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Abstract

Wuhan coronavirus, called 2019-nCoV, is a newly emerged virus that infected more than 9692 people and
leads to more than 213 fatalities by January 30, 2020. Currently, there is no effective treatment for this epidemic.
However, the viral protease of a coronavirus is well-known to be essential for its replication and thus is an
effective drug target. Fortunately, the sequence identity of the 2019-nCoV protease and that of severe-acute
respiratory syndrome virus (SARS-CoV) is as high as 96.1%. We show that the protease inhibitor binding sites
of 2019-nCoV and SARS-CoV are almost identical, which means all potential anti-SARS-CoV chemotherapies
are also potential 2019-nCoV drugs. Here, we report a family of potential 2019-nCoV drugs generated by a
machine intelligence-based generative network complex (GNC). The potential effectiveness of treating 2019-
nCoV by using some existing HIV drugs is also analyzed.
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1 Introduction
A cluster of pneumonia cases of unknown cause emerged with connections to Huanan South China Seafood
Market in Wuhan city, Hubei Province of China in late December 2019. On January 7, 2020, a positive-sense,
single-stranded RNA coronavirus (CoV) was identified as the causative agent, and the World Health Organization
(WHO) named this novel coronavirus as 2019-nCoV on January 10. By January 30, a total of 9692 confirmed
cases with 213 deaths had been reported in the world. As reported in,1 in comparison with the basic reproduction
number (R0) of the severe acute respiratory syndrome (SARS) epidemic, which is about 4.91, R0 of the 2019-
nCoV epidemic was estimated as high as 6.47, which implies the severity of this widespread dissemination
caused by 2019-nCoV. Under the current health emergency, many researchers around the world engaged in
the investigation of the genetic and functional data of 2019-nCoV and compare to other coronaviruses to design
proper infection control strategy2,3 and seek potential drugs that can prevent and/or cure this serious epidemic.4–7

On January 10, the genome sequence of 2019-nCoV was first released on GenBank (accession MN908947)
by Yong-Zhen Zhang’s group at Fudan University.8 Subsequently, phylogenetic analysis revealed that 2019-
nCoV belonged to the Betacoronavirus genera and its closest whole-genome relatives are two SARS-like coro-
naviruses from bats, i.e., ZC45 and ZXC21, which shared about 89% sequence identity with 2019-nCoV.6,7

Moreover, detailed sequence alignment data indicates that there is significant genetics distance between the
2019-nCoV and the human SARS-CoV. Therefore, the 2019-nCoV should be considered as a new type of bat
coronavirus. However, this observation raised a worth-thinking issue whether the 2019-nCoV has the same
infective mechanisms as the human SARS-CoV.

The spike protein (S-protein), which is known as the multi-functional molecular machine that mediates coron-
avirus entry into host cells9 is discussed to answer the question mentioned above. According to the literature,5,6

the 2019-nCoV and the SARS-CoV have a high amino acid sequence homology of the S-protein, which can
result in severe human infections. Further structural similarity analysis showed and confirmed that the S-protein
of 2019-nCoV uses the same human cell receptor angiotensin-converting enzyme 2 (ACE2) as SARS-CoV.4,10

Therefore, similar approaches can be applied to prevent the S-protein binding with the receptor ACE2.
S-protein is one of the four proteins in coronavirus, which can be cleaved by a host cell furin-like protease

(non-structural protein in coronavirus) into two functional units, S1 and S2. S1 makes up the large receptor-
binding domain (RBD) to facilitates virus infection by binding to host receptors and S2 forms the stalk of the
spike molecule.11 Therefore, one possible way to control the infection is to seek protease inhibitors to prevent
the S-protein of 2019-nCoV cleaved into S1. Another possible way is to seek specific drugs that have the ability
to inhibit RBD binding to host receptors. However, consider the fact that the diversity of CoV is reflected in the
variable S-proteins and the gene of S-protein is easy to mutate,12–15 it is not economical to design a new drug
to prevent the RBD binding to host receptor directly. Moreover, considering the high sequence identity between
viral proteases of 2019-nCoV and SARS-CoV, seeking protease inhibitors to treat respiratory diseases induced
by SARS and this novel pneumonia will be our first choice.

Viral proteases are common targets in dealing with human viruses such as the HIV virus and hepatitis C
virus. Protease inhibitors are remarkably effective in blocking the replication of coronavirus, including the SARS
and the Middle East respiratory syndrome (MERS), providing a promising foundation for the development of
anticoronaviral therapeutics. An overview of SARS-CoV 3CL protease inhibitors has been reported.16 However,
currently, there are no effective anti-SARS-CoV drugs available despite there are more than 3500 publications.
It is true that there were only 8422 infected cases and 916 deaths reported for SARS-CoV, which might make
the drug development unprofitable. The fact that we are unprepared for another coronaviral pandemic, like the
Wuhan coronavirus outbreak, causes the world economy trillion dollars, not to mention the loss of many lives.

The present work makes use of a recently developed generative network complex (GNC)17 to explore potential
protease inhibitors for curing 2019-nCoV. We generate anticoronaviral therapeutic candidates for 2019-nCoV and
evaluate their druggable properties. We also examine the potential of repurposing HIV protease inhibitors, Aluvia
and Norvir, for 2019-nCoV.

2 Methods
New anti-CoV drug candidates are designed by using a recently developed generative network complex (GNC)
platform.17 As shown in Fig. 1, the first component is a generative network including an encoder, a latent space,
a molecule generator, and a decoder. The generative network will take a given SMILES string as the input
to generate novel molecules in terms of SMILES strings, which will be fed into the second component of our
GNC, a two-dimensional (2D) fingerprint-based deep neural network (2DFP-DNN), to reevaluate their druggable
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properties. The next component is the MathPose model which is used to predict the three-dimensional (3D)
structure information of the compounds selected by 2DFP-DNN. The bioactivities of those compounds are further
estimated by the structure-based deep learning model named MathDL.18 The druggable properties predicted by
this last component of our GNC are used as an indicator to select the promising drug candidates.

Figure 1: A schematic illustration of the generative network complex. SMILES strings (SSs) are encoded into latent space vectors via a
gated recurrent neural network (GRU)-based encoder. These vectors are modified in the molecule generator to achieve desirable druggable
properties, such as binding affinity, partition coefficient (LogP), similarity, etc., predicted by pre-trained deep neural networks (DNNs). The
resulting drug-like molecules are translated into SSs by a GRU-based decoder. The physical properties of these SSs are validated by 2D
fingerprint-based multitask DNNs. Promising drug candidates are fed into a MathPose unit to generate 3D structures, which are further
validated by a mathematical deep learning (MathDL) center to select new drug candidates.18

2.1 Autoencoder

The autoencoder, consisting of an encoder, a latent space, and a decoder, is used to encode a molecular
SMILES string into a latent space representation X, which, after being further modified by a molecular gener-
ator, is translated back to a SMILES string by a decoder. Both the encoder and decoder are constructed by
using gated recurrent neural networks (GRUs). GRUs can deal with the vanishing gradient problem occurred in
recurrent neural network (RNN) models but are simpler than long-short-term memory (LSTM) models. GRUs
are suitable for moderately complex sequences, such as small molecular SMILES strings. A pre-trained autoen-
coder model developed by Winter et al is adopted in the present work.19 The latent space vector (X ∈ Rn) or
molecular representation has the dimension of 512 (n = 512).

2.2 Molecule generator

In the present approach, novel molecules are initially designed at the molecule generator using a three-step
procedure. In the first step, the latent space representation of a seed molecule is evaluated for their drug-like
properties, such as binding affinities, solubility (logS), partition coefficient, similarity, etc., via pre-trained DNNs.
The DNN consists of two hidden layers with 1024 neurons in each layer. In our second step, evaluation results
({ŷi(X)} ) are compared with a set of target values ({yi0}) via a loss function,

L(X) =
1

m

m∑
i=1

ki|ŷi(X)− yi0|, (1)

where ki is a preselected weight coefficient for the ith property. The last step is to optimize the loss function with
a gradient decent algorithm. The resulting new vector X is sent back to the pre-trained DNNs for reevaluation
until the loss function is smaller than a given tolerance. Only the desirable molecule representation X is sent
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to the decoder to generate a SMILES string. Alternatively, a Monte Carlo procedure can be used to replace the
gradient decent.

2.3 2D fingerprint-based predictor (2DFP)

New SMILES strings generated by the decoder is passed to 2D fingerprint-based predictors (2DFPs) to reeval-
uate druggable properties.17 These predictors are pre-trained deep neural networks involving multiple hidden
layers with hundreds or even thousands of neurons on each layer. During the training, weights on each layer are
updated by backpropagation. The multitask deep learning architecture is often used to enhance small dataset
predictions. The input 2D molecular fingerprints are generated from a combination of ECFP20 and MACCS21

fingerprints, yielding 2214 bits of features (2048 bits from ECFP and 166 bits from MACCS) in total. RDKit22

is used for to translate SMILES strings into 2D fingerprints. The output drug properties include binding affinity,
logP, and logS, etc.

2.4 MathDL for druggable property predictions

Our MathDL is a mathematical representation-based deep learning platform designed for predicting various
druggable properties of 3D molecules.18 Mathematical representations used in MathDL are algebraic topology
(such as persistent homology), differential geometry, and graph theory-based algorithms developed over the
past many years. These approaches were repeatedly validated by their top performance in free energy pre-
diction and ranking at D3R Grand Challenges, a worldwide competition series in computer-aided drug design
(https://drugdesigndata.org/about/grand-challenge).18,23 More details about the mathematical representation of
complex molecules can be found in a recent review.24 A variety of datasets, particularly, PDBbind datasets,25

were used in our training of deep learning networks. A further discussion of MathDL is given in our recent work.17

2.5 MathPose for 3D structure prediction

MathPose is a 3D pose predictor that converts SMILES strings into 3D poses with references of target molecules.
For a given SMILES string, about 1000 3D structures are generated by several common docking software tools,
i.e., Autodock Vina,26 GOLD,27 and GLIDE.28 Additionally, a selected set of known complexes is re-docked by
the aforementioned three docking software packages to generate at 100 decoy complexes per input ligand as
a machine learning training set. In this training set, the calculated root mean squared deviations (RMSDs)
between the decoy and native structures are used as machine learning labels. Then, we set up MathDL models
and apply them to pick up the top-ranked pose for the given ligand. The MathPose-generated top poses are fed
to the MathDL for druggable property evaluation. Our MathPose was the top performer in D3R Grand Challenge
4 in predicting the poses of 24 beta-secretase 1 (BACE) binders.18

3 Results
3.1 Sequence identity analysis

The sequence identity is defined as the percentage of characters which match exactly between two different se-
quences. The sequence identities between 2019-nCoV protease and some other coronaviral proteases are pre-
sented in Table 1. It is seen that 2019-nCoV protease is very close to SARS-CoV protease, but is distinguished
from other proteases. Clearly, 2019-nCoV has a strong genetic relationship with SARS-CoV. Additionally, the
available experimental data of SARS-CoV protease inhibitors can be used as the training set to generate new
inhibitors of 2019-nCoV protease.

3.2 Structure similarity analysis

The 2019-nCoV protease (PDB ID 6lu7) and SARS-CoV 3CL protease (PDB ID: 2gx4) have an excellent simi-
larity. As shown in Fig. 2, two crystal structures are essentially identical to each other. Particularly, the RMSD
of two crystal structures at the binding site is 0.53 Å. When we try to carry a homology modeling of 2019-nCoV
protease structure from its sequence using SARS-CoV 3CL protease (PDB ID: 2gx4) as a model, the resulting
2019-nCoV protease homology structure has an RMSD of 0.9 Å (or 0.2 Å at the binding site region) with its
crystal structure 6lu7. The high structural similarity between the two proteases suggests that anti-SARS-CoV
chemicals can be equally effective for the treatment of 2019-nCoV.
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Virus Identity
SARS-CoV 96.1%
MERS-CoV 52.0%

HKU-1 49.0%
OC43 48.4%

HCoVNL63 45.2%
229E 41.9%
HIV 23.7 %

Table 1: The sequence identity of the 2019-nCoV protease with some other viral proteases. The sequences of comparison are extracted from
nCoV2019: https://www.ncbi.nlm.nih.gov/nuccore/MN908947, SARS: http://www.rcsb.org/structure/3IWM, MERS: http://www.
rcsb.org/structure/5C3N, OC43: https://www.ncbi.nlm.nih.gov/protein/AEN19363.1, HCoVNL63: https://www.ncbi.nlm.nih.

gov/nuccore/NC_005831, HKU-1: https://www.ncbi.nlm.nih.gov/nuccore/85667876, 229E: http://www.rcsb.org/structure/2ZU2,
and HIV: http://www.rcsb.org/structure/1YT9. Alignment is carried out by using https://web.expasy.org/sim/.

Figure 2: Illustration of the similarity between 2019-nCoV protease (PDB ID 6lu7) in gold and SARS-CoV 3CL protease (PDB ID: 2gx4) in
red. The anti-SARS inhibitor in dark color indicates the binding site.

3.3 Datasets

3.3.1 SARS-CoV protease inhibitor dataset

ChEMBL,29 an open database which brings chemical, bioactivity, and genomic data together to translate genomic
information into effective new drugs is employed to construct our 2019-nCoV training set. Considering the high
sequence identity between viral proteases of 2019-nCoV and SARS-CoV, we take the protease of SARS-CoV as
the input target in ChEMBL and a total 115 ChEMBL IDs of the target can be found. Therefore, our 2019-nCoV
training set is built up by 115 SARS-CoV protease inhibitors. Figure 4 describes the distribution of experimental
∆G values of 2019-nCoV training set. It can be seen that the experimental ∆G ranges from −10.0 kcal/mol to
7.5 kcal/mol, and most training samples have the experimental ∆G located in the range of [−10,−5] kcal/mol.
Followed by the second law of thermodynamics, the more negative ∆G can result in a more spontaneous binding
process. Figure 3 depicts the top five anti-SARS CoV compounds and their banding affinities.29 In this work, 115
SARS-nCoV protease inhibitors from ChEMBL are used as the 2019-nCoV training set. A collection of these
115 compounds is given in the Supplementary material.

3.3.2 Binding affinity training sets

The PDBbind database is a yearly updated collection of experimentally measured binding affinity data (Kd,
Ki, and IC50) for the protein-ligand complexes deposited in the Protein Data Bank (PDB). PDBbind refined
set contains high-quality X-ray crystal structures of protein-ligand complexes and associated binding affini-
ties.25 The refined set is selected by filtering through binding data, crystal structures, as well as the na-
ture of the complexes.25 The PDBbind 2018 refined set of 4463 complexes is employed as the major part
of our binding affinity training set. Additionally, taring data are collected from recent D3R Grand Challenges
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CHEMBL222234, -10.02 kcal/mol CHEMBL222840, -9.91 kcal/mol
CHEMBL222769, -9.88 kcal/mol

CHEMBL225515, -9.86 kcal/mol CHEMBL222893, -9.64 kcal/mol
Figure 3: Top five anti-SARS-CoV compounds extracted from the ChEMBL database.

Figure 4: The distribution of experimental binding affinity values of SARS-CoV protease inhibitors.

(https://drugdesigndata.org/about/grand-challenge) and a few hundreds of Pfizer molecules, which, however,
mostly unrelated to the present coronaviral protease.

3.4 Binding affinity analysis

Binding free energies are computed with four methods, namely, the latent space binding predictor (LS-BP), the
2D fingerprint predictor (2DFP), a 3D deep learning model trained with the mixture all datasets, including the
dataset for coronaviral protease (denoted as “3DALL”), and finally, a 3D deep learning multitask model trained
with the dataset for coronaviral protease as a separated task (denoted as 3DMT).

Figures 5, 6, 7, 8, 9 10, 11, 12, 13, 14 15, 16, 17, 18 and 19 display GNC generated top 15 molecules. Their
predicted binding affinities are given, together with their complexes with 2019-nCoV protease. These compounds
are ranked according to their binding affinity values predicted by 3DALL scores. Predictions of other methods
are also reported in Table 2 as references. Table 2 lists a few other druggable properties, including partition
coefficient (logP), solubility (logS), and synthesizability.

The top-ranking candidate of our generated molecules is MSU3298 (see Figure 5). Its predicted binding affinity
to the nCoV-2019 protease is -10.56 kcal/mol, which is higher than that of the best candidate CHEMBL222234
(-10.02 kcal/mol). The high binding affinity is due to the existence of many hydrogen bond acceptors and donors
and forming a strong hydrogen bond network with nCoV-2019 protease. For example, the strongest hydrogen
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MSU3298, -10.56 kcal/mol
2019-nCoV protease and MSU3298 complex

Figure 5: MSU3298 molecule and its complex with 2019-nCoV protease.

MSU2313, -9.71 kcal/mol 2019-nCoV protease and MSU2313 complex
Figure 6: MSU2313 molecule and its complex with 2019-nCoV protease.

MSU3245, -9.55 kcal/mol
2019-nCoV protease and MSU3245 complex

Figure 7: MSU3245 molecule and its complex with 2019-nCoV protease.

bonds are formed by the three Cl atoms on the tail of MSU3298 molecule and three different Hydroxyls in the
residues Thr45, Ser46 and Thr25 of nCoV-2019 protease. This tail bonds tightly with the side chains of the
aforementioned residues. Another important interaction is located at the head of the molecule. A hydrogen
bond formed between the Cl atom in the heptatomic ring and the Hydroxyl in the sidechain of residue Ser144.
Moreover, one O atom in the methylsulfonylmethane of the molecule also forms a hydrogen bond with the residue
Met165. As a result, the head, body, and tail of the molecule interact firmly with the protease inhibition binding
site.

For the second-best molecule, MSU2313 (see Figure 6), the binding affinity is -9.71 kcal/mol. The high binding
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MSU1221, -9.55 kcal/mol

2019-nCoV protease and MSU1221 complex
Figure 8: MSU1221 molecule and its complex with 2019-nCoV protease.

MSU3079, -9.54 kcal/mol

2019-nCoV protease and MSU3079 complex
Figure 9: MSU3079 molecule and its complex with 2019-nCoV protease.

MSU3054, -9.35 kcal/mol 2019-nCoV protease and MSU3054 complex
Figure 10: MSU3054 molecule and its complex with 2019-nCoV protease.

affinity is also due to the strong interaction at the tail of the molecule. One Cl atom on the quaternary ring forms
a hydrogen bond with the side chain of residue Arg188. One O atom in this tail also has a hydrogen bond with
the main chain of residue Tyr54. In the head of the molecules, the two Cl atoms interact with the methanethiol of
residue Cys145 and the main-chain amino of residue Glu166. These hydrogen bonds promise a strong binding
to 2019-nCoV protease binding site.

The third molecule is MSU3245 (see Figure 7) with a binding affinity -9.55 kcal/mol. The strongest hydrogen
bonds between this molecule and the protease are the Cl atom on the benzene ring of the molecule and the
side-chain hydroxyl of the residue Ser144. Additionally, the Cl atom of the ternary ring and the methanethiol in
residue Cys144.

Essentially, the hydrogen bond acceptor such as Cl and O atoms in the drug candidate molecules are critical
to the binding to 2019-nCoV protease. The hydrogen bond acceptors can form strong hydrogen bonds with the
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MSU7200, -9.31 kcal/mol

2019-nCoV protease and MSU7200 complex
Figure 11: MSU7200 molecule and its complex with 2019-nCoV protease.

MSU3258, -8.96 kcal/mol

2019-nCoV protease and MSU3258 complex
Figure 12: MSU3258 molecule and its complex with 2019-nCoV protease.

MSU2879, -8.87 kcal/mol
2019-nCoV protease and MSU2879 complex

Figure 13: MSU2879 molecule and its complex with 2019-nCoV protease.

nCoV-2019 protease and inhibit its function.

4 Discussions
4.1 Solubility

Aqueous solubility, a chemical property denoted by its logarithm value logS, reveals how a solute dissolves
in a solvent which will affect absorption, distribution, metabolism, and elimination processes (ADME) in drug
discovery and other pharmaceutical fields.30 It is part of the pharmacokinetics studies. In this work, we calculate
the logS values for all of the new potential anti-2019-nCoV drugs using our 2DFP-based logS predictor. Table 2
lists top 15 anti-2019-nCoV candidate molecules with their druggable properties. It is seen that the smallest logS
is -6.44 and the largest value is −4.65. According to the literature,31,32 about 85% of drugs have logS values
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MSU3289, -8.87 kcal/mol
2019-nCoV protease and MSU3289 complex

Figure 14: MSU3289 molecule and its complex with 2019-nCoV protease.

MSU2947, -8.86 kcal/mol

2019-nCoV protease and MSU2947 complex
Figure 15: MSU2947 molecule and its complex with 2019-nCoV protease.

MSU3519, -8.85 kcal/mol
2019-nCoV protease and MSU3519 complex

Figure 16: MSU3519 molecule and its complex with 2019-nCoV protease.

between −5.000 and −1.000. However, only two potential anti-2019-nCoV drugs (i.e., MSU2313 and MSU3289)
in Table 2 have the logS values in the range of [−5.00,−1.00], while the others have a little bit higher value of
logS. One possible reason is that our 2DFP-based calculation of logS may have a systematic error. Another
possible explanation is that our anti-2019-nCoV drug candidates may not be absorbed through membranes as
easily as some other drugs on the market. In our future study, a stronger logS constraint will be imposed in our
molecule generator.

4.2 Partition coefficient

The partition coefficient, which measures how hydrophilic or hydrophobic a chemical substance is, is defined as
the ratio of concentrations of a solute in a mixture of two immersible solvents at equilibrium.33 The logarithm of
partition coefficient, denoted logP, is a well-known coefficient which plays an essential role in governing kinetic
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MSU3137, -8.85 kcal/mol 2019-nCoV protease and MSU3137 complex
Figure 17: MSU3137 molecule and its complex with 2019-nCoV protease.

MSU3134, -8.85 kcal/mol

2019-nCoV protease and MSU3134 complex
Figure 18: MSU3134 molecule and its complex with 2019-nCoV protease.

MSU3085, -8.85 kcal/mol

2019-nCoV protease and MSU3085 complex
Figure 19: MSU3085 molecule and its complex with 2019-nCoV protease.

and dynamic aspects of drug action. In this paper, we will employ an Open-Source Cheminformatics Software
Rdkit22 to calculate logP values of our 2019-nCoV drug candidates to evaluate the reliability of the potential 2019-
nCoV drugs we predicted. All of the logP values of all predicted molecules can be found in the Supplementary
Materials. While the logP values of the predicted top 15 drug candidates are presented in Table 2. From the
table, it can be observed that most 2019-nCoV drug candidates we predicted have the logP value smaller than
5, which matches one of the rules in “Lipinski’s rule of five”.34 Moreover, the ritonavir, an HIV protease inhibitor
already on the market, has a predicted logP = 5.91, which shows that our potential drugs with logP values slightly
larger than 5 can still be considered as druggable molecules.

Moreover, consider the fact that logP also has the ability to measure the solubility of the solute in liquids, we
are more likely to say that our logS calculation method in subsection 4.1 is not as precise as expected. These
issues can be addressed by placing a stronger logS constraint in the latent space.
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Table 2: A summary of some druggable properties for the top 15 anti-2019-nCoV molecules generated by GNC and two HIV drugs.

ID 3DALL 3DMT LS-BP 2DFP logP logS Synthesizability
MSU3298 -10.56 -9.09 -9.87 -8.77 4.96 -5.69 3.25
MSU2313 -9.71 -8.28 -9.54 -7.14 3.24 -4.65 3.44
MSU3245 -9.55 -9.75 -8.98 -8.42 5.44 -6.26 3.10
MSU1221 -9.54 -9.38 -7.28 -5.34 4.93 -5.40 2.86
MSU3079 -9.47 -7.69 -8.98 -8.52 5.36 -6.68 3.82
MSU3054 -9.35 -8.15 -8.15 -8.15 6.28 -6.68 3.33
MSU7200 -9.31 -9.10 -7.06 -7.00 3.59 -5.28 2.08
MSU3258 -8.96 -7.75 -9.23 -7.19 5.40 -5.54 3.79
MSU2879 -8.87 -7.37 -5.70 -8.59 4.27 -5.33 2.50
MSU3289 -8.87 -8.11 -8.74 -8.51 5.11 -4.81 2.87
MSU2947 -8.86 -8.02 -9.48 -9.07 6.47 -6.44 2.64
MSU3519 -8.85 -7.87 -9.22 -6.98 5.58 -5.58 4.69
MSU3137 -8.85 -8.44 -8.25 -8.75 5.12 -6.02 4.04
MSU3134 -8.85 -7.05 -8.63 -8.68 5.12 -5.81 4.02
MSU3085 -8.85 -8.00 -7.87 -9.39 5.16 -6.21 3.13
lopinavir -7.78 -8.13 -5.67 -5.55 4.33 -4.76 3.90
ritonavir -8.44 -8.07 -5.14 -4.96 5.91 -5.30 4.19

4.3 Synthesizability

Although we have the chemical structures of possible anti-2019-nCoV drugs, it is essential for us to estimate the
feasibility of synthesis (synthetic accessibility) of these molecules. The synthetic accessibility score (SAscore)
between 1 (easy to make) and 10 (very difficult to make) is described in.35 The SAscores of our drug candidates
are calculated by the Rdkit as the evaluation of the molecules’ synthesizability. The last column in the Table 2 lists
the SAscores of our Top 15 anti-2019-nCoV molecules. The molecule ID: MSU3519 has the highest SAscore
equals to 4.69, which reveals that most of our potential anti-2019-nCoV molecules are quite easy to synthesize.

4.4 Effectiveness of some anti-HIV/AIDS drugs for 2019-nCoV

Lopinavir is an antiretroviral medication used to inhibit HIV/AIDS viral protease. It is often used as a fixed-dose
combination with another protease inhibitor, ritonavir, sold under the name Kaletra or Aluvia. Ritonavir, sold
under the trade name Norvir, is another antiretroviral medication. Its combination with Lopinavir is known as
highly active antiretroviral therapy (HAART). Although there is no tractable clinical evidence, Kaletra or Aluvia
has been proposed as a potential anticoronavirus drug for 2019-nCoV. The possibility of repurposing some
HIV drugs for SARS-CoV treatment has also studied in the literature.16 It is important to evaluate their binding
affinities, which are obtained with two ligand-based methods (i.e., LS-BP and 2DFP) and two 3D models (3DALL
and 3DMT). To carry out 3D model predictions, we dock them to the 2019-nCoV protease inhibition site. The
resulting complexes are optimized with molecular dynamics and then evaluated by 3DALL and 3DMT.

Table 1 shows the low sequence identity between HIV viral protease and 2019-nCoV protease, which might
suggest the limited potential for repurposing Aluvia and Norvir for 2019-nCoV treatment. For Lopinavir, our LS-
BP and 2DFP predicted the binding affinities of -5.66 kcal/mol and -5.54 kcal/mol, respectively. For Ritonavir,
similar low binding affinities of -5.14 kcal/mol and -4.96 kcal/mol were predicted by our LS-BP and 2DFP, respec-
tively. However, our 3D model 3DALL predicted better binding affinities, i.e., -7.78 kcal/mol and -8.44 kcal/mol
for Lopinavir and Ritonavir, respectively. The other 3D model, 3DMT, also predicted moderately high binding
affinities of -8.13 kcal/mol and -8.07 kcal/mol for Lopinavir and Ritonavir, respectively. Considering the fact that
the small training set for LS-BP and 2DFP models is very small, the results predicted by 3D models are more
reliable. Figures 20 and 21 indicate that these drugs have reasonable dock poses with 2019-nCoV protease.
Therefore, HIV drugs Kaletra (or Aluvia) and Norvir might indeed have a moderate effect in the treatment of
2019-nCoV. However, Many new compounds generated by our GNC appear to have better druggable properties
than these HIV inhibitors do.

5 Conclusion
Wuhan pneumonia outbreak caused by a new coronavirus (CoV), called 2019-nCoV, has led to heavy economic
loss and human fatalities. Under the current health emergency, it is vital to develop an effective treatment for this
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lopinavir, -8.44 kcal/mol

2019-nCoV protease and lopinavir complex

Figure 20: HIV drug lopinavir and its complex with 2019-nCoV protease. The complex structure showing a reasonable fit.

ritonavir, -7.78 kcal/mol

2019-nCoV protease and ritonavir complex

Figure 21: HIV drug ritonavir and its complex with 2019-nCoV protease. The complex structure showing a reasonable fit.

epidemic. Although we know quite a little about 2019-nCoV, it is fortunate that the sequence identity of the 2019-
nCoV protease and that of severe acute respiratory syndrome virus (SARS-CoV) is as high as 96.1%. In this
work, we show that the protease inhibitor binding sites of 2019-nCoV and SARS-CoV are almost identical, which
provides a foundation for us to hypothesize that all potential anti-SARS-CoV chemotherapies are also effective
anti-2019-CoV molecules. Additionally, we employed a recently developed generative network complex (GNC)
to seek potential protease inhibitors for effective treatment of pneumonia caused by 2019-nCoV. Two datasets
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are utilized in this work. One is a SARS-CoV protease inhibitor dataset, which is constructed by collecting 115
SRAS-CoV inhibitors from open database ChEMBL. The other dataset is a binding affinity training set mainly
containing the PDBbind refined set. Our GNC model predicts over 8000 potential anti-2019-nCoV drugs which
are evaluated by a latent space binding predictor (LS-BP) and a 2D fingerprint predictor (2DFP). Promising drug
candidates are further evaluated by two 3D deep learning models trained with all the training sets together,
including the dataset for coronaviral protease (3DALL), and the 3D deep learning multitask model trained with
the dataset for coronaviral protease as a separated task (3DMT). Furthermore, we choose 15 potential anti-2019-
nCoV drugs to analyze partition coefficient (logP), solubility (logS), and synthetic accessibility score (SAscore)
according to binding affinity ranking computed by the 3DALL model. The reasonable logP, logS, and SAscore
show that our top 15 anti-2019-nCoV drug candidates are potentially effective for inhibiting 2019-nCoV. Finally,
the effectiveness of some anti-HIV/AIDS drugs for treating 2019-nCoV is analyzed. Although HIV drugs Kaletra
(or Aluvia) and Norvir might indeed have a moderate effect in the treatment of 2019-nCoV, the analysis of
these anti-HIV/AIDS drugs together with our top 15 anti-2019-nCoV molecules shows that the new compounds
generated by our GNC appear to have better druggable properties than these HIV inhibitors do.

Supplementary materials
SupplementaryMaterial-1.csv: A list of SMILES strings, predicted binding affinities, logP, logS and synthesizabil-
ity of 319 potential inhibitors of 2019-nCoV 3CL protease, including two anti-HIV protease drugs.

SupplementaryMaterial-2.csv: The SMILES strings, experimental binding affinities of 115 potential SARS
inhibitors from ChEMBL. They are used as a training set for our GNC.
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