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Abstract
A	critical	decision	in	landscape	genetic	studies	is	whether	to	use	individuals	or	popu‐
lations	as	the	sampling	unit.	This	decision	affects	the	time	and	cost	of	sampling	and	
may	affect	ecological	inference.	We	analyzed	334	Columbia	spotted	frogs	at	8	micro‐
satellite	 loci	 across	 40	 sites	 in	 northern	 Idaho	 to	 determine	 how	 inferences	 from	
landscape	genetic	analyses	would	vary	with	sampling	design.	At	all	 sites,	we	com‐
pared	a	proportion	available	sampling	scheme	(PASS),	in	which	all	samples	were	used,	
to	resampled	datasets	of	2–11	individuals.	Additionally,	we	compared	a	population	
sampling	scheme	(PSS)	to	an	individual	sampling	scheme	(ISS)	at	18	sites	with	suffi‐
cient	sample	size.	We	applied	an	information	theoretic	approach	with	both	restricted	
maximum	likelihood	and	maximum	likelihood	estimation	to	evaluate	competing	land‐
scape	resistance	hypotheses.	We	found	that	PSS	supported	low‐density	forest	when	
restricted	maximum	likelihood	was	used,	but	a	combination	model	of	most	variables	
when	maximum	 likelihood	was	 used.	We	 also	 saw	 variations	when	AIC	was	 used	
compared	to	BIC.	ISS	supported	this	model	as	well	as	additional	models	when	testing	
hypotheses	of	land	cover	types	that	create	the	greatest	resistance	to	gene	flow	for	
Columbia	spotted	frogs.	Increased	sampling	density	and	study	extent,	seen	by	com‐
paring	PSS	to	PASS,	showed	a	change	 in	model	support.	As	number	of	 individuals	
increased,	model	 support	converged	at	7–9	 individuals	 for	 ISS	 to	PSS.	 ISS	may	be	
useful	to	increase	study	extent	and	sampling	density,	but	may	lack	power	to	provide	
strong	support	for	the	correct	model	with	microsatellite	datasets.	Our	results	high‐
light	the	importance	of	additional	research	on	sampling	design	effects	on	landscape	
genetics	inference.
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1  | INTRODUC TION

Habitat	loss	and	fragmentation	is	one	of	the	largest	threats	to	wild‐
life	populations	worldwide.	As	global	landscape	change	continues	to	
accelerate,	 there	 is	an	 increasing	need	 to	understand	how	species	
respond	 (Cushman,	 2006).	 Knowledge	 of	 movement	 ecology	 and	
connectivity	is	difficult	to	obtain	for	many	species,	but	 is	essential	
for	evaluating	population	viability	of	a	species	at	the	regional	scale	
(Fahrig	 &	 Merriam,	 1994).	 Animal	 movement	 is	 often	 studied	 by	
physical	 tracking,	which	has	a	 rich	history	of	use	across	 taxa	with	
a	 variety	 of	methodologies	 (Aarts,	MacKenzie,	McConnell,	 Fedak,	
&	Matthiopoloulos,	2008;	Langkilde	&	Alford,	2002);	however,	be‐
cause	 movement	 does	 not	 always	 indicate	 the	 transfer	 of	 genes	
(Semlitsch,	2008),	it	alone	is	not	the	most	appropriate	tool	for	mea‐
suring	functional	connectivity.

Landscape	genetics	combines	landscape	ecology	and	population	
genetics	 to	evaluate	 functional	 connectivity,	which	provides	 infer‐
ences	about	factors	affecting	movement	and	reproduction	(Manel,	
Schwartz,	Luikart,	&	Taberlet,	2003,	Holderegger	&	Wagner,	2006,	
Manel	&	Holderegger	2013).	Quantitative	methods	 that	 link	 land‐
scape	features	and	genetic	data	allow	researchers	to	infer	migration	
events	between	populations	(Storfer	et al.	2007).	By	collecting	ge‐
netic	data	across	a	landscape,	researchers	can	identify	how	spatial	
genetic	 patterns	may	 be	 influenced	 by	 landscape	 features	 (Manel	
et	 al.,	 2003).	 For	 example,	 common	 genetic	 patterns	 include	 iso‐
lation	by	distance	 (IBD;	Wright,	1943),	barriers	 to	movement	 (IBB;	
Cushman,	2006),	isolation	by	environment	(IBE;	Wang	&	Bradburd,	
2014),	and	isolation	by	resistance	(IBR;	McRae,	2006).

Landscape	genetic	sampling	schemes	can	be	difficult	to	prop‐
erly	develop,	 identify,	and	 implement	 (Manel	et	al.,	2003;	Oyler‐
McCance,	Fedy,	&	Landguth,	2013;	Segelbacher	et	al.,	2010).	The	
sampling	scheme	used	 in	 landscape	genetics	studies	depends	on	
the	distribution	of	the	species,	the	spatial	and	temporal	scales	of	
processes	 of	 interest,	 and	 availability	 of	 resources	 allocated	 to	
sampling	 (Balkenhol,	Cushman,	Storfer,	&	Waits,	2015;	Manel	et	
al.,	2003;	Schwartz	&	McKelvey,	2008).	Inefficient	or	biased	sam‐
pling	design	can	decrease	the	ability	of	a	study	to	correctly	identify	

the	processes	leading	to	population	structure	(Oyler‐McCance	et	
al.,	 2013).	 Sampling	 schemes	need	 to	consider	 the	extent	of	 the	
study	area	and	the	distance	between	potential	sampling	sites,	as	
well	as	species	distribution,	temporal	scale,	and	life	history	traits	
of	the	study	organism	(Anderson	et	al.,	2010;	Prunier	et	al.,	2013).	
There	are	two	broad	groups	of	study	design	sampling	types,	using	
either	individual	or	population	as	the	unit	of	analysis,	which	often	
overlap	 in	 their	 hypotheses	 but	 vary	 in	 their	 overall	 approaches	
(Dyer,	2015).	With	 individual	 sampling	scheme	 (ISS),	only	one	or	
few	 individuals	are	sampled	per	geographic	 location	and	genetic	
distances	 are	 calculated	 between	 all	 pairs	 of	 individuals	 to	 cre‐
ate	matrices	based	on	 individual	genotypes	 (Coulon	et	al.,	2004;	
Prunier	et	al.,	2013).	In	contrast,	sampling	at	the	population	level	
can	 be	 applied	 where	 ecologically	 relevant	 population	 delinea‐
tions	 occur	 by	 sampling	many	 individuals	 in	 each	 aggregate	 and	
creating	distance	matrices	by	either	averaging	interindividual	dis‐
tance	matrices,	as	we	have	done	here,	or	by	using	population‐level	
genetic	 distances,	 for	 example,	 FST	 (Spear,	 Peterson,	Matocq,	 &	
Storfer,	2005).	The	population‐level	sampling	scheme	(PSS)	can	be	
problematic	because	populations	are	often	difficult	to	delineate	a	
priori,	and	sufficient	sample	sizes	of	many	species	are	difficult	to	
obtain	(Manel	et	al.,	2003).	A	PSS	is	resource‐	and	time‐consuming	
and	often	results	 in	a	reduced	sampling	extent	or	a	more	diffuse	
sampling	 regime,	 leaving	 areas	 unsampled	 (Prunier	 et	 al.,	 2013).	
If	fewer	than	the	target	number	of	individuals	is	collected	at	a	lo‐
cation,	 that	 population	 is	 often	 dropped	 from	 the	 final	 analysis,	
leaving	a	gap	in	sampling	and	excluding	potentially	informative	ge‐
netic	data.	 In	addition,	a	PSS	may	not	be	appropriate	for	species	
where	population	delineation	 is	difficult	or	habitat	use	 is	contin‐
uous,	like	highly	mobile	or	migratory	species.	In	these	continuous	
distribution	systems,	ISS	may	be	most	appropriate	(Luximon,	Petit,	
&	Broquet,	2014).

Despite	the	drawbacks	of	the	PSS,	it	is	more	commonly	utilized	
than	 ISS	 (Prunier	 et	 al.,	 2013)	 because	 of	well‐developed	 popu‐
lation	 genetic	 theory	 and	 analysis.	 There	 is	 a	 third,	 unexplored	
option,	which	is	to	include	all	individuals	from	all	populations,	re‐
gardless	of	number	of	 individuals	sampled	from	each	population,	

Box 1 Glossary of sampling scheme terms and abbreviations

Scheme Abbreviation Definition Example indices

Individual	Level	Sampling	
Scheme

ISS One	or	few	individuals	sampled	per	
population.	All	sampled	populations	
included	in	analysis.

Proportion	of	Shared	Alleles,	
Bray‐Curtis	Dissimilarity

Population	Level	Sampling	
Scheme

PSS Many	individuals	sampled	in	aggregate,	
minimum	number	of	(often	20	or	more)	
individuals	required	to	include	population	
in	analysis.

Average	Proportion	of	
Shared	Alleles,	Nei’s	Da,	Fst

Proportion	Available	Sampling	
Scheme

PASS Include	all	individuals	and	populations	
sampled	in	analysis,	regardless	of	number	
of	individuals	per	population	sampled.

Average	Proportion	of	
Shared	Alleles
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which	we	refer	to	as	proportion	available	sampling	scheme	(PASS).	
This	sampling	scheme	could	be	utilized	when	a	target	number	of	
individuals	are	not	obtained	at	each	sampling	area	due	to	low	den‐
sities,	 time,	 funding,	 or	other	 constraints.	Here,	we	aim	 to	 com‐
pare	the	ability	of	landscape	genetic	analyses	to	detect	landscape	
genetic	patterns	using	 these	 three	alternative	sampling	schemes	
(Box	1).

To	understand	how	inference	of	landscape	genetic	patterns	can	
differ	based	on	sampling	scheme,	we	studied	a	pond‐breeding	spe‐
cies,	the	Columbia	spotted	frog	(Rana luteiventris)	in	northern	Idaho,	
USA,	 over	 an	 area	 of	 1,555	km2.	 The	 Columbia	 spotted	 frog	 is	 a	
wide‐ranging	species,	with	a	distribution	from	the	southern	Rocky	
Mountains	to	southeastern	Alaska	(Green,	Kaiser,	Sharbel,	Kearsley,	
&	 McAllister,	 1997).	 In	 northern	 Idaho,	 breeding	 populations	 are	
often	small,	with	effective	population	sizes	ranging	from	3.2	to	37.8;	
because	 of	 this,	 the	 persistence	 of	 the	Columbia	 spotted	 frogs	 in	
the	region	may	be	at	risk	(Davis	&	Verrell,	2005;	Goldberg	&	Waits,	
2009).	Within	a	smaller	extent	 in	 this	area	of	 the	range	 (213	km2),	
Columbia	spotted	frog	functional	connectivity	was	found	to	be	neg‐
atively	influenced	by	forest	presence,	while	shrub/clear‐cut	and	agri‐
culture	land	cover	types	were	found	to	have	the	lowest	resistance	to	
gene	flow	(Goldberg	&	Waits,	2010a).	Pond‐breeding	amphibians	are	

a	useful	model	to	 investigate	sampling	scheme	questions	because,	
due	to	their	distribution	and	population	sizes,	they	can	be	sampled	
using	either	the	ISS	or	the	PSS.	Although	PSS	may	be	more	appro‐
priate	for	the	Columbia	spotted	frog	due	to	pond‐breeding	amphib‐
ians	being	generally	philopatric	(Smith	&	Green,	2005),	this	system	
allowed	us	to	evaluate	sampling	schemes	ranging	from	a	single	indi‐
vidual	to	the	population	level	in	an	iterative	manner.	We	compared	
the	 level	of	 functional	 connectivity	 inferred	by	 individual,	 popula‐
tion,	and	proportion	available	sampling	schemes	using	an	 informa‐
tion	 theoretic	 approach	 to	 model	 landscape	 resistance	 (Burnham	
&	Anderson,	2002).	The	candidate	models	consisted	of	slope,	solar	
radiation,	 and	 the	 following	 land	 cover	 types:	 water,	 high‐density	
forest,	low‐density	forest,	agriculture,	shrub,	grassland,	and	human	
development	in	varying	combinations.

Our	objective	was	 to	compare	 landscape	genetic	 inferences	of	
connectivity	(a)	among	individual	and	population	schemes,	and	(b)	at	
different	sampling	densities.	The	increase	in	sampling	densities,	the	
number	of	sample	locations	within	a	given	area,	also	corresponded	
to	 a	 slightly	 increased	 extent,	 representing	 a	 probable	 scenario	 if	
a	PASS	was	 implemented	 in	a	new	system.	Although	 this	 increase	
in	area	occurs	by	adding	populations	only	5–15	km	away	 from	ex‐
isting	 sites,	 this	 represents	 a	 biologically	meaningful	 increase	 to	 a	

F I G U R E  1  Elevation	(left,	meters)	and	land	cover	type	(right)	for	wetland	sampling	locations	for	the	Columbia	spotted	frog	(Rana 
luteiventris)	in	northern	Idaho	(Idaho	Geospatial	Office,	2001).	Population‐level	sampling	scheme	(PSS)	is	locations	where	at	least	11	
individuals	were	sampled.	Locations	where	population	sampling	occurred	had	one	individual	randomly	selected	for	individual‐level	sampling	
scheme	replicate	dataset	(ISS)
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Locus Allele/n Average frequency Locus Allele/n Average frequency

RP3 80 0.10 RP15 85 0.00

90 0.05 90 0.01

100 0.03 100 0.08

110 0.24 105 0.01

120 0.02 110 0.73

130 0.20 120 0.17

140 0.33 RP23 40 0.01

150 0.03 80 0.00

170 0.00 90 0.04

RP17 90 0.01 100 0.65

100 0.10 110 0.13

110 0.35 120 0.06

120 0.34 130 0.11

130 0.01 SFC128 80 0.00

220 0.03 90 0.06

240 0.02 100 0.09

250 0.00 110 0.08

260 0.04 120 0.46

270 0.01 130 0.18

280 0.02 140 0.11

310 0.01 150 0.08

360 0.02 160 0.00

370 0.00 170 0.00

420 0.01 SFC134 100 0.06

430 0.01 110 0.36

440 0.00 115 0.01

450 0.01 120 0.49

460 0.00 130 0.01

490 0.01 150 0.00

510 0.00 160 0.00

70 0.00 90 0.01

100 0.01 RP193 95 0.02

110 0.26 100 0.02

SFC139 120 0.05 110 0.01

130 0.06 115 0.13

140 0.05 117 0.03

150 0.03 120 0.08

160 0.10 125 0.04

170 0.10 127 0.03

180 0.05 130 0.54

190 0.05 140 0.09

200 0.04 150 0.01

210 0.13

220 0.02

230 0.03

240 0.01

250 0.00

TA B L E  1  Allele	list	and	average	
frequency	for	each	microsatellite	locus	
across	40	sampling	areas	of	Columbia	
spotted	frogs	(Rana luteiventris)
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species	where	 adult	migration	 is	 <2	km	on	 average	 (Bull	&	Hayes,	
2001;	Pilliod,	Peterson,	&	Ritson,	2002).	We	expected	that	ISS	would	
indicate	the	same	variables	overall	as	PSS,	albeit	with	less	support.	
We	used	multiple	random	draws	at	locations	with	more	than	one	in‐
dividual	to	create	resampled	ISS	replicates.	We	expected	that	the	ISS	
approach	would	indicate	the	same	variables	as	PASS,	but	that	includ‐
ing	these	sites	with	low	sample	sizes	would	add	noise	to	the	results;	
specifically,	that	multiple	models	would	be	supported	in	many	of	the	
resampled	 replicates.	With	higher	numbers	of	 individuals	per	 site,	
we	expected	 that	 the	 results	would	 converge	with	 the	PSS	based	
on	the	added	statistical	precision	provided	by	more	individuals.	We	
did	not	have	an	expectation	on	the	number	of	supported	models	or	
model	weights	across	all	datasets	and	replicates.

2  | MATERIAL S AND METHODS

The	study	area	(Latah	County,	Idaho,	USA)	included	two	ecoregions	
(Palouse	Prairie	 [West]	 and	Bitterroot	Mountains	 [East])	 and	 their	
ecotone.	The	landscape	has	been	largely	altered	through	agriculture,	
human	 development,	 and	 forest	 management	 (Black	 et	 al.,	 1998;	
Dahl	et al.	2000).	The	population	size	of	the	nearest	city	to	the	study	
area,	Moscow,	 Idaho,	 increased	5.3%	from	2010	to	2015,	which	 is	
greater	 than	 the	 national	 average	 of	 4.1%	 (United	 States	 Census	
Bureau,	2015).	Only	a	small	 fraction	 (13%)	of	natural	wetlands	ex‐
isted	as	of	the	most	recent	comprehensive	survey	(Black	et	al.,	1998)	
posing	potential	limitations	for	amphibian	populations.

We	 analyzed	 tissue	 samples	 (mouth	 swabs	 and	 tail	 clips)	 from	
334	individuals	sampled	at	40	wetlands	from	the	randomly	selected	
set	 surveyed	 for	 habitat	 modeling	 in	 the	 study	 area	 (Goldberg	 &	
Waits,	2009;	Figure	1).	We	extracted	DNA	from	these	samples	using	
the	DNeasy	Blood	and	Tissue	Kit	(Qiagen).	Samples	were	scored	at	
eight	nuclear	DNA	microsatellite	 loci	with	GENEMAPPER	(Applied	
Biosystems,	Inc.):	Rp3,	Rp15,	Rp17,	Rp23,	SFC128,	SFC134,	SFC139,	
and	RP193	(Monsen	&	Blouin,	2003,	Funk	et	al.,	2005,	see	Goldberg	
&	Waits,	2010a	for	PCR	reaction	descriptions,	Table	1	for	list	of	al‐
leles	 and	 frequencies).	 For	 tadpole	 samples,	 we	 detected	 siblings	
using	a	cutoff	value	of	0.75	in	COLONY	within	sampling	sites	(Jones	
&	Wang,	2010)	and	 included	only	one	 individual	 from	each	set	 (as	
recommended	in	Goldberg	&	Waits,	2010b).	Seven	percent	of	sam‐
ples	were	run	twice	to	check	for	genotyping	errors	or	other	inconsis‐
tencies;	none	were	found.	We	considered	sites	with	≥11	individuals	
as	 population‐level	 samples	 (N	=	18	 out	 of	 40	 possible	 wetlands).	
This	 was	 based	 on	 the	 distribution	 of	 the	 sample	 sizes	 collected	
in	 the	field,	with	5	of	 the	18	population‐level	sites	having	11	 indi‐
viduals	collected.	Prior	to	the	 landscape	genetic	analysis,	we	mea‐
sured	population	genetic	statistics	on	population‐level	samples	and	
tested	for	Hardy–Weinberg	equilibrium	using	GENALEX	(Peakall	&	
Smouse,	2012)	and	linkage	disequilibrium	with	ARLEQUIN	(Excoffier	
&	Lischer,	2010).	We	analyzed	data	with	ISS	at	two	sampling	densi‐
ties,	for	a	total	of	four	sampling	schemes:	population‐level	sampling	
(PSS),	individual‐level	sampling	at	the	18	sites	for	which	there	were	
population‐level	data	(ISS‐18),	individual‐level	sampling	at	all	40	sites	

(ISS‐40),	and	a	PSS‐ISS	hybrid	in	which	all	individuals	at	all	40	sites	
were	analyzed	(PASS).	The	PASS	and	ISS‐40	datasets	encompassed	
a	slightly	larger	extent	(Figure	1),	representing	a	probable	scenario	if	
sampling	effort	per	site	was	reduced	and	more	sites	were	included.	
To	determine	the	minimum	sampling	density	for	ISS	approaches	to	
reach	the	same	conclusions	as	PSS/PASS,	we	also	bootstrapped	res‐
ampled	subsets	of	2	through	11	individuals.

2.1 | Genetic distances

We	used	proportion	of	shared	alleles,	Dps,	as	our	metric	of	genetic	
distance	as	it	can	be	estimated	with	both	population‐	and	individual‐
level	sampling	(Bowcock	et	al.,	1994).	To	evaluate	the	effects	of	the	
choice	of	genetic	distance	dissimilarity	index,	we	calculated	genetic	
distance	with	Dps	and	Bray–Curtis	percentage	dissimilarity	with	the	
individual	 sampling	 scheme	 datasets.	 At	 the	 population	 level,	 we	
calculated	Dps,	Fst,	and	Nei’s	Da.	These	additional	dissimilarity	 indi‐
ces	were	chosen	to	allow	direct	discussion	with	the	results	of	other	
similar	studies	(Luximon	et	al.,	2014;	Prunier	et	al.,	2013).	We	then	
calculated	 correlations	 among	 the	 different	 genetic	 distance	 indi‐
ces.	Previous	research	has	reported	statistically	significant	pairwise	
G'ST	values	across	a	portion	of	this	area,	with	an	overall	G'ST	value	of	
0.246	(Goldberg	&	Waits,	2010a).

Our	first	test	was	to	compare	the	influence	of	sampling	schemes	
on	 genetic	 structure	 at	 the	 18	 sites	 where	 PSS	 occurred.	 For	 the	
PSS	approach,	we	calculated	Dps	between	sites	using	the	R	package	
PopGenReport	(Adamack	&	Gruber,	2014;	R	Core	Team,	2015).	This	
was	done	by	calculating	all	pairwise	proportions	among	all	individuals	
and	then	averaging	these	matrices	for	each	population	pair.	For	the	
ISS	approach,	Dps	was	calculated	for	each	set	of	representative	indi‐
vidual(s)	(1–11	individuals)	from	each	of	the	18	sites	using	the	prop‐
Shared	function	in	the	R	package	PopGenReport	(Adamack	&	Gruber,	
2014;	R	Core	Team,	2015).	When	the	number	of	individuals	was	>1,	
we	again	calculated	all	pairwise	proportions	of	shared	alleles	between	
individuals	and	then	averaged	all	of	these	matrices	between	popula‐
tion	pairs.	In	other	words,	in	the	cases	of	a	single	individual,	we	used	
proportion	of	shared	alleles	at	each	population,	so	the	distance	matrix	
was	NxN	which	was	equal	to	PxP	with	a	single	individual.	For	all	sets	
beyond	one	individual	per	population,	we	used	PxP,	where	we	aver‐
aged	the	proportion	of	shared	alleles	among	individuals.	We	simulated	
the	ISS	approach	at	both	sampling	densities	by	bootstrapping	without	
replacement	to	create	100	datasets	of	representative	individual(s).	To	
compare	the	influence	of	sampling	density	on	landscape	genetic	infer‐
ence,	we	compared	ISS	at	18	sites	to	ISS	at	all	40	sites.	We	repeated	
the	proportion	of	shared	alleles	calculation	(ISS	approach)	for	the	40	
sites	and	compared	with	proportion	of	shared	alleles	for	18	sites	as	
calculated	above.	For	PASS,	we	calculated	proportion	of	shared	alleles	
using	all	available	samples	among	all	sampled	sites.

2.2 | Landscape variables and models

We	 examined	 how	 sampling	 scheme	 influenced	 landscape	 ge‐
netic	inference	using	resistance	analysis	evaluated	by	information	
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criterion	metrics.	Land	cover	(from	Pocewicz	et	al.,	2008)	was	split	
into	 separate	 rasters	 at	 a	 resolution	of	 15	m2:	water,	 shrub,	 low‐
density	(LD)	forest,	high‐density	(HD)	forest,	development,	barren,	
agriculture,	 and	 grassland	 (Figure	 1).	 Each	 raster	was	 parameter‐
ized	with	two	denoting	raster	cells	containing	the	respective	land	
cover	 type	and	one	denoting	any	other	 land	cover	 type.	Riparian	
cover	 (from	Redistricting	Census	2000,	U.S.	Dept.	of	Commerce,	
Bureau	of	the	Census,	Geography	Division)	was	parameterized	this	
same	way.	 Solar	 radiation	 and	 slope	 rasters	 were	 parameterized	
with	their	raw	values.	We	calculated	resistance	surfaces	for	land‐
scape	variables	(e.g.,	land	cover	type,	solar	radiation,	and	slope)	by	
running	each	parameterized	raster	 in	CIRCUITSCAPE	4.0	(Shah	&	
McRae,	 2008),	with	 a	 node	 file	 containing	 the	40	 sampling	 loca‐
tions.	 CIRCUITSCAPE	 models	 connectivity	 across	 the	 landscape	
by	using	circuit	theory	to	calculate	resistance	between	two	points.	
We	 used	 maximum‐likelihood	 population‐effects	 (MLPE)	 mod‐
els,	where	we	 ran	 linear	mixed	models	with	 landscape	 resistance	
surfaces	as	predictor	variables	(Van	Strien,	Keller,	&	Holderegger,	
2012).	 MLPE	models	 address	 problems	 of	 nonindependence	 be‐
tween	pairwise	comparisons	of	distance	matrices	through	the	use	
of	random	effects.	In	addition,	to	explicitly	test	for	IBD,	we	created	
one	model	using	a	uniform	(all	cells	equal	one)	resistance	layer.	We	
checked	for	multicollinearity	using	18	and	40	sites,	and	iteratively	
removed	the	variable	with	the	highest	score	until	the	model	had	a	
VIF	threshold	of	<4	which	has	been	suggested	by	other	research‐
ers	(Table	2,	Hair,	Anderson,	Tatham,	&	Black,	1998).	Models	were	
tested	by	a	priori	hypotheses,	 such	as	human	 impact	 (agriculture	
and	 development),	 energetic	 movement	 constraints	 (solar	 and	
slope),	 and	 undisturbed	 habitat	 (forest	 and	 grasslands)	would	 in‐
fluence	frog	movement.	However,	we	did	not	optimize	resistance	
values	due	to	potential	bias	when	relative	 impacts	between	pairs	
of	variables	are	not	explicitly	known,	such	as	differences	between	
high‐	and	low‐density	forests.	AICc	and	BIC	were	calculated	from	
maximum‐likelihood	 (ML)	 estimations	 of	 the	 linear	mixed	models	
using	 the	 lme4	package	 in	R	 (Bates	&	Maechler,	2009).	There	are	
potential	issues	with	AIC	for	models	fit	with	restricted	maximum‐
likelihood	REML	when	fixed	effects	are	not	the	same	across	mod‐
els	 being	 evaluated;	 however,	 information	 criterion	 ranking	 with	

MLPE	models	 is	 found	 in	 the	 literature	 for	model	 selection	with	
REML	under	some	circumstances,	and	we	therefore	used	REML	as	
well	(Gurka,	2006;	Row,	Knick,	Oyler‐McCanse,	Lougheed,	&	Fedy,	
2017).	We	then	used	AICc	and	∆AICc	to	rank	the	likelihood	of	the	
17	landscape	hypotheses.	For	the	ISS	datasets,	we	also	ranked	each	
model	based	on	frequency	of	high	level	of	support	for	each	boot‐
strapped	dataset,	using	a	threshold	of	∆AICc	<	2,	to	determine	the	
number	of	times	each	model	was	competitive	across	replicate	data‐
sets.	We	conducted	these	analyses	for	the	four	sampling	scheme	
datasets:	ISS‐18,	PSS,	ISS‐40,	and	PASS.

3  | RESULTS

Mean	 number	 of	 alleles	 per	 locus	 for	 the	 18	 populations	 was	
4.410 ± 0.942 SD	 (Table	 3).	 After	 Bonferroni	 correction,	 2	 out	 of	
143	Hardy–Weinberg	tests	were	significant	at	p	<	0.05.	Linkage	dis‐
equilibrium	was	detected	between	0	and	3	pairs	of	loci	within	each	
population,	with	14	populations	having	no	support	 for	 linkage	dis‐
equilibrium	at	all	loci.	All	loci	were	retained	in	the	analysis	because	
only	one	pair	of	 loci	showed	 linkage	 in	more	than	one	population.	
Rp3	and	SFC139	showed	linkage	disequilibrium	only	in	4	of	18	pop‐
ulations;	Rp3	and	SFC139	were	 also	 found	 to	be	weakly	 linked	 in	
other	studies	of	this	species	 (Funk	et	al.,	2005;	Goldberg	&	Waits,	
2010a).	 The	 chromosomal	 locations	 of	 these	 loci	 are	 unknown.	
Individual	and	population	data	can	be	found	on	DRYAD	(https://doi.
org/10.5061/dryad.1nq73).

Genetic	 distance	 dissimilarity	 indices	 were	 highly	 correlated	
using	both	the	individual	and	populations	sampling	scheme	datasets.	
With	the	individual	sampling	scheme	dataset,	Bray–Curtis	percent‐
age	 dissimilarity	 was	 equal	 to	 the	 inverse	 value	 of	 proportion	 of	
shared	alleles	 (Dps).	With	the	population	sampling	scheme	dataset,	
the R2	value	for	proportion	of	shared	alleles	versus	Nei’s	Da	and	Fst 
was	0.81	 and	0.70,	 respectively	 (Figure	 2).	 Because	 of	 these	 high	
correlations,	we	used	the	proportion	of	shared	alleles	metric	 in	all	
downstream	analyses.

Model	support	varied	among	the	 individual	sampling	scheme	
(ISS),	 population‐level	 sampling	 scheme	 (PSS),	 and	 proportion	
available	 sampling	 scheme	 (PASS).	 The	 population‐level	 dataset	
(PSS)	had	strong	support	for	the	low‐density	forest	cover	model,	
while	48%	of	bootstrapped	ISS	datasets	included	this	cover	type	
in	the	set	of	models	with	more	limited	support.	Using	ML,	all	mod‐
els	comprised	of	a	single	landscape	variable	had	support	in	greater	
than	 one‐fifth	 of	 the	 ISS	 replicate	 runs	 (Table	 4).	 In	 the	 ISS‐18,	
ISS‐40,	 and	PASS	datasets,	 the	 fullest	model	 and	 the	model	 in‐
cluding	 low‐density	 forest,	 high‐density	 forest,	 and	 grass	 had	
the	 most	 support.	 The	 shrub/clear‐cut	 model	 also	 had	 support	
in	the	ISS‐40	dataset.	However,	for	the	PSS	dataset,	the	highest	
level	 of	 evidence	was	 present	 for	 the	 same	model:	 low‐density	
forest	 cover,	 which	 was	 also	 frequently	 supported	 in	 the	 other	
datasets.	BIC	often	supported	models	with	fewer	variables	than	
AICc	 (Table	 5).	High‐density	 forest	 and	 slope	were	 linearly	 cor‐
related	 (r	=	0.77),	while	each	had	a	 lower	 linear	 correlation	with	

TA B L E  2  Variance	inflation	factor	(VIF)	results	of	fullest	model	
during	check	for	multicollinearity	of	landscape	variables	in	northern	
Idaho	at	sample	locations	of	Columbia	spotted	frogs	(Rana 
luteiventris).	VIF	was	calculated	at	each	sampling	density,	18	and	40	
sites.	Variables	were	removed	iteratively	based	on	the	variable	with	
the	highest	VIF	score,	until	VIF	score	was	lower	than	4	for	full	
model

VIF Score

18 Sites 40 Sites

Shrub/Clear‐cut 2.77 2.58

Grass 1.25 1.10

Forest	low	density 1.86 1.34

Slope 1.99 2.59

https://doi.org/10.5061/dryad.1nq73
https://doi.org/10.5061/dryad.1nq73
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low‐density	forest	(ca.	r	=	0.45;	Table	6).	Top	models	were	differ‐
ent	when	REML	was	used	(AIC	Table	7,	BIC	Table	8).	Overall,	model	
fit	 was	 similar	 across	 datasets.	 Plots	 of	 top	 performing	 models	
indicated	homoscedasticity	of	residuals.	Root‐mean‐square	error	
for	top	performing	models	was	<5%	of	the	potential	range	of	the	
dependent	variable.

When	 number	 of	 individuals	 per	 site	was	 increased,	 ISS	 con‐
verged	with	the	sampling	scheme	of	the	same	density	and	extent	
(PSS	and	PASS	for	the	ISS	at	18	and	40	sites,	respectively).	When	
nine	individuals	were	included,	ISS	at	18	sites	had	>90%	of	datasets	
having	model	support	agreeing	with	the	one	of	the	top	PSS	mod‐
els,	of	low‐density	forest	land	cover	being	competitive	(Figure	3a).	
ISS	at	40	sites	converged	with	PASS,	with	the	two	top	models	sup‐
ported	although	never	at	greater	than	90%	(Figure	3b).	Total	num‐
ber	of	competitive	models	as	number	of	individuals	was	increased	
showed	 a	 pattern	 of	 decreasing	 number	 of	 competitive	 models	
as	number	of	 individuals	 increased,	except	 for	 the	 ISS‐18	models,	
which	showed	an	increase	then	decrease	in	number	of	competitive	
models	(Figure	3c).	ISS	at	40	sites	supported	1	to	2	models	based	
on	both	average	AICc	weight	and	number	of	times	supported	across	
replicates	once	more	than	a	single	individual	was	used	(Figure	3c).	
Pattern	of	the	number	of	times	a	model	was	competitive	was	sim‐
ilar	when	REML	was	used,	 and	 additional	 individuals	were	 added	
(Figure	3d,	e).	ISS	at	18	sites	had	a	roughly	linear	decline	in	the	num‐
ber	of	supported	models	across	replicates	as	number	of	samples	per	
site	when	increased	from	1	to	9	with	a	large	proportion	of	the	mod‐
els	being	supported	when	a	 low	number	of	 individuals	were	used	
(Figure	 3f).	 This	 pattern	was	 not	 seen	when	 counting	 number	 of	
supported	models	based	on	average	AICc	weight,	where	supported	
models	varied	from	3	to	2.

4  | DISCUSSION

Landscape	genetics	is	a	powerful	method	for	evaluating	functional	
connectivity	 (Manel	 et	 al.,	 2003,	 Holderegger	 &	 Wagner,	 2006,	
Manel	 &	 Holderegger	 2013),	 but	 appropriate	 sampling	 strategies	
and	schemes	can	be	difficult	to	determine	and	apply	 (Manel	et	al.,	
2003;	Segelbacher	et	al.,	2010).	We	found	that	inferences	differed	
between	individual	and	population	sampling	schemes	when	we	com‐
pared	the	two	datasets	at	18	sites.	This	pattern	for	ISS‐18	was	likely	
due	to	a	lack	of	statistical	power.	At	40	sites,	the	models	supported	
by	PASS	were	also	supported	by	the	ISS	at	40	sites,	but	the	support	
for	the	PASS	top	model	was	not	as	strong	as	for	the	full	dataset	and	
additional	models	were	supported	with	the	ISS‐40	dataset.	Support	
varied	considerably	within	 the	 ISS‐18	and	 ISS‐40	datasets	as	well.	
No	model	was	supported	more	than	90	percent,	and	with	most	of	
the	models	 being	 supported	 around	25	percent	of	 the	 time.	With	
increased	numbers	of	 individuals	sampled,	 the	 ISS	converged	with	
PSS	and	PASS.	Convergence	occurred	at	nine	 individuals	with	ML,	
but	seven	individuals	with	REML.	This	indicates	that	small	numbers	
of	 sampled	 individuals	 may	 be	 appropriate	 under	 certain	 circum‐
stances,	 for	 example,	 stronger	 population	 structure	 or	 increased	
number	of	 loci	 (Landguth	 et	 al.,	 2010,	 2012;	Prunier	 et	 al.,	 2013).	
However,	the	variation	in	model	support	suggests	caution	is	impor‐
tant	 as	mistaken	 inferences	may	 be	 drawn	 if	 sample	 size	 is	 insuf‐
ficient.	The	differences	between	REML	and	ML	occurred	at	 lower	
numbers	of	individuals	per	population,	which	highlights	a	potential	
methodological	issue	when	moving	to	an	ISS.

Prunier	et	al.	(2013)	found	that	the	individual	sampling	scheme	
could,	 in	most	cases,	have	similar	 inferences	of	 landscape	connec‐
tivity	when	compared	with	the	population	sampling	scheme,	when	

Pop # N A uHe ML LD HWE AR PA

1 15 34 0.604 0 1 0 4.03 0.500

2 21 40 0.614 0 3 0 4.40 0.125

3 11 42 0.588 0 0 0 5.25 0.125

4 11 30 0.558 0 0 0 3.75 0.250

5 15 39 0.669 0 0 0 4.57 0.375

6 16 26 0.526 0 1 0 3.12 0.000

7 14 32 0.472 1 0 0 3.75 0.000

8 11 32 0.636 0 0 0 4.00 0.000

9 11 28 0.500 1 0 0 3.50 0.000

10 25 46 0.664 0 0 0 4.87 0.000

11 18 46 0.670 0 0 0 4.94 0.500

12 14 40 0.621 0 0 1 4.76 0.000

13 16 23 0.381 2 1 0 2.68 0.000

14 20 38 0.553 0 0 0 4.29 0.000

15 12 40 0.719 0 0 0 4.93 0.000

16 17 41 0.625 0 0 0 4.93 0.000

17 11 20 0.494 0 1 0 2.63 0.000

18 18 44 0.656 0 0 1 4.89 0.250

TA B L E  3  Population	genetic	analyses	
of	Columbia	spotted	frog	(Rana 
luteiventris)	populations	in	northern	Idaho,	
USA.	We	completed	analyses	on	
populations	where	a	minimum	of	11	
individuals	were	collected.	Eight	
microsatellite	loci	were	used.	N	=	samples	
size,	A	=	total	number	of	alleles	across	all	
microsatellite	loci,	uHe	=	unbiased	
expected	heterozygosity,	ML	=	number	of	
monomorphic	loci,	LD	=	number	of	
pairwise	loci	failed	linkage	disequilibrium	
test,	HWE	=	number	of	loci	failing	
Hardy–Weinberg	equilibrium	test.	
Statistical	significance	threshold	p	<	0.05	
with	Bonferroni	correction,	AR	=	average	
allelic	richness,	PA	=	mean	number	of	
private	alleles	across	all	loci
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moving	to	sampling	three	or	four	individuals,	as	opposed	to	a	single	
individual,	per	population.	In	contrast,	we	found	that	more	individu‐
als	were	needed	in	our	study	to	reach	the	same	conclusions	between	
sampling	 schemes	 regardless	 of	 statistical	 methods	 or	 number	 of	
populations.	The	empirical	example	of	Prunier	et	al.	 (2013)	had	78	
populations	where	at	 least	two	alpine	newts	were	captured	for	an	
ISS,	 with	 six	 populations	 meeting	 their	 PSS	 threshold	 of	 20	 indi‐
viduals.	This	increased	statistical	power	due	to	a	higher	number	of	
sites	for	their	evaluation	of	ISS	than	presented	in	our	research	may	
explain	the	differences	in	minimum	number	of	individuals	required	
to	 converge.	Unlike	 the	 ISS	 at	18	 sites,	 there	was	not	 a	 threshold	
for	ISS	at	40	sites	as	the	number	of	samples	approached	the	PASS.	
However,	the	top	model	from	the	PASS	did	have	increased	support	
as	we	added	more	individuals.	This	may	be	due	to	the	inherent	sta‐
bility	 in	 the	data	 for	 the	PASS	between	 replicates;	at	 some	of	 the	
40	sites,	only	a	 single	or	 few	 individuals	were	surveyed,	 so	as	 the	
maximum	number	of	individuals	per	site	was	increased,	there	was	no	
change	in	the	available	genetic	data	for	some	of	the	sites.	Because	
PASS	has	only	one	realization	and	the	two	competing	models	in	the	
bootstrapped	replicates	had	correlated	variables,	it	 is	possible	that	
PASS	supported	high‐density	forest	over	slope	by	chance.

Comparisons	 between	 this	 research	 and	 similar	 past	 research	
highlight	several	general	points	about	sampling	schemes	in	landscape	
genetics.	First,	based	on	the	results	from	Prunier	et	al.	(2013)	and	the	
present	 study,	 the	 number	 of	 individuals	 needed	 to	 reach	 correct	

landscape	 genetic	 inference	 varies	 by	 system	 but	 may	 be	 some‐
where	between	three	and	nine.	Simulations	using	large	numbers	of	
single	nucleotide	polymorphism	 (SNP)	 loci	have	also	 found	sample	
sizes	of	4–6	may	be	appropriate	for	obtaining	accurate	estimates	of	
Fst	(Willing,	Dreyer,	&	Oosterhout,	2012),	and	subsequent	inferences	
from	landscape	genetics.	This	is	much	lower	than	the	standard	rec‐
ommended	value	of	20–30	individuals	per	population	(Storfer	et	al.,	
2007).	 It	may	be	appropriate	to	 lower	target	sample	number	goals	
based	on	these	results.	However,	the	number	of	individuals	needed	
is	 going	 to	 be	 related	 to	 the	 amount	 of	 population	 differentiation	
(Kalinowski,	2005).	By	lowering	the	number	of	individuals	per	pop‐
ulation,	researchers	will	be	able	to	increase	either	the	spatial	extent	
or	sampling	density	of	their	studies	or	save	valuable	resources.	In	our	
system,	shifting	from	20	to	7	individuals	per	site	would	allow	us	to	
double	the	density	or	extent	of	future	projects.	However,	both	our	
study	and	Prunier	et	al.	 (2013)	focused	on	amphibian	species	with	
easy	 to	 delineate	 breeding	 populations,	 and	 additional	 research	 is	
needed	with	more	continuously	distributed	species.	In	general,	sam‐
pling	scheme	may	vary	with	the	study	system,	and	it	may	be	most	
appropriate	to	evaluate	the	optimal	sample	size	in	situ.	Researchers	
could	achieve	this	using	similar	bootstrapping	methods	as	presented	
here	with	empirical	datasets.

Generally,	we	saw	different	top	models	per	information	criteria	
methods	with	ML	and	REML	estimations.	For	the	PSS,	low‐density	
forest	model	was	supported	by	both	ML	and	REML,	but	with	ML,	
three	additional	competing	models	were	also	supported,	all	of	which	
included	the	low‐density	forest	variable	when	using	AICc.	This	pat‐
tern	of	 support	 for	models	with	more	 variables	with	ML	was	 also	
seen	with	 PASS,	where	 evidence	weight	was	 highest	 for	 the	 two	
models	with	 the	greatest	number	of	variables	with	ML,	but	REML	
showed	strong	support	for	a	single	variable	model,	forest	high‐den‐
sity.	As	with	PSS,	this	variable	was	present	in	the	multivariable	mod‐
els	supported	with	ML	estimation.	Top	models	for	ISS‐18	and	ISS‐40	
with	 REML	were	 also	 different,	with	 three	 single	 variable	models	
but	with	ML	 support	was	greatest	 for	models	with	 the	most	vari‐
ables.	This	highlights	potentially	different	 inferences	derived	 from	
model	 selection	 methodology	 depending	 on	 the	 estimation	 used,	
particularly	 when	 dealing	with	 ISS.	 BIC	 results	 were	more	 similar	
between	ML	 and	REML	 estimation,	 potentially	 due	 to	 the	 sample	
sizes	we	 had	 available	 and	 the	 use	 of	 sample	 size	 corrected	 AIC.	
Because	 fixed	effects	vary	among	 the	models	 that	were	 tested	 in	
these	 cases,	ML	would	 be	most	 appropriate	 as	 opposed	 to	REML	
(Verbeke	&	Molenberghs,	2000),	although	there	are	examples	in	the	
literature	of	using	REML	for	MLPE	(e.g.,	Emel	&	Storfer,	2014,	Gurka,	
2006,	Row	et	al.,	2017,	Zancolli,	Rodel,	Steffan‐Dewenter,	&	Storfer,	
2014).	We	 provide	 both	 sets	 of	 results	 to	 highlight	 this	 aspect	 of	
model	selection.	Although	limited	by	empirical	data	here,	more	ex‐
tensive	ML	compared	to	REML	testing	with	MLPE	using	simulations	
may	be	important	to	fully	address	best	practices	in	model	selection	
methodology.

This	study	identifies	landscape	features	that	impede	gene	flow	for	
the	Columbia	spotted	frog	while	also	assessing	the	effects	of	differ‐
ent	sampling	strategies	on	landscape	genetic	inference.	Low‐density	

F I G U R E  2  Correlation	between	proportion	of	shared	alleles	and	
Nei’s	Da	(a)	and	proportion	of	shared	alleles	and	Fst	(b)	using	sites	
with	11	or	more	individuals
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forest	 was	 the	 most	 supported	model	 with	 PSS	 using	ML	 and	 at	
the	 smaller	 sampling	 extent	 and	 density	when	 using	 REML,	while	
high‐density	forest	was	the	most	supported	model	at	the	increased	
sampling	extent	and	density	when	using	REML.	In	addition,	low‐den‐
sity	and	high‐density	forest	occurred	in	almost	all	of	the	supported	

models	when	ML	was	used.	Results	of	low‐density	forest	and	high‐
density	forest	models	indicate	a	reduction	in	gene	flow	when	these	
land	cover	types	occur	between	breeding	populations.	These	results	
are	similar	to	those	previously	found	for	this	species	at	a	finer	scale	
in	 the	 southwestern	 portion	 of	 this	 study	 area,	where	 forest	was	

TA B L E  5  Parameters	and	information	theoretic	(BIC)	results	for	models	of	genetic	distance	(proportion	of	shared	alleles)	in	north	Idaho,	
USA,	for	the	Columbia	spotted	frog	(Rana luteiventris)	using	maximum	likelihood	(ML).	Parameters	are	land	cover	of	low‐density	forest	
(forestld),	high‐density	forest	(foresthd),	agriculture	(ag),	shrub/clear‐cut	(shrub),	human	development	(dev),	grassland	(grass),	distance	
(distance),	solar	radiation	(solar).	Individual	sampling	scheme	(ISS)	results	are	reported	as	average	BIC	of	100	bootstrapped	
replicates	±	standard	error	(SE),	with	the	number	of	times	a	model	was	competing	(∆BIC	<	2)	reported	in	Num.	Comp.	Bold	values	indicate	
the	top	competing	models	(average	BIC	weight	>	0.10).	Population	sampling	scheme	(PSS)	represents	sampling	with	a	minimum	of	11	
individuals	being	collected	per	site.	Proportion	available	sampling	scheme	(PASS)	represents	sampling	with	all	individuals	collected,	
regardless	of	number	of	individuals	collected	per	site

Model k

ISS, 18 sites PSS, 18 sites ISS, 40 sites PASS, 40 sites

BIC Weight Num. Comp. BIC Weight BIC Weight Num. Comp. BIC Weight

Grass	+	forest	ld	+	forest	
hd	+	slope

7 0.01 ± 0.00 1 0.00 0.04 ± 0.01 10 0.03

Forest	ld	+	forest	
hd	+	grass

6 0.05 ± 0.01 14 0.01 0.04 ± 0.01 9 0.77

Ag	+	dev 5 0.01 ± 0.00 1 0.00 0.09 ± 0.02 18 0.00

Solar	+	slope 5 0.04 ± 0.01 9 0.00 0.02 ± 0.01 2 0.00

Forest	ld	+	dev 5 0.02 ± 0.00 1 0.07 0.03 ± 0.01 7 0.00

Solar	+	forest	ld 5 0.04 ± 0.01 7 0.07 0.02 ± 0.01 4 0.00

Forest	ld	+	shrub/cc 5 0.05 ± 0.01 9 0.08 0.09 ± 0.02 16 0.00

Ag 4 0.07 ± 0.00 15 0.00 0.04 ± 0.00 6 0.00

Forest	hd 4 0.15 ± 0.02 51 0.00 0.10 ± 0.02 23 0.17

Grass 4 0.05 ± 0.01 18 0.00 0.03 ± 0.01 9 0.00

Slope 4 0.15 ± 0.02 47 0.00 0.19 ± 0.02 44 0.01

Dev 4 0.06 ± 0.00 15 0.02 0.08 ± 0.01 26 0.00

Riparian 4 0.05 ± 0.00 2 0.03 0.03 ± 0.00 1 0.00

Solar 4 0.05 ± 0.00 8 0.01 0.05 ± 0.00 16 0.00

Distance 4 0.05 ± 0.00 2 0.01 0.04 ± 0.00 9 0.00

Forest	ld 4 0.08 ± 0.01 22 0.68 0.08 ± 0.01 24 0.00

Shrub/cc 4 0.07 ± 0.00 16 0.01 0.03 ± 0.00 5 0.00

TA B L E  6  Correlation	matrix	results	for	land	cover	parameters	of	low‐density	forest	(forestld),	high‐density	forest	(foresthd),	agriculture	
(ag),	shrub/clear‐cut	(shrub),	human	development	(dev),	grassland	(grass),	distance	(distance),	solar	radiation	(solar)	using	all	40	populations	of	
Columbia	spotted	frogs	(Rana luteiventris)	across	northern	Idaho,	USA

Forest ld Shrub/cc Distance Slope Forest hd Ag Dev Solar Grass Riparian

Forest	ld 1.000

Shrub/cc 0.553 1.000

Distance 0.673 0.889 1.000

Slope 0.466 0.560 0.632 1.000

Forest	hd 0.456 0.702 0.744 0.773 1.000

Ag 0.689 0.807 0.781 0.624 0.791 1.000

Dev 0.662 0.867 0.988 0.642 0.712 0.762 1.000

Solar 0.680 0.857 0.977 0.574 0.708 0.782 0.972 1.000

Grass 0.221 0.526 0.661 0.174 0.207 0.460 0.661 0.674 1.000

Riparian 0.659 0.818 0.963 0.554 0.677 0.721 0.949 0.966 0.678 1.000
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found	 to	 restrict	 gene	 flow	 (Goldberg	&	Waits,	 2010a).	 However,	
Goldberg	and	Waits	(2009)	found	breeding	sites	to	be	near	low‐	and	
high‐density	forest;	specifically,	proximity	to	low‐density	forest	was	
the	most	important	land	cover	variable	for	the	presence	of	breeding	
populations	of	this	species.	Together,	these	findings	indicate	the	im‐
portant	influence	that	forests	have	on	Columbia	spotted	frogs	in	this	
region,	and	the	difference	between	habitat	requirements	and	 land	
cover	contributions	to	functional	connectivity.

Landscape	 features	may	 influence	 gene	 flow	 differently	 across	 a	
species	 range	depending	on	 range‐wide	variation	 in	 interactions	with	
climate	and	other	variables.	In	this	study	area,	slope	was	not	supported	
outside	 of	 a	 correlation	with	 high‐density	 forest,	 but	 in	more	moun‐
tainous	regions,	topographic	features	were	supported	as	an	important	
influence	on	functional	connectivity	for	this	species	(Funk	et	al.,	2005;	
Murphy,	Dezzani,	Pilliod,	&	Storfer,	2010).	The	range	of	variation	of	inter‐
est	may	be	key	to	explaining	observed	differences	among	study	regions,	
which	may	explain	differences	in	 inferences	of	range‐wide	connectiv‐
ity	(Cushman	&	Landguth,	2010;	Short	Bull	et	al.,	2011).	Although	not	
tested	in	this	study,	there	is	evidence	that	other	at‐site	abiotic	and	biotic	
factors,	such	as	frost‐free	period,	presence	of	predatory	fish,	and	site	
productivity,	are	also	important	for	this	species	(Murphy	et	al.,	2010).

It	 is	 important	 to	highlight	 the	 limitations	of	 this	 research	as	
it	uses	empirical	data	on	a	 single	 species,	 the	Columbia	 spotted	
frog.	This	species	has	clear	population	boundaries,	and	further	re‐
search	into	this	sampling	question	could	benefit	from	a	focus	on	
species	that	are	more	continuous	distributed	or	at	lower	densities	
across	 the	 landscape.	 For	 example,	 Luximon	 et	 al.	 (2014)	 found	
that	ISS	was	more	appropriate	with	continuously	distributed	spe‐
cies	in	simulation.	The	minimum	number	needed	to	reach	similar	
results	to	a	population	sampling	scheme	may	depend	on	the	de‐
gree	 of	 population	 structure	 and	 distribution.	 Using	 an	 individ‐
ual	 sampling	scheme	approach	may	 reduce	concerns	of	defining	
populations	 for	 landscape	 genetic	 analyses	when	 a	 priori	 popu‐
lation	delineations	do	not	exist.	Of	particular	concern,	 if	genetic	
clustering	 algorithms	are	used,	 is	 that	 erroneous	population	de‐
lineations	may	occur	depending	on	the	assumptions	and	levels	of	
migration	within	the	system.	Erroneous	delineation	could	lead	to	
incorrect	downstream	 landscape	genetic	 inferences,	 as	 inappro‐
priate	grouping	of	populations	may	drastically	change	calculated	
genetic	 distances	 (Schwartz	 &	McKelvey,	 2008).	 Detecting	 cor‐
rect	population	structure	can	also	be	influenced	by	uneven	sam‐
pling	 sizes;	 uneven	 sampling	 can	 lead	 to	 an	 incorrect	 inference	

TA B L E  8  Parameters	and	information	theoretic	(BIC)	results	for	models	of	genetic	distance	(proportion	of	shared	alleles)	in	north	Idaho,	
USA,	for	the	Columbia	spotted	frog	(Rana luteiventris)	using	restricted	maximum	likelihood	(REML).	Parameters	are	land	cover	of	low‐density	
forest	(forestld),	high‐density	forest	(foresthd),	agriculture	(ag),	shrub/clear‐cut	(shrub),	human	development	(dev),	grassland	(grass),	distance	
(distance),	solar	radiation	(solar).	Individual	sampling	scheme	(ISS)	results	are	reported	as	average	BIC	of	100	bootstrapped	
replicates	±	standard	error	(SE),	with	the	number	of	times	a	model	was	competing	(∆BIC	<	2)	reported	in	Num.	Comp.	Bold	values	indicate	
the	top	competing	models	(average	BIC	weight	>	0.10).	Population	sampling	scheme	(PSS)	represents	sampling	with	a	minimum	of	11	
individuals	being	collected	per	site.	Proportion	available	sampling	scheme	(PASS)	represents	sampling	with	all	individuals	collected,	
regardless	of	number	of	individuals	collected	per	site

Model k

ISS, 18 sites PSS, 18 sites ISS, 40 sites PASS, 40 sites

BIC Weight Num. Comp. BIC Weight BIC Weight Num. Comp. BIC Weight

Grass	+	forest	ld	+	forest	
hd	+	slope

7 0.00 ± 0.00 0 0.00 0.00 ± 0.00 0 0.00

Forest	ld	+	forest	
hd	+	grass

6 0.00 ± 0.00 0 0.00 0.00 ± 0.00 0 0.00

Ag	+	dev 5 0.00 ± 0.00 0 0.00 0.03 ± 0.02 5 0.00

Solar	+	slope 5 0.01 ± 0.01 1 0.00 0.00 ± 0.00 1 0.00

Forest	ld	+	dev 5 0.00 ± 0.00 1 0.00 0.00 ± 0.00 2 0.00

Solar	+	forest	ld 5 0.01 ± 0.00 1 0.00 0.00 ± 0.00 1 0.00

Forest	ld	+	shrub/cc 5 0.01 ± 0.01 2 0.00 0.01 ± 0.00 5 0.00

Ag 4 0.08 ± 0.00 23 0.00 0.04 ± 0.00 8 0.00

Forest	hd 4 0.18 ± 0.02 60 0.00 0.13 ± 0.02 35 0.88

Grass 4 0.07 ± 0.01 25 0.00 0.05 ± 0.01 14 0.00

Slope 4 0.21 ± 0.02 65 0.00 0.33 ± 0.03 66 0.07

Dev 4 0.07 ± 0.00 16 0.02 0.09 ± 0.01 25 0.01

Riparian 4 0.06 ± 0.00 3 0.04 0.03 ± 0.00 0 0.01

Solar 4 0.06 ± 0.00 8 0.02 0.05 ± 0.00 13 0.01

Distance 4 0.06 ± 0.00 2 0.02 0.04 ± 0.00 8 0.00

Forest	ld 4 0.11 ± 0.01 41 0.89 0.14 ± 0.02 42 0.01

Shrub/cc 4 0.08 ± 0.00 19 0.01 0.03 ± 0.00 6 0.00
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on	 the	 number	 of	 subpopulations	 (Puechmaille,	 2016).	Working	
with	 empirical	 data	 also	meant	 that	we	were	 limited	 to	 treating	
the	 dataset	with	 the	 greatest	 statistical	 power	 as	 truth,	 in	 con‐
trast	with	 simulation	 studies.	 It	 is	possible	 that	 the	 results	 from	
the	 population	 sampling	 scheme	 do	 not	 reflect	 the	 true	 drivers	
of	functional	connectivity	in	this	system;	however,	it	represented	
our	most‐informed	dataset.

One	additional	 concern	may	be	 that	we	used	unweighted	al‐
lele‐sharing	 genetic	 distances.	 This	 system	 has	 high	 levels	 of	
population	 structure	 (Goldberg	 &	 Waits,	 2010a);	 because	 fre‐
quency‐weighted	 allele‐sharing	 metrics	 are	 often	 void	 of	 the	
grouping	 of	 the	 individuals	 (e.g.,	Greenbaum,	 Templeton,	&	Bar‐
David,	 2016),	 it	 may	 not	 be	 appropriate	 to	 apply	 them	 in	 cases	
with	 such	 patterns	 of	 isolation.	 Second,	 frequency‐weighted	 al‐
lele‐sharing	metrics,	such	as	Lynch	and	Ritland	 (1999),	appear	to	

be	most	appropriate	when	dealing	only	with	levels	of	high	related‐
ness	(Van	De	Casteele,	Galbusera,	&	Matthysen,	2001).	Third,	for	
some	frequency‐weighted	allele‐sharing	genetic	distance	metrics,	
it	 is	assumed	frequency	distributions	are	identical	for	all	 loci	and	
mating	was	 completely	 random,	which	 is	unlikely	 to	be	 the	 case	
in	anuran	systems	(Arak,	1988;	Davies	&	Halliday,	1977;	Howard,	
1980;	Reading,	2001).

The	 most	 appropriate	 sampling	 scheme	 in	 landscape	 genetics	
is	still	a	question	that	needs	further	 investigation,	and	will	vary	by	
system	(Balkenhol	et al.	2015,	Segelbacher	et	al.,	2010,	Storfer	et	al.,	
2007).	Increased	statistical	power	is	obtained	by	increasing	individ‐
uals	sampled	(Prunier	et	al.,	2013),	and	so	increasing	sampling	den‐
sity	or	extent	by	adding	more	individuals	or	populations	may	result	
in	similar	conclusions;	however,	we	observed	increasing	extent	may	
not	result	in	the	same	conclusion	if	the	additional	area	encompasses	

F I G U R E  3  Number	of	times	model	was	competing	(∆AICc	<	2)	out	of	100	replicate	datasets	and	number	of	competing	models	for	varying	
number	of	individuals	randomly	sampled	from	full	dataset	of	Rana luteiventris	in	the	Palouse	region	near	Moscow,	ID.	(a,	d)	Varying	number	
of	individuals	at	sites	where	minimum	number	of	individuals	allowed	for	population‐level	genetic	distance	calculations	(N	=	18).	Low‐density	
forest	was	the	top	model	when	using	all	individuals	for	the	PSS	dataset	(average	AICc	weight	=	0.87)	while	riparian	was	until	8	individuals	
were	used	when	using	REML.	Forest	low	density	+	development	or	solar	or	forest	high‐density	or	by	itself	were	most	competitive	in	the	PSS	
dataset	when	ML	(average	AICc	weight	=	0.15,	0.16,	0.19,	and	0.36,	respectively).	(b,	e)	Varying	number	of	individuals	at	all	sites	sampled	
(N	=	40).	High‐density	forest	was	the	top	model	using	all	individuals	in	the	PASS	dataset	(AICc	weight	=	0.82);	slope	was	correlated	with	
high‐density	forest	and	was	competitive	across	all	ISS	models	when	using	the	40‐site	dataset	with	REML.	The	fullest	model	and	forest	low	
density	+	shrub/clear‐cut	+	grass	were	most	competitive	when	using	ML	(average	AICc	weight	=	0.28	and	0.71,	respectively).	(c,	f)	Number	
of	competing	models	as	number	of	individuals	was	increased.	Competitive	threshold	for	average	AICc	weight	was	0.1,	and	threshold	for	
number	of	replicates	out	of	100	was	30	replicates
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different	landscape	patterns	and	processes.	The	question	of	increas‐
ing	extent	or	sampling	density	in	lieu	of	number	of	samples	per	site	is	
something	that	needs	to	be	explored	through	both	simulations	and	
additional	empirical	work.	This	is	particularly	true	with	the	proposed	
PASS	sampling	scheme,	which	allowed	us	to	increase	the	study	ex‐
tent	as	opposed	to	 removing	sites	completely	due	to	not	 reaching	
the	targeted	number	of	 individuals	per	population.	 In	addition,	 re‐
search	on	the	proportion	available	sampling	scheme	may	help	with	
experimental	 design	 where	 available	 number	 of	 individuals	 varies	
with	site.	Other	 systems	and	datasets	may	already	be	available	 to	
explore	 these	 questions,	 and	 simply	 incorporating	 the	 bootstrap	
methodology	used	here	could	allow	for	more	robust	inferences	on	
sampling	scheme	by	adding	additional	systems	to	test	the	observed	
thresholds.
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