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The complement system is part of the innate immune response that plays important 
roles in protecting the host from foreign pathogens. The complement components and 
relative fragment deposition have long been recognized to be strongly involved also 
in the pathogenesis of autoantibody-related kidney glomerulopathies, leading to direct 
glomerular injury and recruitment of infiltrating inflammation pathways. More recently, 
unregulated complement activation has been shown to be associated with progression 
of non-antibody-mediated kidney diseases, including focal segmental glomerulosclero-
sis, C3 glomerular disease, thrombotic microangiopathies, or general fibrosis generation 
in progressive chronic kidney diseases. Some of the specific mechanisms associated 
with complement activation in these diseases were recently clarified, showing a domi-
nant role of alternative activation pathway. Over the last decade, a growing number of 
anticomplement agents have been developed, and some of them are being approved for 
clinical use or already in use. Therefore, anticomplement therapies represent a realistic 
choice of therapeutic approaches for complement-related diseases. Herein, we review 
the complement system activation, regulatory mechanisms, their involvement in non- 
antibody-mediated glomerular diseases, and the recent advances in complement- 
targeting agents as potential therapeutic strategies.

Keywords: complement system, glomerular disease, thrombotic microangiopathy, fibrosis, focal segmental 
glomerulosclerosis

iNTRODUCTiON

The complement cascade consists of 30 molecules that are activated as a proteolytic cascade regulated 
by three initiating pathways that function to protect the body from invading microorganisms (1, 2). 
Abnormal complement activation is also involved in many autoimmune inflammatory diseases. In 
particular, the pathogenesis of autoantibody-initiated kidney glomerulopathies suggests a role for 
complement-derived effector mechanisms leading to recruitment of infiltrating lymphocytes (3).

More recently, evidence has implicated a role for complement also in the pathogenesis of non-
antibody-mediated kidney diseases that will be the topic of this review article. We will also discuss 
recent advances in complement-targeting strategies as potential therapeutic strategies for kidney 
disease.
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FigURe 1 | Schematic representation of complement activation pathways and complement-targeting agents. C1q,r,s cross-linking of antibodies activates the 
classical pathway. Mannose-associated serine proteases (MASPs) bind to mannose motifs expressed on bacteria to activate complement via the mannose-binding 
lectin (MBL) pathway. Subsequent cleavage and assembly of C2 and C4 proteins form the C3 convertase. The spontaneous hydrolysis of C3 on cell surfaces leads 
to the alternative pathway (AP): C3 convertase dependent on factor B (fB), factor D (fD), and properdin. The resultant C3 convertases can continuously cleave C3; 
however, after they are generated, the AP C3 convertase dominates in amplifying production of C3b (green looping arrow). C3 convertases cleave C3 into C3a and 
C3b. C3b permits the formation of C5 convertase. C3b has further roles in opsonization and immune complex clearance. C5b, in conjunction with C6–C9, allows 
formation of the membrane attack complex (MAC) and subsequent pathogen lysis. Decay accelerating factor (DAF) (CD55) and MCP (CD46) are cell surface-
expressed complement regulators that accelerate the decay of all surface-assembled C3 convertases, thereby limiting amplification of the downstream cascade. 
MCP and factor H (fH) also have cofactor activity: in conjunction with soluble fI, they irreversibly cleave C3b to iC3b, thereby preventing reformation of the C3 
convertase. CD59 inhibits formation of the MAC.
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The Complement Cascade
Activation and Amplification
The complement cascade is activated by the lectin pathway (LP), 
the classical pathway (CP), and the alternative pathway (AP) 
(Figure  1). These three pathways converge on C3 convertases, 
enzymatic multimeric protein complexes (2). C3 cleavage 
produces C3a and C3b, the latter triggering formation of C5 
convertase. C5 cleavage results in formation of the membrane 
attack complex (MAC, C5b-9). Along with MAC, soluble and 
surface-bound split products, including C3a, C3b, iC3b, C3dg, 
and C5a, play a role in the inflammatory response (4).

Regulation
It is essential to self-cell viability that complement activation 
is strictly controlled (4). Several molecules with discrete and 
synergistic roles regulate C3 convertase activity. Decay accel-
erating factor (DAF) encoded by the CD55 gene is a 70  kDa 
cell-surface regulator of the complement system. DAF inhibits 
C3 and C5 convertases thereby preventing downstream comple-
ment activation (5–8). Membrane cofactor protein encoded by 
CD46 is another inhibitory complement receptor with cofactor 
activity for C3b, C4b, and serum factor I inactivation (9). Crry 
is the murine homolog of human CD46 that also exhibits decay 
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accelerating activity (10). Factor H (fH), a 155 kDa soluble gly-
coprotein exhibits both decay accelerating and cofactor activity 
to regulate the AP. Other complement cascade regulators include 
CD59 (protectin), the surface-expressed CR1 (11), and C1 inhibi-
tor, a protease inhibitor of the serpin superfamily that inhibits the 
classical and LPs by binding and inactivating C1r, C1s, MASP-1, 
and MASP-2.

Complement Effector Mechanisms
Deposition of the MAC in the cell membranes of target cells 
results in the formation of transmembrane channels that promote 
cell lysis and death. In eukaryotic nucleated cells MAC insertion 
but can induce cellular activation (12) and/or promote tissue 
injury (13) but does not usually result in lysis.

Several complement cleavage products have distinct effector 
functions. For example, C3a and C5a promote vasodilation and 
chemokine release through their transmembrane-spanning G 
protein-coupled receptors. In addition, they regulate neutrophil 
and macrophage chemoattraction and contribute to T-cell and 
antigen-presenting cell (APC) activation, expansion, and survival 
(14–17).

COMPLeMeNT AND ADAPTive iMMUNiTY

The complement system’s role in innate immunity has been well 
established since the 1960s. Recently, complement has been 
found to act as a link between innate and adaptive immunity. 
Complement depletion decreases antibody production (18) 
through antigen-bound C3dg binding to CR2 (CD21). This 
facilitates antigen presentation to B cells and lowers the threshold 
for B-cell activation (19).

There is also evidence that locally produced complement 
acts as a regulator of T-cell immunity. During T cell and APC 
interaction, there is upregulation and secretion of C3, fB, and fD, 
C5 production, and upregulation of surface expression of C3aR 
and C5aR (20, 21). Locally generated C3a and C5a bind to their 
respective receptors to act as autocrine and paracrine stimulators 
of T cells and the APCs (20, 21). Subsequent signaling through 
these GPCRs in T  cells activates phosphoinositide-3-kinase-γ 
and induces phosphorylation of phosphokinase B (AKT) (21, 22), 
upregulating the pro-survival protein Bcl-2 and downregulating 
the proapoptotic molecule Fas. Together, these complement-
dependent mechanisms enhance T-cell proliferation and dimin-
ish T-cell apoptotic injury (22).

Regulatory T cells (Tregs) are essential for maintenance of self 
tolerance (23) with recent evidence showing that complement also 
regulates Treg induction, function, and stability (16). Peripheral, 
murine, natural regulatory T  cells (nTregs) express C3aR and 
C5aR and signaling through these receptors inhibits Treg func-
tion (15). Genetic and pharmacologic blockade of C3aR/C5aR 
signal transduction in nTreg cells augments their in  vitro and 
in vivo suppressive activity. Genetic deficiency or pharmacologic 
blockade of C3aR/C5aR signaling augments murine-induced 
regulatory T cell (iTreg) generation, stabilizes Foxp3 expression, 
and resists iTreg conversion to IFN-γ/TNF-α-producing effector 
T cells (16, 24). Pharmacologic antagonists to human C3aR and 
C5aR also augment in  vitro generation and stability of human 

iTreg from naïve precursors (16, 24). These findings are an exten-
sion of previously published data that co-engagement of the T-cell 
receptor and the complement regulator CD46 promote regula-
tory IL-10 production (25). In summary, there is a crucial role for 
complement in modulating the balance between pathogenic and 
protective adaptive T-cell responses.

SOURCe OF COMPLeMeNT 
COMPONeNTS iN KiDNeY DiSeASeS

Complement deposition in the kidney in antibody-mediated glo-
merulonephritis was traditionally considered to derive from the 
circulating pool (mainly produced by the liver) (26). Subsequent 
studies have shown gene expression of complement in human 
kidneys (27) and the ability of resident cells (glomerular, tubular, 
epithelial, and mesangial cells) to synthesize several proteins of 
the complement cascade, such as C2, C3, C4, factor B (fB), and 
factor H (fH) (28–30). Sacks et al. (31) demonstrated in vivo the 
renal production of C3. Song et al. (32) described a higher expres-
sion of C2, C3, and C4 and C1q in the tubular cells of normal 
human kidneys than in glomerular cells. While the dominant role 
of renal versus systemic complement has been shown to mediate 
the ischemia–reperfusion injury, the role of circulating versus 
local complement in other physiological and pathological condi-
tions has not yet been fully elucidated. Together, data support the 
conclusion that different inflammatory stimulation upregulate 
complement production in kidney tissue (11); the local effect of 
inflammatory stimuli on local complement regulators, as DAF, is 
still to clarify.

COMPLeMeNT iN gLOMeRULAR 
DiSeASeS

Focal Segmental glomerulosclerosis 
(FSgS)
Focal segmental glomerulosclerosis is characterized by focal 
and segmental obliteration of glomerular capillary tufts with 
increased matrix (33). The incidence of FSGS has increased 
over the past decades and it is one of the leading causes of 
nephrotic syndrome in adults (34). Spontaneous remission 
is rare (<5%) and presence of persistent nephrotic syndrome 
portends a poor prognosis with 50% of patients progressing 
to end-stage renal disease (ESRD) 6–8  years after initial 
 diagnosis (35).

While there are FSGS forms secondary to obesity, use of dif-
ferent drugs including lithium and anabolic steroid (36), primary 
cases historically have been attributed to a T cell disorder (pos-
sibly an imbalance between conventional and Tregs) resulting 
in the secretion of circulating factor(s) that increase glomerular 
permeability to plasma proteins (37). The identity of these perme-
ability factor(s) is, however, still controversial (38). The origin of 
cells secreting the circulating factor(s) is also unclear, with new 
data pointing at neutrophils, monocyte/macrophages (39–41), 
and bone marrow immature myeloid cells (42). Efficacy of B cell 
depleting therapies in FSGS also implicates a role of B  cell in 
disease pathogenesis (37).
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TAbLe 1 | Complement involvement in non-antibody renal disease.

Focal segmental 
glomerulosclerosis

AP C3, filtered through endothelium and 
glomerular basement membrane, activates 
through the AP and signals on podocytes 
to release glial cell line-derived neurotrophic 
factor that mediates the recruitment 
of parietal epithelial cell (PEC) in the 
glomerulus. PEC proliferation leads to 
sclerotic lesions

Membranoproliferative/C3 
glomerulonephritis

AP Mutations in complement components/
regulators or acquired antibodies targeting 
complement components lead to excessive 
activation of the AP in the fluid phase, with 
glomerular deposition of complement debris

Atypical hemolytic uremic 
syndrome

AP Environmental triggers may precipitate 
complement activation in subjects with 
genetic predisposition including mutations of 
complement components

Chronic kidney injury and 
fibrosis

MBL Intrarenal complement activation, especially 
of C3, activates the renin–angiotensin 
system and the epithelial-to-mesenchymal 
transition

AP

AP, alternative pathway, MBL, mannose-binding lectin.

4

Angeletti et al. Complement in Glomerular Diseases

Frontiers in Medicine | www.frontiersin.org July 2017 | Volume 4 | Article 99

Abnormal complement activation has also been implicated in 
the pathogenesis of the disease. Lenderink et al. (43) showed that 
fB-deficient mice have lower proteinuria than WT controls in the 
adriamycin-induced FSGS model, suggesting that activation of 
AP has a pathogenic role. Similarly, Turnberg et al. (44) reported 
lower proteinuria and less glomerular and tubulointerstitial 
injury, in fD-deficient mice compared to WT.

In a model of FSGS due to protein overload (45), fH-deficient 
mice display higher C3b glomerular deposition and more severe 
lesions than WT controls. In vitro experiments indicate that C3a 
activates podocytes to release glial cell line-derived neurotrophic 
factor that mediates the recruitment of parietal epithelial cell 
(PEC) and formation of sclerotic lesions. Signs of PEC activation 
were observed in renal biopsies from 10 patients with FSGS (45) 
(Table 1).

Intriguingly, locally produced complement is implicated in 
abnormal T cell activation observed in the anti-podocyte model 
of FSGS. DAF-deficient mice develop more severe histological and 
ultrastructural features of FSGS than WT or CD59-deficient mice 
and severity of FSGS is reduced by depleting CD4+ T cells from 
DAF-deficient mice (46). Furthermore, WT kidneys transplanted 
into DAF-deficient recipients developed FSGS, suggesting that 
renal DAF is not implicated in mediating disease in this model 
(46). Altogether, these data indicate a major role for systemic and 
local complement dysregulation in murine models of FSGS.

In humans with FSGS, glomerular deposition of IgM and C3 
deposits is frequently detected (47). In the urine and plasma 
of patients with FSGS, activated fragments of the comple-
ment cascade, such as C3a, C3b, Ba, Bb, C4a, and sC5b-9, are 
increased compared to patients with other renal diseases such 
as antineutrophilic cytoplasmic antibody (ANCA) vasculitis 
and lupus nephritis or in healthy controls (48). These findings 
could reflect complement activation within the glomeruli, 

mesangium, and areas of sclerosis, while activated complement 
fragments in urine could be due to activation of filtered proteins 
within the tubular lumen or urinary collecting system. The 
presence of high levels sC5b-9 is consistent with the hypothesis 
that there is an activation of the AP in FSGS (48). Importantly, 
fBa levels in the urine had an inverse relation with estimated 
glomerular filtration rate, further supporting a pathogenic role 
in disease progression (48). However, more studies are needed 
to better dissect the involvement of the AP of complement in 
the pathogenesis of FSGS as well as the implication of other 
complement pathway in the pathogenesis of the disease. Results 
of these studies could provide the background for clinical trials 
testing the hypothesis that complement blockade improves 
outcomes of FSGS patients.

MeMbRANOPROLiFeRATive/C3 
gLOMeRULONePHRiTiS

C3 glomerular disease (C3GN) refers to a group of recently 
identified rare renal disorders characterized by the presence of 
C3 in the absence or in the presence of limited deposition of 
immunoglobulins in the renal tissue (49, 50). Clinical manifesta-
tions include proteinuria, hematuria, and approximately 50% of 
affected patients progress to kidney failure within 10 years from 
diagnosis (51). C3GN is subdivided into dense deposit disease 
(DDD) and C3 glomerulonephritis. DDD is characterized by 
mesangial and intramembranous highly electron-dense deposits, 
the composition of which has not been still completely clarify.

C3 glomerular disease shows isolated and less-dense deposits 
in the mesangial, subepithelial, subendothelial, and intramembra-
nous areas of the glomeruli (52). Glomerular deposits of C3 alone, 
without immunoglobulin, are the hallmark of AP dysregulation 
via inherited or acquired defects. Reports from Servais et al. (53) 
showed frequently acquired or hereditary abnormalities muta-
tion of the AP and MCP in about 24% of patients which included 
cases of C3GN, DDD, and membranoproliferative glomerulone-
phropathy type I (100% if only C3GN was included). This defect 
can be due to mutations in complement components or comple-
ment regulators (such as C3, fB, fH, and fI) or due to acquired 
autoantibodies that either stabilize the C3 convertase of the AP 
(e.g., C3 nephritic factors) or target the inhibitory complement 
factors (e.g., fH autoantibodies). In contrast to other diseases with 
AP involvement, these abnormalities promote excessive activa-
tion of the alternative complement pathway in the fluid phase, 
with deposition of complement debris, including breakdown 
products of C3b and components of the terminal complement 
cascade, in the glomerular capillary wall (54–56) (Table 1).

The optimal treatment for C3 glomerulopathy remains 
undefined. A recent KDIGO (Kidney Disease: Improving Global 
Outcomes) controversies conference recommended that all 
patients receive optimal blood pressure control and that patients 
with moderate disease (defined as urine protein of more than 
500 mg/24 h despite supportive therapy or moderate inflamma-
tion on renal biopsy or recent rise in creatinine) receive pred-
nisone or mycophenolate mofetil (57). Due to its pathogenesis, 
targeted therapies aimed at specific components of the alternative 
complement pathway may also be effective (58).
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COMPLeMeNT iN THROMbOTiC 
MiCROANgiOPATHieS

Thrombotic microangiopathy (TMA) is characterized by the 
presence of thrombi in small blood vessels, thrombocytopenia, 
non-immune hemolytic anemia, and peripheral blood schisto-
cytes. The two main target organs of TMA are the kidney and 
the brain (59). The common denominator in each TMA forms 
is activation and dysfunction of the endothelium (60). Multiple 
etiologies can lead to development of TMA, including infec-
tion with Shiga-like toxin-producing bacteria causing typical 
HUS (STEC-HUS), genetically determined dysregulation of 
the AP, which predisposes to atypical hemolytic uremic syn-
drome (aHUS), or A Disintegrin and Metalloproteinase with 
ThromboSpondin motif repeats 13 (ADAMTS13) deficiency 
resulting in thrombotic thrombocytopenic purpura (TTP). 
TMA may also develop as a complication of various coexisting 
diseases or their treatments, such as malignant hypertension, 
systemic autoimmune disease such as systemic lupus erythe-
matosus, cancer, drug treatment, hematopoietic stem cell trans-
plantation, solid organ transplantation, open heart surgery, 
glomerulopathies or infections (61).

In STEC-HUS, bacterial exotoxins induce profound altera-
tions in endothelial cells, upregulating expression of chemokines, 
chemokine receptors, and cell adhesion molecules that favor leuko-
cyte recruitment and promote platelets activity (62). From the early 
1970s, there have been reports of low levels of C3 in patients with 
STEC-HUS (63–67). Since 1980, increased levels of breakdown 
products of the components of the AP including C3 convertase, 
C3, fB, and MAC have been reported in the plasma of children 
with STEC-HUS (68–70). These findings suggest the activation 
of the AP of complement cascade, through to C5b–9 assembly, in 
STEC-HUS. Low levels of C4 have also occasionally been observed 
indicating activation of the CP and/or LP leading to C4 consump-
tion (70). Evidence shows that exotoxin might directly contribute 
to AP activation (71), through endothelial complement deposition 
and loss of thromboresistance depended on exotoxin-induced 
upregulation of the membrane adhesion molecule P-selectin, 
which has been shown to bind C3b with high affinity (72).

HUS is defined as atypical when the disease occurs in the 
absence of a STEC infection, according to established criteria 
(57). The onset of aHUS ranges from the neonatal period to adult-
hood. Genetic aHUS accounts for an estimated 60%of all aHUS 
(73). It is likely that mutation of C3, CD46, CFB, CFH, CFI, and 
THBD confers a predisposition to developing aHUS, rather than 
directly causing the disease. Conditions that trigger complement 
activation may precipitate an acute event in those with the predis-
posing genetic background (74, 75) (Table 1). There are, however, 
non-complement inherited abnormalities such as mutations in 
DGKE, which can result in an aHUS phenotype. Until recently, 
the prognosis for aHUS was poor, with the majority of patients 
developing ESRD within 2 years of presentation. However, with 
the introduction of eculizumab, a humanized monoclonal anti-
body against C5, it is now possible to control the renal disease and 
prevent development of ESRD (57).

In TTP, systemic platelet thrombi are mainly composed by 
platelets and von-Willebrand Factor (VWF) (76). VWF is a 

high-molecular weight, multimeric plasma glycoprotein, pro-
duced by endothelial cells with highly thrombogenic property 
mediated by the availability of an array of docking sites for 
platelets on endothelial cells and extracellular matrix collagen. 
In normal conditions, the VWF thrombogenic potential is rap-
idly held in check through cleavage into smaller multimers by 
a plasma metalloprotease, ADAMTS13 (77), thus ADAMTS13 
deficiency predisposes to microvascular thrombosis after a 
triggering event. ADAMST13 activity could also be helpful 
in predicting the disease clinical manifestation or, a relapsing 
course (78). Several studies investigated complement activation 
markers in TTP patients with documented severe ADAMTS13 
deficiency, showing lower serum levels of C3 and MAC during 
the acute phase (79, 80), correlating also with disease activity. No 
significant differences in levels of CP or LP activation markers 
were observed (80). The above data point toward complement 
activation, through to the terminal C5b–9 complex, in TTP, but 
how complement is activated in TTP is still unclear.

CHRONiC KiDNeY iNJURY AND FibROSiS

The pathogenesis of progressive renal fibrosis is complex and 
involves various cell types and molecular pathways. However, it is 
evident that the inflammatory microenvironment of the kidney, 
after sustained injury, plays a dominant role in the dynamic bal-
ance between tissue destruction (tubular atrophy and interstitial 
fibrosis) and repair (tubular cell growth and resolution of renal 
inflammation and fibrosis) (81). Recent evidence has implicated 
intrarenal complement activation in the progression of kidney 
injury of chronic renal failure (82). C3 plays a substantial role in 
the activation of the renin–angiotensin system and the epithelial-
to-mesenchymal transition (83, 84). This is consistent with the 
concept that complement component generation by renal epithe-
lial cells promotes tubular damage in proteinuria-associated renal 
disease. Further evidence is provided by the fact that absence/
blockade of C5/C5aR1 (but not blocking MAC formation) limits 
kidney fibrosis in several animal models (85, 86). Taken together, 
these data suggest that kidney-derived complement participates 
in the progression of renal fibrosis.

In a murine model of ascending urinary tract infection C5aR1 
deficiency or blockade not only reduces renal bacterial load at all 
stages of infection but also attenuates tissue inflammation and 
tubulointerstitial fibrosis, suggesting a pathogenic role for C5aR1 
in experimental chronic kidney infection. Mechanistic studies 
suggest that C5aR1-mediated bacterial colonization of tubular 
epithelium, persistent local inflammatory responses, and impair-
ment of the phagocytic function of monocytes/macrophages 
could contribute to the pathogenesis of chronic kidney infection 
(87) (Table 1).

THeRAPY

The last decade has witnessed a growing interest from pharma-
ceutical companies in the development of complement inhibitors 
for the most disparate indications, largely supported by the 
exceptional results obtained with anti-C5 blocking antibody 
eculizumab (Table 2; Figure 1).
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TAbLe 2 | Main complement-targeting therapies.

Name Class Disease Main pathogenic 
mechanism

Status Comments

Eculizumab Humanized monoclonal 
anybody

aHUS
DDD
C3GN

Bind C5 to prevent 
generation of MAC

On the market The first U.S. Food and Drug Administration approved 
anticomplement therapy

ALXN1210 Humanized monoclonal 
anybody

aHUS Bind C5 to prevent 
generation of MAC

Clinical trial 
phase II

Demonstrated rapid, complete and sustained reduction go 
free C5 levels, requiring longer dosing intervals compared to 
eculizumab

Coversin Recombinant small 
protein

aHUS Prevents the cleavage 
of C5 into C5a and C5b 
by C5 convertase

Clinical trial phase I Covers has the potential to treat patients with polymorphisms 
of the C5 molecule which interfere with correct binding of 
eculizumab

CCX168 
(Avacopan)

Anti-inflammatory small 
molecule

aHUS
ANCA 
vasculities

Selective inhibitor of 
the complement C5a 
receptor

Clinical trial phase 
III

C5a receptor inhibition with avacopan was effective in replacing 
high-dose glucocorticoids in treating vasculitis

CDX-1135 CR1-based protein DDD CR1 inhibitor Clinical trial phase I CDX-1135 has been shown safe in more than 500 patients in 
different clinical trials, with no relevant side effects

APT070 
(Mirococept)

CR1-based protein IRI in renal 
transplant

CR1 inhibitor Clinical trial 
phase II

Mostly investigated in models of complement-mediated IRI, 
such as kidney transplantation in rats

Phase I trial proved safety

Cinryze C1 esterase inhibitor Antibody-
mediated 
rejection 
in renal 
transplant

C1 inhibitor Clinical trial phase 
III

Efficacy will be tested proportion of subjects with new or 
worsening transplant glomerulopathy at 6 months using Banff 
criteria

OMS721 Humanized monoclonal 
anybody

aHUS
TTP
IgAN

Bind mannan-binding 
lectin-associated serine 
protease-2

Clinical trial 
phase II

OMS721 requests a multidose administration

ACH-4471 Small molecule aHUS Factor D inhibitors Clinical trial phase I ACH-4471 can be given orally and would have a delivery 
advantage over intravenously infused agents

aHUS, atypical hemolytic uremic syndrome; DDD, dense deposit disease; C3GN, C3 glomerular disease; MAC, membrane attack complex; ANCA, antineutrophilic cytoplasmic 
antibody; IRI, ischemia–reperfusion injury; TTP, thrombotic thrombocytopenia; IgAN, IgA nephropathy.
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eculizumab
Eculizumab is the first complement inhibitor approved for clinical 
use, initially for paroxysmal nocturnal hemoglobinuria (PNH) 
and subsequently for aHUS (88). It is an anti-C5 humanized mAb 
which prevents C5 cleavage by the C5 convertase, thereby inhibit-
ing the terminal complement effector pathway. In absence of C5b 
the assembly of MAC is prevented (88).

Eculizumab was approved by the European Medicines 
Agency’s and the US Food and Drug Administration for the 
treatment of aHUS on the basis of results from two distinct 
prospective trials in 17 aHUS patients with thrombocytopenia 
and in 20 aHUS patients requiring persistent plasma exchange 
(PE), respectively (89). All patients achieved discontinuation 
of PE and 88% (33 of 37) reached normal hematological values 
after median of 63 weeks of eculizumab treatment. Eculizumab 
has clearly improved the renal outcome of aHUS patients with a 
dramatic decrease in the risk of ESRD. Nevertheless, the clinical 
use of eculizumab in aHUS still carries a number of unanswered 
questions, mostly concerning patient selection, timing and dura-
tion of the treatment: an ongoing multicenter single-arm trial is 
testing the safety of the discontinuation of eculizumab treatment 
in patients with aHUS (NCT02574403).

Efficacy of eculizumab in patients with DDD and C3GN, limited 
to case reports, suggested that eculizumab is a promising option in 
native disease, but not in C3GN recurrence after kidney transplan-
tation (90–98). The only open-label study of eculizumab therapy 
in six patients (three C3GN and three DDD) reported complete to 
partial remission in four patients at one year of follow-up (99, 100).

inhibitors of Terminal effector 
Complement
Novel anti-C5 mAb antibodies are expected to reproduce the 
efficacy of eculizumab with longer half-lives and at lower costs. 
An ongoing single-arm study is testing the efficacy in controlling 
disease activity of a longer-acting anti-C5 humanized monoclo-
nal antibody (ALXN1210) in patients with aHUS who have not 
previously used a complement inhibitor (NCT02949128).

Coversin is a recombinant small animal protein complement 
C5 inhibitor able to prevent the cleavage of C5 into C5a and C5b 
by C5 convertase (101). In vitro, it prevents hemolysis of PNH 
erythrocytes (102). In an open label, non-comparative clinical 
trial, Coversin reducing serum lactic dehydrogenase, will be 
tested in patients with PNH and proven resistance to eculizumab 
due to C5 polymorphisms (NCT02591862).
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CCX168 (Avacopan) is a small molecule C5aR inhibitor. Jayne 
et al. recently conducted a randomized, double-blind, placebo-
controlled trial in 67 adults with ANCA-associated vasculitis, 
treated with Avacopan with or without steroids. All patients 
received cyclophosphamide or rituximab. They achieved treat-
ment responses in 86 and 81% of the avacopan with and without 
steroid groups, respectively, and in 70% in the control group, 
meeting non-inferiority criteria (103). One more randomized 
phase III trial Avacopan in patients with ANCA-associated 
vasculitis is in recruiting participants (NCT02994927), and an 
open-label phase II study to assess the effect of C5aR inhibitor in 
aHUS is in terminal status (NCT02464891).

TP10 is a C3 convertase inhibitor that acts as a soluble comple-
ment receptor. TP10 can be considered as a candidate for C3G 
and a phase I trial is currently underway (NCT02302755).

inhibitors of initial Complement Activation
Acting at the level of initial pathway-specific events that lead to 
C3 activation could represent an effective therapy to prevent C3 
activation. Several preclinical trials are testing this strategy (102), 
and it is particularly useful in diseases where a specific comple-
ment pathway has a dominant pathogenic role. Examples would 
be the AP in PNH or the CP in antibody-mediated hemolytic 
anemias.

CR1 is a regulator of complement activation inhibiting C3/C5 
convertases with effect on all the three complement pathway (104, 
105). A soluble form of CR1, named CDX-1135 has been shown 
strongly effective in mouse model of DDD (106), and some 
clinical benefit has been reported in a short-term compassionate 
therapy in a child (106). A phase I clinical trial for testing CDX-
1135 in DDD has been started and terminated (NCT01791686) 
with no results reported.

APT070 (Mirococept) (107) is an engineered molecule 
consisting of the first three short consensus domains of CR1and 
it is able to link it to cell membranes. Mirococept has been inves-
tigated in IRI preclinical studies achieving a significant increase 
in the number of surviving grafts, compared with control-treated 
grafts (63.6 versus 26.3%) (108). An ongoing phase III rand-
omized, placebo-controlled trial is testing Mirococept as a pro-
tective agent to prevent functional impairment of transplanted 

kidneys (http://www.controlled-trials.com/ISRCTN49958194). 
Cinryze, a C1 esterase inhibitor currently used for hereditary 
angioedema, is being evaluated in a randomized double-blind 
study for the treatment of acute antibody-mediated rejection in 
donor-sensitized kidney transplants recipients (NCT02547220).

An antibody (OMS721) targeting mannan-binding lectin- 
associated serine protease-2 that cleaves C4 and C2, is cur-
rently being tested in clinical trials for use in TMA, aHUS 
(NCT02222545), and IgA nephropathy (NCT02682407).

Factor D inhibitors are agents that mitigate the complement-
mediated amplification step of the AP. ACH-4471, a small mol-
ecule, demonstrated the ability to block the activation of the AP 
achieving decrease hemolysis and C3b deposition on red blood 
cells from patients with PNH (109) ACH-4471 is being tested in 
phase 1 clinical trials (110).

CONCLUSiON

Increasing evidence has been accumulated showing that comple-
ment activation (mainly through the AP) is implicated in the 
pathogenesis of different non-antibody-mediated glomerular 
diseases and in the general progression of renal disease, regard-
less of the initial insult.

Eculizumab, an anti-C5 monoclonal antibody approved for 
the treatment of aHUS and PNH, revolutionized the treatment 
of TMA, with safe and effective inhibitors for different levels of 
complement cascade emerging. The advent of selective comple-
ment-targeting therapies has the potential provide new treatment 
options while enhancing our understanding of complement 
involvement in disease pathogenesis.
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