drivers) do not have
adequate driving skills, yet most of them overestimate their driving abilities and therefore do not consider
the various hazards as risky while driving [16]. Studies showed that male drivers are usually more likely
to commit traffic violations and consequently have a higher chance of involvement in serious/fatal traffic
accidents [17–21]. A recent study concluded that the elderly age is less indicative of traffic violations
compared to the young driving population [22]. It is established that strict enforcement could discourage
the drivers from committing traffic violations, and significantly reduce the number of crashes, as well as
their severity [16]. Similarly, studies have shown that pro-active traffic control and forecasting could be
very beneficial to monitor dynamic drivers maneuvers, thus ensuring strict compliance traffic regulations
and mitigate congestion in urban areas [23–25].

Researchers have utilized different analysis techniques for characterization and detailed prognosis
of traffic violations. For example, Firth’s penalized logistic regression, logistic regression, and generalized
order logit models have been widely used to investigate wrong-way driving crash information in
urban areas [26–28]. Lucidi et al. assessed the validity of the Ulleberg and Rundmo model to predict
risky driving behaviors (considering violations, lapses to response, and errors) among large samples
of older drivers population [29]. In another study, researchers evaluated 11,055 cases for overspeeding
reported during the period 2006–2010 in Guangdong Province, China [30]. It was found that private
cars, lack of adequate street lighting at night, and low visibility were the critical factors associated with
the overspeeding violations. Studies have also focused on investigating the factors contributing to
overspeeding violations for individual vehicle types, such as cars/taxis [31] and trucks [32]. The findings
indicated that age, employment, mental health, and driving status were significantly associated with
overspeeding truck violations. For taxis, drivers’ age, the work experience, the driving style, and daily
driven kilometers were all linked to the overspeeding profiles.
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Tselentis et al. utilized Data Envelopment Analysis (DEA) based framework for evaluation and
benchmarking of drivers’ safety efficiency under a naturalistic driving environment [33]. The driver
population (N = 56) was divided into three categories, i.e., less efficient, weakly efficient, and most
efficient. Eboli et al. in their study, proposed a novel framework considering kinematic parameters,
such as speed, lateral, and longitudinal acceleration profiles to establish whether driver behavior
was safe or unsafe [34]. Jovanovic et al. investigated the speeding violation factors and assessed
the predictive validity of the adjusted Theory of Planned Behavior (TPB) model in association with
speed violation [35]. Warner and Aberg attempted to explore about drivers’ perspective of speeding
violation and predicted the speeding intent. A total of 162 car owners were selected for the analysis.
The findings revealed that the indicators, including mood, attitude, social norms, and perceived
behaviors, seem to be more effective in predicting the speeding intentions of the drivers [36]. Likewise,
Kim et al. introduced a method for regulating parking violations using camera captured images
through computer vision techniques. The result showed that the illegal parking was determined
by the conformity of the lanes and the vehicle’s shadow [37]. De Winter and Dodou conducted a
detailed meta-analysis that revealed that age and annual mileage have a great deal of association with
drivers’ errors and violations. The authors found that young driving age appeared to be associated
positively with violations and errors. Toledo et al. assessed the potential for an in-vehicle recorder
system to monitor road-driver behavior [38]. Implementation of the proposed system using the Drive
Diagnostics system showed that short-term rates and risk indices might be reduced. In another study,
researchers designed a combined method considering both objective and subjective parameters to
identify crash risk levels [39]. Based on the study results, the authors classified three ranges for being
involved in a crash, i.e., low, medium, and high.

In recent years, major Chinese metropolitans witnessed an increasing trend in traffic violations. These
violations account for 75% of total crashing occurring in the country [40]. Traditionally, statistical modeling
or simulation-based approaches have been widely used for examining aggressive driving behavior and
analysis of traffic violations. However, these methods have several underlying assumptions and are
unable to estimate associations between predictor variables in a realistic fashion. Further, a vast majority
of such studies have focused on analyzing the patterns of traffic violations in the urban metropolitan,
whereas factors contributing to traffic violations along expressways have been scarcely explored. To fill
this gap, we utilized state-of-the-art Machine Learning (ML) models to predict violations taking into
account various spatio-temporal attributes. The main contributions of current work are: (i) we advocate
the application of Inverse Distance Weighted (IDW) method of interpolation in ArcMap (Geographic
Information System (GIS)) to identify violation hotspots along expressways; (ii) proposed a systematic ML
framework, including SVM, CN2 Rule Inducer, and K Nearest Neighbors (KNN) to classify and predict
traffic violations considering a number of available explanatory variables; (iii) performed comprehensive
comparative analysis for proposed ML algorithms based on several classification evaluation metrics;
and (iv) our results showed that KNN (with k = 7) outperformed other models.

The remainder of the paper is structured as follows. Section 2 presents description of study area,
data collection, and detailed methods for hotspot analysis and violation prediction using ML. Section 3
provides study results and discussion, highlighting key descriptive anlaysis, mapping of violation
hotspots, ML models’ prediction comparions, and Spearman correlation analysis. Finally, Section 4,
provides conclusions, study limitations, and outlook for future studies.

2. Data and Methods

2.1. Selection of Study Area

The city of Luzhou (shown in Figure 1) was selected as the study area. It is a prefecture-level
municipality with an area of 12,246 km2 and a population over 1 million and is located in the southeast
of Sichuan Province, China. Located at the combination of the Tuo River and Yangtze River, the Luzhou
port on the Yangtze River is the major port of Sichuan since the Chongqing Province in 1997 [41].
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As per the National Bureau of the Statistics People’s Republic of China (PRC), by 2017, the country had
4.77 million of paved roads and over 300 million registered vehicles [1].
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Figure 1. Locations of S219 and S308 in the study area (from Google Maps).

2.2. Data Collection

Traffic violation data for the year 2016 was obtained from the department of Sichuan traffic
police in Luzhou city and collected from off-site traffic enforcement cameras system. Therefore, traffic
violations along expressways road segments may be missing. It is worth stating that the license plate
number of vehicles was not available in the dataset, which bounds its application to record a particular
driver’s history of the violation. It is a significant shortcoming that could be addressed in future
research for better analysis of violations by various vehicle types’ drivers.

2.3. GIS-Based Analysis for Violation Hotspots

Spatial Statistic toolbox in ArcMap was used for distribution and identification hotspots along
the two expressways. Four steps were carried out to find the hotspots in the study area. In the first
step, traffic violation point data was loaded in GIS. Each point represented a traffic violation caused
by any of the four types, i.e., Violation of prohibited markings, Wrong-way driving, Illegal parking,
or Overspeeding. In the second step, Data clusters were created in order to convert the data to a
weighted point. A spatial statistics tool (Collect Event) was used in ArcMap in order to convert the
data to a weighted point. Weights were assigned based on the frequency of the traffic violation at a
particular point. Collect Event tools combines all coincident points that have the same X and Y centroid
coordinates. During the third step, the Getis-Ord statistic was used to identify traffic violation hotspots.
A high value of Getis-Ord statistic shows that a cluster is having high index values (hot spots), and a
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low value of Getis-Ord statistic represents a cluster of low index values (cold spots). Mathematically,
the Getis-Ord statistic and its z-score are expressed by the following equations.

G∗i (d) =

n∑
j=1

wi j(d)x j

n∑
j=1

x j

, (1)

Z(G∗i ) =
G∗i − E(G∗i )√

VAR(G∗i )
, (2)

where G∗i represent spatial dependency of the incident i, x j is feature value for j, wi j is the spatial
weights for i, and j stands for distance d. n is the total number of features.

Inverse Distance Weighted (IDW) method of interpolation was used on these hotspots to estimates
traffic violations along the expressways. IDW helps in estimating the neighboring values by averaging
the values of sample data points. The principle of IDW is, the closer a point is to the center of the cell
being estimated, the more influence or weight it has in the averaging process.

2.4. Traffic Violation Prediction Using ML

Three different ML algorithms, including K Nearest Neighbors (KNN), Support Vector Machine
(SVM), and CN2 Rule Inducer, were implemented for predicting traffic violations using the available
violation data collected from the study area. The three algorithms were implemented using the orange
data mining toolbox in python. The preliminaries and detailed methodology of proposed ML methods
are discussed in the following passages.

2.4.1. K Nearest Neighbors (KNN)

The K-nearest neighbor (KNN) classifier is a conventional non-parametric classifier initially proposed
by Cover and Hart in 1967 [42]. It is a low computation complexity method for object recognition and
classification tasks, such as character, face, and other objects. The KNN principle is based on an intuitive
idea that the data points of the same class should be nearer to the feature space. The very first step of
implementation is the collection of traffic violations observations and is classified C = {C1, C2, . . . , CN}.
Firstly, KNN determines the distances for each training sample and the target point, then chooses the
closest k-samples to the target. Such k-samples assess together the target point class. The distance
measurement of the attributes is a simple way of expressing the point’s resemblance. Afterward, the
shortest k distance D = {d1, d2, d3, . . . . . . , dk} is chosen where each neighbor belongs among N classes to a
specific class Y =

{
y1, y2, . . . . . . , yn

}
. Given a data set labeled with observations (xi, yi) and i = 1, 2, . . . , n

to capture the relationship between x data and y label. More explicitly, to know a function g : X→ Y
such that g (x) can accurately predict the corresponding output class Y given an unknown observation X.
Moreover, the distance between the components to be recognized, and each class is then computed by
euclidean, manhattan, mahalanobis and weighted by uniform and distance techniques. The distance can
be defined as the nearer query neighbors point have a more significant impact than neighbors further
away, while uniform described all points in each neighborhood are weighted equally. The formula for
euclidean, manhattan, and mahalanobis are given in below equations,

D(x, y) =

√√ n∑
i=1

(xi, yi), (3)

D(x, y) =
n∑

i=1

∣∣∣xi − yi
∣∣∣, (4)
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D(
→
x ,
→
y ) =

√
(
→
x i −

→
y i)

T
S−1(

→
x i −

→
y i), (5)

where D denotes distance, and S−1 is the covariance of the matrix of
→
x i and

→
y i. The weight distribution

is achieved through distance and uniform techniques, and the k values assigned for these different
metrics are given in Table 1.

Table 1. K values for K Nearest Neighbors (KNN) model.

K (Number of Neighbors) Metric Weight

3 Euclidean Distance
5 Euclidean Distance
7 Manhattan Distance

10 Euclidean Uniform
12 Mahalanobis Distance

2.4.2. Support Vector Machine (SVM)

The Support Vector Machine (SVM) method is a supervised learning method proposed by
Boser et al. in 1992 [43]. It seeks to find the ideal hyperplane, which divides two or more classes by
seeking the maximal margin distances (e.g., positive vs. negative). In the classification scenario, the
SVM seeks for the curve that can separate and classify the training data, ensuring that the difference
between the curve, as well as other training class observations (support vectors), is as high as possible.
This separation can be achieved in the same space or an ample space by mapping the input space
into a feature space through a kernel function (radial basis function (RBF), polynomial, sigmoid, etc.).
The training dataset of n points with observations xi i = 1, 2, . . . , n is defined as the vectors relative to
the class observations yi i = 1, 2, . . . , n. In particular, SVM adjusts the balance between the margin
as well as the error by adjusting a C parameter. With a higher optimum performance due to less
computational difficulties and reasonable precision that reduced overfitting, the RBF kernels have been
selected for the ultimate model of our research. The SVM model was implemented using the Orange
python scripting tool. The formula for the RBF kernel is given below.

K(x, y) = exp(−γ
∣∣∣xi − yi

∣∣∣2), γ > 0 (6)

where K represents kernel, and γ can be termed kernel ‘spread’, as well as the decision region. The values
of γ and C are 10 and 1.

2.4.3. CN2 Rule Inducer

The rule learning model for traffic violations and classification were discussed in this study.
The CN2 Rule Inducer is a classification method designed to generate simple output, if condition then
forecasts class, even in conditions where noise can occur. Moreover, CN2 Rule Inducer generates a class
distribution based on the number of instances covered and distributed over the classes. In other words,
it indicates the total number of representatives of the class. In our study, we employed a statistical
significance check to determine whether the new rule has a valid correlation between features and
classes. In addition, rules are pre-determined using two methods: (i) statistical likelihood ratio (SLR
or LRS) tests and (ii) minimum threshold for rules coverage. The LRS test further shows two tests:
firstly, the minimum level of relevance of a rule α1, and the second LRS test is equivalent to its parent
rule, since it examines whether the last classification of rule is of adequate significance α2. In our
implementation, we introduced exclusive coverage at the upper stage, such as an unordered rule,
while Laplace estimation was used at the lower level for function evaluation. Laplace estimation has
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described as an alternative measure of the quality of the rule to correct undesirable entropy (downward
bias) as follows:

Laplace Estimation (R) =
p + 1

p + n + k
, (7)

where ′R′ is the rule, ′p′ refers to the number of positive examples defined in the training set covered
by the rule ′R′, ′n′ refers to the number of negative examples by ′R′, and ′k′ is the number of classes
included in the training set. The values used for LRS tests are shown in Table 2, whereas the CN2 Rule
Inducer viewer listed in Table A1 in Appendix A was obtained using stratified 10-fold cross-validation.

Table 2. CN2 Rule Inducer setting parameters values.

Model Parameters Parameter Value

α1 0.04
α2 0.04

Minimum rule coverage 1
Maximum rule coverage 7

2.5. Performance Evaluation Metrics for ML Models

Different classification evaluation metrics were used to assess and compare the predictive performance
of proposed ML methods. These include; precision, recall, F-score, accuracy, and specificity. Precision
quantifies the number of positive predictions that are made correctly, while the recall quantifies the number
of correct positive predictions that could have been made from all the positive predictions. The formula for
calculating precision and recall could be found in Equations (8) and (9). The F-score comprises both the
recall and the precision and is calculated from Equation (10). Accuracy is the proportion of the correct
sample to the total number of samples and can be calculated from Equation (11). Similarly, specificity can
be calculated from Equation (12).

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F− score =
1

Precision
+

1
Recall

, (10)

Accuracy =
TP + TN

TP + TN + FP + FN
, (11)

Speci f icity =
TN

TN + FP
. (12)

3. Results and Discussions

3.1. Analysis of Descriptive Statistics

Traffic violations experienced by different vehicles, like private cars, taxis, vans, buses, and small
trucks, were included in this analysis since they hold a large proportion of total occurrences of violations.
A total number of 2003 violations by different vehicles were used for the analysis once the data was
pre-processed. The occurren‘ce of violations, comprised of time, date, month, day of the week, and time of
the day, was assessed. The location of the violation was just to approximate the position of the occurrence
of a traffic violation. In the present work, this detail was used to consider the spatial distribution of
various type of violations occurred on urban expressways. Key descriptive statistics for data used in this
research are summarized in Table 3.
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Table 3. Descriptive Statistics of Violations (N = 2003).

Variable Percentage of Total
Violations (%) Frequency Variable Type

Wrongway driving 74.94 1501 Response
Violation of Prohibited Markings 17.87 358 Response

Overspeeding 4.54 91 Response
Illegal Parking 2.65 53 Response

Vehicles Type

Private Car 58.46 1171 Predictor
Taxi 23.27 466 Predictor
Van 9.54 191 Predictor

Small Truck 6.19 124 Predictor
Bus 2.55 51 Predictor

Seasons

Spring 54.72 1096 Predictor
Winter 34.4 689 Predictor

Summer 7.79 156 Predictor
Autumn 3.1 62 Predictor

Week

Weekdays 68.3 1368 Predictor
Weekends 31.7 635 Predictor

Hours of the Day

Peak Hours (9:00 a.m.–11:00 a.m.,
15:00 p.m.–17:00 p.m.) 47.98 961 Predictor

Off Peak Hours (11:00 a.m.–15:00 p.m.,
17:00 p.m.–9:00 a.m.) 52.02 1042 Predictor

Violations committed by taxi drivers and private cars were more prevalent compared to other
vehicles. Wrong-way driving (74.94%) comprised the highest proportion of observed violation followed
by violation of prohibited road marking (17.87%), overspeeding (4.54%), and illegal parking (2.65%).
The main reason for a significantly high percentage of wrong-way driving violations may be attributed
to the fact that vehicles (taxis and private cars drivers in particular) tend to use the wrong way to
avoid long travel to the next entrance or exit ramp to save time. In comparison, a relatively low
percentage of overspeeding violations may be attributed to the presence of speed surveillance cameras
at multiple locations along both expressways. Since wrong-way driving usually results in more severe
crashes due to head-on collisions, it is essential to identify high-risk areas and factors that are likely to
encourage wrong-way driving. Considering the distribution of violations caused by different vehicle
types, it may be noted from Table 3 that private cars were involved in approximately three-fifths (58%)
of the total violations, while violations caused by buses accounted for only 2.55% of total violations.
Considering the temporal distribution of violations, the Spring season had the highest percentage of
reported violations (54.72%), followed by winter (34.40%), whereas Autumn had the lowest proportion
(3.10%) of total violations. The large proportion of Spring violation may be associated with frequent
travel during this season. Similarly, weekdays and peak periods accounted for almost 70% and 48% of
reported violations, respectively.

3.2. Mapping of Violation Hotspots

Figure 2 shows the mapping of violations based on frequency-based clustering and the IDW method
in ArcMap GIS. A total of 2003 traffic violations were observed along two expressways S219 and S308.
S219 connects two residential districts, Lantian Residential District and Mianhuapozhen, in Luzhou,
Sichuan, China. This expressway passes through various residential zones, one commercial zone, and one
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public facilities zone. S308 connects Lantian Residential District, Linyu Residential District, and Naxi
District in the study area. As shown in Figure 2, both expressways had one major hotspot. The hotspot is
located along the commercial and public facility zones. Wrong-way driving was the most observed traffic
violation along both expressways. This observation may be attributed to the fact that drivers usually tend
to drive the Wrong-way to avoid long travel along the expressway to reach their destinations or nearby
residential areas to maximize profit. Expressway S219 had more number of hotspots compared to S308
due to densely populated residential zones on both sides in the vicinity of observed hotpots. Instead, S308
is occupied by coldspots, as shown in Figure 2. This observation is intuitive because this expressway runs
along the rivers, and it does not divide any residential areas. Secondly, there are no commercial or public
facilities along this expressway. Hence, very few traffic violations are observed along S308. The hotspot
along this road is near to the airport along the curve (shown in Figure 2). More number of violations in
these areas could be attributed to the presence of airport and sharp curve along the expressway. In general,
hotspots frequency analysis along both expressways was dominated by wrong-way driving, followed by
overspeeding, illegal parking, and violation of prohibited road markings.
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3.3. ML Model’s Comparison for Violation Prediction

A detailed comparative analysis was conducted to examine the applicability and efficacy of
applied models. The model’s performance is checked in terms of area Under the curve (AUC),
accuracy, precision, recall, log loss, specificity, and F-1 score. Amongst these models, the KNN model
outperformed the CN2 Rule Inducer and SVM model. As shown in Figure 3, we considered KNN with
different k neighbors 3, 5, 7, 10, and 12 of different metrics and weights. The accuracy achieved for
these different k neighbors is 99, 98, 98, 87, and 98 percent, respectively. Besides, all these k neighbors
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achieved higher accuracy and performed better except k = 10 nearest neighbor of uniform euclidean
with obtained accuracy 87 percent. Hence, the average KNN model accuracy is 97.3 percent, which
indicates that the predictive performance of KNN is more robust compared to SVM and CN2 Rule
Inducer. Figure 3 also shows the obtained AUC, accuracy, precision, recall, F-1 score, and specificity
for SVM are 0.95, 0.964, 0.963, 0.978, 0.961, and 0.945. Similarly, the AUC, accuracy, precision, recall,
F-1 score, and specificity for CN2 Rule Inducer are 0.91, 0.874, 0.873, 0.865, 0.864, and 0.70. In contrast,
the KNN model takes less training time and test time with different KNN (k = 1, 3, 5, 7, 10, and 12).
Additionally, the KNN model takes less training time than the SVM and CN2 rule inducer, which
therefore validates the efficiency of the KNN model. The models’ run times are shown in Figure 4.
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3.4. Spearman Correlation Analysis

After data pre-processing, we estimate the rank correlation coefficient of the Spearman between the
two features and obtain the matrix of the correlation coefficient. It aims to assess how well a monotonic
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function could be used to represent the relation between two variables. The correlation matrix describes
the correlation and no correlation variance of a range of features through the values created in matrix
ranging from +1 to −1. +1 means high and positively correlated, while −1 means less and negatively
correlated. The features which are correlated are month and date, month and type of violation, latitude,
and longitude. On the other hand, features highly less correlated are season and month. Additionally,
the less correlated features also include season and date, season and type of violation, as shown in
Figure 5. This indicates that month, latitudes, and longitude have a notable impact on the type of violation.
The violations vary throughout the year as the month changes. Longitudes and latitudes show that the
location of the violation also has a strong positive association with observed violations.
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4. Conclusions

Traffic violations often caused by aggressive driving behavior are considered as significant indicators
for crashes. Existing studies on aggressive driving behavior and violation analysis have mostly employed
statistical regression and simulation-based techniques to explore factors responsible for such uncivilized
driving behavior [40,44–46]. However, it is well-known that methods based on statistical analysis have a
number of underlying assumptions and are unable to capture hidden correlation among explanatory
variables [41,47]. Further, the low prediction accuracies obtained by these methods are also not highly
reliable. Hence, in this study, we designed a systematic framework by first identifying violation hotspots
using GIS, followed by classification and prediction of the different violations, using state-of-the-art
ML methods. During the first phase of the study, a detailed descriptive analysis was conducted that
showed that wrong-way driving had the highest proportion (75%) of total violations, whereas illegal
parking had the lowest (2.10%). It was also noted that private cars and taxis were frequent violators.
Similarly, temporal distribution analysis revealed that violations were more prevailing during the spring
season, weekdays, and off-peak periods. The relationship between temporal attributes and occurrence
of violation is consistent with a previous study [41]. Another recent study conducted by Liu et al. also
indicated the relationship of time (peak hours/Off peak hours), month, and locations with a different type
of violation occurrence [48]. Previous studies have also focused on the relationship between land-use and
observed violations. During the second phase of the study, the Inverse Distance Weighted (IDW) method
of interpolation in ArcMap GIS was used for the identification of hotspots for traffic violations along
both expressways. Violation hotspots were mostly concentrated along commercial and public facility
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zone on S219, whereas, along S308 expressways, they were located mostly near the horizontal curve.
Accurate identification of hotspots is vital for carrying subsequent treatment activities more efficiently
within limited time and budget constraints. Studies suggest that the frequency of violations at a particular
location may be associated with a range of factors, such as land-use, area type, time of the day, roadway
design, weather conditions, and drivers’ socio-demographic attributes [40,49–51]. For example, another
study, conducted by Zahid et al., suggested that risks of committing traffic violations are relatively more
inside the central business districts (CBDs), dense residential landscape, the area with public facility
services, and near urban intersections [41]. Lastly, during the third phase of the study, three different ML
algorithms, i.e., KNN, SVM, and CN2 Rule Inducer, were applied for prediction and classification of
traffic violations, considering spatio-temporal attributes of available data. The efficacy and predictive
performance of proposed ML models were investigated using several classification evaluation metrics
such as AUC, accuracy, precision, recall, F score, and specificity. Study results showed that KNN (k = 7)
model using manhattan evualation had an accuracy of 99% outperformed SVM, and CN2 Rule Inducer.
KNN model also showed increased predictive efficiency with reference to AUC, accuracy, precision, recall,
F-score, and specificity. The outcome of this study could provide useful guidance to safety managers and
practioners to initiate sound policy recommedations to enhance road safety.

The current study has a few limitations that must be‘ acknowledged and may be adressed in
future studies. First, detailed demographic characteristics of drivers (such as gender, age, education,
etc.) could be considered in future studies. Unfortunately, they were not available for this study.
Second, the license plate record of the vehicles were not available in the current dataset, which
limits its application to record the detailed history of violations comitted by individual vehicle/driver.
This is a another major drawback that could provide valuable insights to in-depth violation analysis.
Finally, it would be intresting to explore the impacts of operating styles, working hours, features of
built environment, attributes of roadway geometric and daily driving distances on agressive driving
behavior, and traffic violations in forthcoming studies.
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Appendix A

Table A1. Induced Rules.

No. IF Condition Then Class Distribution Probabilities
(%)

Rule
Quality Length

1 Latitude ≥ 28.85656 Illegal parking [12, 0, 0, 0] 81:6:6:6 0.929 1

2 Latitude ≤ 28.83151 and
Season = Autumn Illegal parking [16, 0, 0, 0] 85:5:5:5 0.944 2

3
Latitude ≥ 28.83693 and
Latitude ≤ 28.84196 and

Season , Summer
Illegal parking [20, 0, 0, 0] 88:4:4:4 0.955 3

4 Latitude ≤ 28.83151 and
Day of Week = Sunday Illegal parking [4, 0, 0, 0] 62:12:12:12 0.833 2

5 Lattitude ≤ 28.83151 and
Day of Week = Tuesday Illegal parking [3, 2, 0, 0] 44:33:11:11 0.571 2
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Table A1. Cont.

No. IF Condition Then Class Distribution Probabilities
(%)

Rule
Quality Length

6 Lattitude ≤ 28.83151 and
Season = Winter Overspeeding [0, 60, 0, 0] 2:95:2:2 0.984 2

7 Month ≥ 12.0 and
Lattitude ≥ 28.84942 Overspeeding [0, 22, 0, 0] 4:88:4:4 0.958 2

8 Lattitude ≥ 28.83693 and
Minute ≥ 55.0 Overspeeding [0, 3, 0, 0] 14:57:14:14 0.8 2

9 Day of Week = Sunday and
Hour ≥ 14.0

Violation of
prohibited markings [0, 0, 76, 5] 1:1:91:7 0.928 3

10
Month ≤ 2.0 and

Vehicle type = Taxi/Passenger Car
and Day of Week = Monday

Violation of
prohibited markings [0, 0, 35, 12] 2:2:71:25 0.735 3

11 Month ≤ 2.0 and
Day of Week = Monday

Violation of
prohibited markings [0, 0, 100, 79] 1:1:55:44 0.558 2

12 Month ≤ 2.0 and
Day of Week = Sunday

Violation of
prohibited markings [0, 0, 35, 36] 1:1:48:49 0.493 2

13 Month ≤ 2.0 and
Day of Week = Tuesday

Violation of
prohibited markings [0, 0, 16, 23] 2:2:40:56 0.415 2

14 Season = Autumn and
Month ≥ 10.0

Violation of
prohibited markings [0, 0, 4, 0] 12:12:62:1 0.833 3

15 Hour ≥ 17.0 and
Season = Spring Wrongway driving [0, 0, 2, 151] 1:1:2:97 0.981 2

16 Day of Week = Wednesday and
Season = Spring Wrongway driving [0, 0, 4, 113] 1:1:4:94 0.958 2

17 Day of Week = Saturday and
Peak/Off Peak , Peak Wrongway driving [1, 0, 7, 121] 2:1:6:92 0.931 2

18 Season ,Winter and
Day of Week = Friday Wrongway driving [3, 0, 6, 141] 3:1:5:92 0.934 2

19 Day of Week = Thursday and
Season = Spring Wrongway driving [0, 0, 7, 104] 1:1:7:91 0.929 2

20 Day of Week = Sunday and
Hour ≥ 10.0 Wrongway driving [0, 0, 2, 105] 1:1:3:95 0.972 3

21 Season ,Winter Wrongway driving [39, 9, 70, 209] 12:3:21:63 0.638 1

22 Month ≤ 2.0 and
Day of Week = Thursday Wrongway driving [0, 0, 1, 24] 3:3:7:86 0.926 2

23 Month ≤ 2.0 and
Month ≥ 2.0 Wrongway driving [0, 0, 16, 107] 1:1:13:85 0.864 2

24 Month ≤ 5.0 and
Day of Week = Friday Wrongway driving [2, 0, 21, 29] 5:2:39:54 0.556 2

25 Month ≤ 5.0 and
Day of Week = Tuesday Wrongway driving [0, 0, 23, 23] 2:2:48:48 0.5 2

26 Day_of_Week = Monday and
Hour ≤ 11.0 Wrongway driving [2, 2, 19, 25] 6:6:38:50 0.52 2

27 Month ≤ 5.0 and
Day of Week = Saturday Wrongway driving [0, 0, 15, 12] 3:3:52:42 0.448 2

28 Month ≤ 2.0 and
Hour ≥ 17.0 Wrongway driving [0, 0, 13, 10] 4:4:52:41 0.44 2

29 Day of Week = Wednesday Wrongway driving [8, 3, 10, 12] 24:11:30:135 0.371 1

30 TRUE Wrongway driving [57, 91, 358, 1502] 3:5:18:75 0.747
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