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Abstract
A critical decision in landscape genetic studies is whether to use individuals or popu‐
lations as the sampling unit. This decision affects the time and cost of sampling and 
may affect ecological inference. We analyzed 334 Columbia spotted frogs at 8 micro‐
satellite loci across 40 sites in northern Idaho to determine how inferences from 
landscape genetic analyses would vary with sampling design. At all sites, we com‐
pared a proportion available sampling scheme (PASS), in which all samples were used, 
to resampled datasets of 2–11 individuals. Additionally, we compared a population 
sampling scheme (PSS) to an individual sampling scheme (ISS) at 18 sites with suffi‐
cient sample size. We applied an information theoretic approach with both restricted 
maximum likelihood and maximum likelihood estimation to evaluate competing land‐
scape resistance hypotheses. We found that PSS supported low‐density forest when 
restricted maximum likelihood was used, but a combination model of most variables 
when maximum likelihood was used. We also saw variations when AIC was used 
compared to BIC. ISS supported this model as well as additional models when testing 
hypotheses of land cover types that create the greatest resistance to gene flow for 
Columbia spotted frogs. Increased sampling density and study extent, seen by com‐
paring PSS to PASS, showed a change in model support. As number of individuals 
increased, model support converged at 7–9 individuals for ISS to PSS. ISS may be 
useful to increase study extent and sampling density, but may lack power to provide 
strong support for the correct model with microsatellite datasets. Our results high‐
light the importance of additional research on sampling design effects on landscape 
genetics inference.
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1  | INTRODUC TION

Habitat loss and fragmentation is one of the largest threats to wild‐
life populations worldwide. As global landscape change continues to 
accelerate, there is an increasing need to understand how species 
respond (Cushman, 2006). Knowledge of movement ecology and 
connectivity is difficult to obtain for many species, but is essential 
for evaluating population viability of a species at the regional scale 
(Fahrig & Merriam, 1994). Animal movement is often studied by 
physical tracking, which has a rich history of use across taxa with 
a variety of methodologies (Aarts, MacKenzie, McConnell, Fedak, 
& Matthiopoloulos, 2008; Langkilde & Alford, 2002); however, be‐
cause movement does not always indicate the transfer of genes 
(Semlitsch, 2008), it alone is not the most appropriate tool for mea‐
suring functional connectivity.

Landscape genetics combines landscape ecology and population 
genetics to evaluate functional connectivity, which provides infer‐
ences about factors affecting movement and reproduction (Manel, 
Schwartz, Luikart, & Taberlet, 2003, Holderegger & Wagner, 2006, 
Manel & Holderegger 2013). Quantitative methods that link land‐
scape features and genetic data allow researchers to infer migration 
events between populations (Storfer et al. 2007). By collecting ge‐
netic data across a landscape, researchers can identify how spatial 
genetic patterns may be influenced by landscape features (Manel 
et al., 2003). For example, common genetic patterns include iso‐
lation by distance (IBD; Wright, 1943), barriers to movement (IBB; 
Cushman, 2006), isolation by environment (IBE; Wang & Bradburd, 
2014), and isolation by resistance (IBR; McRae, 2006).

Landscape genetic sampling schemes can be difficult to prop‐
erly develop, identify, and implement (Manel et al., 2003; Oyler‐
McCance, Fedy, & Landguth, 2013; Segelbacher et al., 2010). The 
sampling scheme used in landscape genetics studies depends on 
the distribution of the species, the spatial and temporal scales of 
processes of interest, and availability of resources allocated to 
sampling (Balkenhol, Cushman, Storfer, & Waits, 2015; Manel et 
al., 2003; Schwartz & McKelvey, 2008). Inefficient or biased sam‐
pling design can decrease the ability of a study to correctly identify 

the processes leading to population structure (Oyler‐McCance et 
al., 2013). Sampling schemes need to consider the extent of the 
study area and the distance between potential sampling sites, as 
well as species distribution, temporal scale, and life history traits 
of the study organism (Anderson et al., 2010; Prunier et al., 2013). 
There are two broad groups of study design sampling types, using 
either individual or population as the unit of analysis, which often 
overlap in their hypotheses but vary in their overall approaches 
(Dyer, 2015). With individual sampling scheme (ISS), only one or 
few individuals are sampled per geographic location and genetic 
distances are calculated between all pairs of individuals to cre‐
ate matrices based on individual genotypes (Coulon et al., 2004; 
Prunier et al., 2013). In contrast, sampling at the population level 
can be applied where ecologically relevant population delinea‐
tions occur by sampling many individuals in each aggregate and 
creating distance matrices by either averaging interindividual dis‐
tance matrices, as we have done here, or by using population‐level 
genetic distances, for example, FST (Spear, Peterson, Matocq, & 
Storfer, 2005). The population‐level sampling scheme (PSS) can be 
problematic because populations are often difficult to delineate a 
priori, and sufficient sample sizes of many species are difficult to 
obtain (Manel et al., 2003). A PSS is resource‐ and time‐consuming 
and often results in a reduced sampling extent or a more diffuse 
sampling regime, leaving areas unsampled (Prunier et al., 2013). 
If fewer than the target number of individuals is collected at a lo‐
cation, that population is often dropped from the final analysis, 
leaving a gap in sampling and excluding potentially informative ge‐
netic data. In addition, a PSS may not be appropriate for species 
where population delineation is difficult or habitat use is contin‐
uous, like highly mobile or migratory species. In these continuous 
distribution systems, ISS may be most appropriate (Luximon, Petit, 
& Broquet, 2014).

Despite the drawbacks of the PSS, it is more commonly utilized 
than ISS (Prunier et al., 2013) because of well‐developed popu‐
lation genetic theory and analysis. There is a third, unexplored 
option, which is to include all individuals from all populations, re‐
gardless of number of individuals sampled from each population, 

Box 1 Glossary of sampling scheme terms and abbreviations

Scheme Abbreviation Definition Example indices

Individual Level Sampling 
Scheme

ISS One or few individuals sampled per 
population. All sampled populations 
included in analysis.

Proportion of Shared Alleles, 
Bray‐Curtis Dissimilarity

Population Level Sampling 
Scheme

PSS Many individuals sampled in aggregate, 
minimum number of (often 20 or more) 
individuals required to include population 
in analysis.

Average Proportion of 
Shared Alleles, Nei’s Da, Fst

Proportion Available Sampling 
Scheme

PASS Include all individuals and populations 
sampled in analysis, regardless of number 
of individuals per population sampled.

Average Proportion of 
Shared Alleles
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which we refer to as proportion available sampling scheme (PASS). 
This sampling scheme could be utilized when a target number of 
individuals are not obtained at each sampling area due to low den‐
sities, time, funding, or other constraints. Here, we aim to com‐
pare the ability of landscape genetic analyses to detect landscape 
genetic patterns using these three alternative sampling schemes 
(Box 1).

To understand how inference of landscape genetic patterns can 
differ based on sampling scheme, we studied a pond‐breeding spe‐
cies, the Columbia spotted frog (Rana luteiventris) in northern Idaho, 
USA, over an area of 1,555 km2. The Columbia spotted frog is a 
wide‐ranging species, with a distribution from the southern Rocky 
Mountains to southeastern Alaska (Green, Kaiser, Sharbel, Kearsley, 
& McAllister, 1997). In northern Idaho, breeding populations are 
often small, with effective population sizes ranging from 3.2 to 37.8; 
because of this, the persistence of the Columbia spotted frogs in 
the region may be at risk (Davis & Verrell, 2005; Goldberg & Waits, 
2009). Within a smaller extent in this area of the range (213 km2), 
Columbia spotted frog functional connectivity was found to be neg‐
atively influenced by forest presence, while shrub/clear‐cut and agri‐
culture land cover types were found to have the lowest resistance to 
gene flow (Goldberg & Waits, 2010a). Pond‐breeding amphibians are 

a useful model to investigate sampling scheme questions because, 
due to their distribution and population sizes, they can be sampled 
using either the ISS or the PSS. Although PSS may be more appro‐
priate for the Columbia spotted frog due to pond‐breeding amphib‐
ians being generally philopatric (Smith & Green, 2005), this system 
allowed us to evaluate sampling schemes ranging from a single indi‐
vidual to the population level in an iterative manner. We compared 
the level of functional connectivity inferred by individual, popula‐
tion, and proportion available sampling schemes using an informa‐
tion theoretic approach to model landscape resistance (Burnham 
& Anderson, 2002). The candidate models consisted of slope, solar 
radiation, and the following land cover types: water, high‐density 
forest, low‐density forest, agriculture, shrub, grassland, and human 
development in varying combinations.

Our objective was to compare landscape genetic inferences of 
connectivity (a) among individual and population schemes, and (b) at 
different sampling densities. The increase in sampling densities, the 
number of sample locations within a given area, also corresponded 
to a slightly increased extent, representing a probable scenario if 
a PASS was implemented in a new system. Although this increase 
in area occurs by adding populations only 5–15 km away from ex‐
isting sites, this represents a biologically meaningful increase to a 

F I G U R E  1  Elevation (left, meters) and land cover type (right) for wetland sampling locations for the Columbia spotted frog (Rana 
luteiventris) in northern Idaho (Idaho Geospatial Office, 2001). Population‐level sampling scheme (PSS) is locations where at least 11 
individuals were sampled. Locations where population sampling occurred had one individual randomly selected for individual‐level sampling 
scheme replicate dataset (ISS)
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Locus Allele/n Average frequency Locus Allele/n Average frequency

RP3 80 0.10 RP15 85 0.00

90 0.05 90 0.01

100 0.03 100 0.08

110 0.24 105 0.01

120 0.02 110 0.73

130 0.20 120 0.17

140 0.33 RP23 40 0.01

150 0.03 80 0.00

170 0.00 90 0.04

RP17 90 0.01 100 0.65

100 0.10 110 0.13

110 0.35 120 0.06

120 0.34 130 0.11

130 0.01 SFC128 80 0.00

220 0.03 90 0.06

240 0.02 100 0.09

250 0.00 110 0.08

260 0.04 120 0.46

270 0.01 130 0.18

280 0.02 140 0.11

310 0.01 150 0.08

360 0.02 160 0.00

370 0.00 170 0.00

420 0.01 SFC134 100 0.06

430 0.01 110 0.36

440 0.00 115 0.01

450 0.01 120 0.49

460 0.00 130 0.01

490 0.01 150 0.00

510 0.00 160 0.00

70 0.00 90 0.01

100 0.01 RP193 95 0.02

110 0.26 100 0.02

SFC139 120 0.05 110 0.01

130 0.06 115 0.13

140 0.05 117 0.03

150 0.03 120 0.08

160 0.10 125 0.04

170 0.10 127 0.03

180 0.05 130 0.54

190 0.05 140 0.09

200 0.04 150 0.01

210 0.13

220 0.02

230 0.03

240 0.01

250 0.00

TA B L E  1  Allele list and average 
frequency for each microsatellite locus 
across 40 sampling areas of Columbia 
spotted frogs (Rana luteiventris)
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species where adult migration is <2 km on average (Bull & Hayes, 
2001; Pilliod, Peterson, & Ritson, 2002). We expected that ISS would 
indicate the same variables overall as PSS, albeit with less support. 
We used multiple random draws at locations with more than one in‐
dividual to create resampled ISS replicates. We expected that the ISS 
approach would indicate the same variables as PASS, but that includ‐
ing these sites with low sample sizes would add noise to the results; 
specifically, that multiple models would be supported in many of the 
resampled replicates. With higher numbers of individuals per site, 
we expected that the results would converge with the PSS based 
on the added statistical precision provided by more individuals. We 
did not have an expectation on the number of supported models or 
model weights across all datasets and replicates.

2  | MATERIAL S AND METHODS

The study area (Latah County, Idaho, USA) included two ecoregions 
(Palouse Prairie [West] and Bitterroot Mountains [East]) and their 
ecotone. The landscape has been largely altered through agriculture, 
human development, and forest management (Black et al., 1998; 
Dahl et al. 2000). The population size of the nearest city to the study 
area, Moscow, Idaho, increased 5.3% from 2010 to 2015, which is 
greater than the national average of 4.1% (United States Census 
Bureau, 2015). Only a small fraction (13%) of natural wetlands ex‐
isted as of the most recent comprehensive survey (Black et al., 1998) 
posing potential limitations for amphibian populations.

We analyzed tissue samples (mouth swabs and tail clips) from 
334 individuals sampled at 40 wetlands from the randomly selected 
set surveyed for habitat modeling in the study area (Goldberg & 
Waits, 2009; Figure 1). We extracted DNA from these samples using 
the DNeasy Blood and Tissue Kit (Qiagen). Samples were scored at 
eight nuclear DNA microsatellite loci with GENEMAPPER (Applied 
Biosystems, Inc.): Rp3, Rp15, Rp17, Rp23, SFC128, SFC134, SFC139, 
and RP193 (Monsen & Blouin, 2003, Funk et al., 2005, see Goldberg 
& Waits, 2010a for PCR reaction descriptions, Table 1 for list of al‐
leles and frequencies). For tadpole samples, we detected siblings 
using a cutoff value of 0.75 in COLONY within sampling sites (Jones 
& Wang, 2010) and included only one individual from each set (as 
recommended in Goldberg & Waits, 2010b). Seven percent of sam‐
ples were run twice to check for genotyping errors or other inconsis‐
tencies; none were found. We considered sites with ≥11 individuals 
as population‐level samples (N = 18 out of 40 possible wetlands). 
This was based on the distribution of the sample sizes collected 
in the field, with 5 of the 18 population‐level sites having 11 indi‐
viduals collected. Prior to the landscape genetic analysis, we mea‐
sured population genetic statistics on population‐level samples and 
tested for Hardy–Weinberg equilibrium using GENALEX (Peakall & 
Smouse, 2012) and linkage disequilibrium with ARLEQUIN (Excoffier 
& Lischer, 2010). We analyzed data with ISS at two sampling densi‐
ties, for a total of four sampling schemes: population‐level sampling 
(PSS), individual‐level sampling at the 18 sites for which there were 
population‐level data (ISS‐18), individual‐level sampling at all 40 sites 

(ISS‐40), and a PSS‐ISS hybrid in which all individuals at all 40 sites 
were analyzed (PASS). The PASS and ISS‐40 datasets encompassed 
a slightly larger extent (Figure 1), representing a probable scenario if 
sampling effort per site was reduced and more sites were included. 
To determine the minimum sampling density for ISS approaches to 
reach the same conclusions as PSS/PASS, we also bootstrapped res‐
ampled subsets of 2 through 11 individuals.

2.1 | Genetic distances

We used proportion of shared alleles, Dps, as our metric of genetic 
distance as it can be estimated with both population‐ and individual‐
level sampling (Bowcock et al., 1994). To evaluate the effects of the 
choice of genetic distance dissimilarity index, we calculated genetic 
distance with Dps and Bray–Curtis percentage dissimilarity with the 
individual sampling scheme datasets. At the population level, we 
calculated Dps, Fst, and Nei’s Da. These additional dissimilarity indi‐
ces were chosen to allow direct discussion with the results of other 
similar studies (Luximon et al., 2014; Prunier et al., 2013). We then 
calculated correlations among the different genetic distance indi‐
ces. Previous research has reported statistically significant pairwise 
G'ST values across a portion of this area, with an overall G'ST value of 
0.246 (Goldberg & Waits, 2010a).

Our first test was to compare the influence of sampling schemes 
on genetic structure at the 18 sites where PSS occurred. For the 
PSS approach, we calculated Dps between sites using the R package 
PopGenReport (Adamack & Gruber, 2014; R Core Team, 2015). This 
was done by calculating all pairwise proportions among all individuals 
and then averaging these matrices for each population pair. For the 
ISS approach, Dps was calculated for each set of representative indi‐
vidual(s) (1–11 individuals) from each of the 18 sites using the prop‐
Shared function in the R package PopGenReport (Adamack & Gruber, 
2014; R Core Team, 2015). When the number of individuals was >1, 
we again calculated all pairwise proportions of shared alleles between 
individuals and then averaged all of these matrices between popula‐
tion pairs. In other words, in the cases of a single individual, we used 
proportion of shared alleles at each population, so the distance matrix 
was NxN which was equal to PxP with a single individual. For all sets 
beyond one individual per population, we used PxP, where we aver‐
aged the proportion of shared alleles among individuals. We simulated 
the ISS approach at both sampling densities by bootstrapping without 
replacement to create 100 datasets of representative individual(s). To 
compare the influence of sampling density on landscape genetic infer‐
ence, we compared ISS at 18 sites to ISS at all 40 sites. We repeated 
the proportion of shared alleles calculation (ISS approach) for the 40 
sites and compared with proportion of shared alleles for 18 sites as 
calculated above. For PASS, we calculated proportion of shared alleles 
using all available samples among all sampled sites.

2.2 | Landscape variables and models

We examined how sampling scheme influenced landscape ge‐
netic inference using resistance analysis evaluated by information 
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criterion metrics. Land cover (from Pocewicz et al., 2008) was split 
into separate rasters at a resolution of 15 m2: water, shrub, low‐
density (LD) forest, high‐density (HD) forest, development, barren, 
agriculture, and grassland (Figure 1). Each raster was parameter‐
ized with two denoting raster cells containing the respective land 
cover type and one denoting any other land cover type. Riparian 
cover (from Redistricting Census 2000, U.S. Dept. of Commerce, 
Bureau of the Census, Geography Division) was parameterized this 
same way. Solar radiation and slope rasters were parameterized 
with their raw values. We calculated resistance surfaces for land‐
scape variables (e.g., land cover type, solar radiation, and slope) by 
running each parameterized raster in CIRCUITSCAPE 4.0 (Shah & 
McRae, 2008), with a node file containing the 40 sampling loca‐
tions. CIRCUITSCAPE models connectivity across the landscape 
by using circuit theory to calculate resistance between two points. 
We used maximum‐likelihood population‐effects (MLPE) mod‐
els, where we ran linear mixed models with landscape resistance 
surfaces as predictor variables (Van Strien, Keller, & Holderegger, 
2012). MLPE models address problems of nonindependence be‐
tween pairwise comparisons of distance matrices through the use 
of random effects. In addition, to explicitly test for IBD, we created 
one model using a uniform (all cells equal one) resistance layer. We 
checked for multicollinearity using 18 and 40 sites, and iteratively 
removed the variable with the highest score until the model had a 
VIF threshold of <4 which has been suggested by other research‐
ers (Table 2, Hair, Anderson, Tatham, & Black, 1998). Models were 
tested by a priori hypotheses, such as human impact (agriculture 
and development), energetic movement constraints (solar and 
slope), and undisturbed habitat (forest and grasslands) would in‐
fluence frog movement. However, we did not optimize resistance 
values due to potential bias when relative impacts between pairs 
of variables are not explicitly known, such as differences between 
high‐ and low‐density forests. AICc and BIC were calculated from 
maximum‐likelihood (ML) estimations of the linear mixed models 
using the lme4 package in R (Bates & Maechler, 2009). There are 
potential issues with AIC for models fit with restricted maximum‐
likelihood REML when fixed effects are not the same across mod‐
els being evaluated; however, information criterion ranking with 

MLPE models is found in the literature for model selection with 
REML under some circumstances, and we therefore used REML as 
well (Gurka, 2006; Row, Knick, Oyler‐McCanse, Lougheed, & Fedy, 
2017). We then used AICc and ∆AICc to rank the likelihood of the 
17 landscape hypotheses. For the ISS datasets, we also ranked each 
model based on frequency of high level of support for each boot‐
strapped dataset, using a threshold of ∆AICc < 2, to determine the 
number of times each model was competitive across replicate data‐
sets. We conducted these analyses for the four sampling scheme 
datasets: ISS‐18, PSS, ISS‐40, and PASS.

3  | RESULTS

Mean number of alleles per locus for the 18 populations was 
4.410 ± 0.942 SD (Table 3). After Bonferroni correction, 2 out of 
143 Hardy–Weinberg tests were significant at p < 0.05. Linkage dis‐
equilibrium was detected between 0 and 3 pairs of loci within each 
population, with 14 populations having no support for linkage dis‐
equilibrium at all loci. All loci were retained in the analysis because 
only one pair of loci showed linkage in more than one population. 
Rp3 and SFC139 showed linkage disequilibrium only in 4 of 18 pop‐
ulations; Rp3 and SFC139 were also found to be weakly linked in 
other studies of this species (Funk et al., 2005; Goldberg & Waits, 
2010a). The chromosomal locations of these loci are unknown. 
Individual and population data can be found on DRYAD (https://doi.
org/10.5061/dryad.1nq73).

Genetic distance dissimilarity indices were highly correlated 
using both the individual and populations sampling scheme datasets. 
With the individual sampling scheme dataset, Bray–Curtis percent‐
age dissimilarity was equal to the inverse value of proportion of 
shared alleles (Dps). With the population sampling scheme dataset, 
the R2 value for proportion of shared alleles versus Nei’s Da and Fst 
was 0.81 and 0.70, respectively (Figure 2). Because of these high 
correlations, we used the proportion of shared alleles metric in all 
downstream analyses.

Model support varied among the individual sampling scheme 
(ISS), population‐level sampling scheme (PSS), and proportion 
available sampling scheme (PASS). The population‐level dataset 
(PSS) had strong support for the low‐density forest cover model, 
while 48% of bootstrapped ISS datasets included this cover type 
in the set of models with more limited support. Using ML, all mod‐
els comprised of a single landscape variable had support in greater 
than one‐fifth of the ISS replicate runs (Table 4). In the ISS‐18, 
ISS‐40, and PASS datasets, the fullest model and the model in‐
cluding low‐density forest, high‐density forest, and grass had 
the most support. The shrub/clear‐cut model also had support 
in the ISS‐40 dataset. However, for the PSS dataset, the highest 
level of evidence was present for the same model: low‐density 
forest cover, which was also frequently supported in the other 
datasets. BIC often supported models with fewer variables than 
AICc (Table 5). High‐density forest and slope were linearly cor‐
related (r = 0.77), while each had a lower linear correlation with 

TA B L E  2  Variance inflation factor (VIF) results of fullest model 
during check for multicollinearity of landscape variables in northern 
Idaho at sample locations of Columbia spotted frogs (Rana 
luteiventris). VIF was calculated at each sampling density, 18 and 40 
sites. Variables were removed iteratively based on the variable with 
the highest VIF score, until VIF score was lower than 4 for full 
model

VIF Score

18 Sites 40 Sites

Shrub/Clear‐cut 2.77 2.58

Grass 1.25 1.10

Forest low density 1.86 1.34

Slope 1.99 2.59

https://doi.org/10.5061/dryad.1nq73
https://doi.org/10.5061/dryad.1nq73
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low‐density forest (ca. r = 0.45; Table 6). Top models were differ‐
ent when REML was used (AIC Table 7, BIC Table 8). Overall, model 
fit was similar across datasets. Plots of top performing models 
indicated homoscedasticity of residuals. Root‐mean‐square error 
for top performing models was <5% of the potential range of the 
dependent variable.

When number of individuals per site was increased, ISS con‐
verged with the sampling scheme of the same density and extent 
(PSS and PASS for the ISS at 18 and 40 sites, respectively). When 
nine individuals were included, ISS at 18 sites had >90% of datasets 
having model support agreeing with the one of the top PSS mod‐
els, of low‐density forest land cover being competitive (Figure 3a). 
ISS at 40 sites converged with PASS, with the two top models sup‐
ported although never at greater than 90% (Figure 3b). Total num‐
ber of competitive models as number of individuals was increased 
showed a pattern of decreasing number of competitive models 
as number of individuals increased, except for the ISS‐18 models, 
which showed an increase then decrease in number of competitive 
models (Figure 3c). ISS at 40 sites supported 1 to 2 models based 
on both average AICc weight and number of times supported across 
replicates once more than a single individual was used (Figure 3c). 
Pattern of the number of times a model was competitive was sim‐
ilar when REML was used, and additional individuals were added 
(Figure 3d, e). ISS at 18 sites had a roughly linear decline in the num‐
ber of supported models across replicates as number of samples per 
site when increased from 1 to 9 with a large proportion of the mod‐
els being supported when a low number of individuals were used 
(Figure 3f). This pattern was not seen when counting number of 
supported models based on average AICc weight, where supported 
models varied from 3 to 2.

4  | DISCUSSION

Landscape genetics is a powerful method for evaluating functional 
connectivity (Manel et al., 2003, Holderegger & Wagner, 2006, 
Manel & Holderegger 2013), but appropriate sampling strategies 
and schemes can be difficult to determine and apply (Manel et al., 
2003; Segelbacher et al., 2010). We found that inferences differed 
between individual and population sampling schemes when we com‐
pared the two datasets at 18 sites. This pattern for ISS‐18 was likely 
due to a lack of statistical power. At 40 sites, the models supported 
by PASS were also supported by the ISS at 40 sites, but the support 
for the PASS top model was not as strong as for the full dataset and 
additional models were supported with the ISS‐40 dataset. Support 
varied considerably within the ISS‐18 and ISS‐40 datasets as well. 
No model was supported more than 90 percent, and with most of 
the models being supported around 25 percent of the time. With 
increased numbers of individuals sampled, the ISS converged with 
PSS and PASS. Convergence occurred at nine individuals with ML, 
but seven individuals with REML. This indicates that small numbers 
of sampled individuals may be appropriate under certain circum‐
stances, for example, stronger population structure or increased 
number of loci (Landguth et al., 2010, 2012; Prunier et al., 2013). 
However, the variation in model support suggests caution is impor‐
tant as mistaken inferences may be drawn if sample size is insuf‐
ficient. The differences between REML and ML occurred at lower 
numbers of individuals per population, which highlights a potential 
methodological issue when moving to an ISS.

Prunier et al. (2013) found that the individual sampling scheme 
could, in most cases, have similar inferences of landscape connec‐
tivity when compared with the population sampling scheme, when 

Pop # N A uHe ML LD HWE AR PA

1 15 34 0.604 0 1 0 4.03 0.500

2 21 40 0.614 0 3 0 4.40 0.125

3 11 42 0.588 0 0 0 5.25 0.125

4 11 30 0.558 0 0 0 3.75 0.250

5 15 39 0.669 0 0 0 4.57 0.375

6 16 26 0.526 0 1 0 3.12 0.000

7 14 32 0.472 1 0 0 3.75 0.000

8 11 32 0.636 0 0 0 4.00 0.000

9 11 28 0.500 1 0 0 3.50 0.000

10 25 46 0.664 0 0 0 4.87 0.000

11 18 46 0.670 0 0 0 4.94 0.500

12 14 40 0.621 0 0 1 4.76 0.000

13 16 23 0.381 2 1 0 2.68 0.000

14 20 38 0.553 0 0 0 4.29 0.000

15 12 40 0.719 0 0 0 4.93 0.000

16 17 41 0.625 0 0 0 4.93 0.000

17 11 20 0.494 0 1 0 2.63 0.000

18 18 44 0.656 0 0 1 4.89 0.250

TA B L E  3  Population genetic analyses 
of Columbia spotted frog (Rana 
luteiventris) populations in northern Idaho, 
USA. We completed analyses on 
populations where a minimum of 11 
individuals were collected. Eight 
microsatellite loci were used. N = samples 
size, A = total number of alleles across all 
microsatellite loci, uHe = unbiased 
expected heterozygosity, ML = number of 
monomorphic loci, LD = number of 
pairwise loci failed linkage disequilibrium 
test, HWE = number of loci failing 
Hardy–Weinberg equilibrium test. 
Statistical significance threshold p < 0.05 
with Bonferroni correction, AR = average 
allelic richness, PA = mean number of 
private alleles across all loci
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moving to sampling three or four individuals, as opposed to a single 
individual, per population. In contrast, we found that more individu‐
als were needed in our study to reach the same conclusions between 
sampling schemes regardless of statistical methods or number of 
populations. The empirical example of Prunier et al. (2013) had 78 
populations where at least two alpine newts were captured for an 
ISS, with six populations meeting their PSS threshold of 20 indi‐
viduals. This increased statistical power due to a higher number of 
sites for their evaluation of ISS than presented in our research may 
explain the differences in minimum number of individuals required 
to converge. Unlike the ISS at 18 sites, there was not a threshold 
for ISS at 40 sites as the number of samples approached the PASS. 
However, the top model from the PASS did have increased support 
as we added more individuals. This may be due to the inherent sta‐
bility in the data for the PASS between replicates; at some of the 
40 sites, only a single or few individuals were surveyed, so as the 
maximum number of individuals per site was increased, there was no 
change in the available genetic data for some of the sites. Because 
PASS has only one realization and the two competing models in the 
bootstrapped replicates had correlated variables, it is possible that 
PASS supported high‐density forest over slope by chance.

Comparisons between this research and similar past research 
highlight several general points about sampling schemes in landscape 
genetics. First, based on the results from Prunier et al. (2013) and the 
present study, the number of individuals needed to reach correct 

landscape genetic inference varies by system but may be some‐
where between three and nine. Simulations using large numbers of 
single nucleotide polymorphism (SNP) loci have also found sample 
sizes of 4–6 may be appropriate for obtaining accurate estimates of 
Fst (Willing, Dreyer, & Oosterhout, 2012), and subsequent inferences 
from landscape genetics. This is much lower than the standard rec‐
ommended value of 20–30 individuals per population (Storfer et al., 
2007). It may be appropriate to lower target sample number goals 
based on these results. However, the number of individuals needed 
is going to be related to the amount of population differentiation 
(Kalinowski, 2005). By lowering the number of individuals per pop‐
ulation, researchers will be able to increase either the spatial extent 
or sampling density of their studies or save valuable resources. In our 
system, shifting from 20 to 7 individuals per site would allow us to 
double the density or extent of future projects. However, both our 
study and Prunier et al. (2013) focused on amphibian species with 
easy to delineate breeding populations, and additional research is 
needed with more continuously distributed species. In general, sam‐
pling scheme may vary with the study system, and it may be most 
appropriate to evaluate the optimal sample size in situ. Researchers 
could achieve this using similar bootstrapping methods as presented 
here with empirical datasets.

Generally, we saw different top models per information criteria 
methods with ML and REML estimations. For the PSS, low‐density 
forest model was supported by both ML and REML, but with ML, 
three additional competing models were also supported, all of which 
included the low‐density forest variable when using AICc. This pat‐
tern of support for models with more variables with ML was also 
seen with PASS, where evidence weight was highest for the two 
models with the greatest number of variables with ML, but REML 
showed strong support for a single variable model, forest high‐den‐
sity. As with PSS, this variable was present in the multivariable mod‐
els supported with ML estimation. Top models for ISS‐18 and ISS‐40 
with REML were also different, with three single variable models 
but with ML support was greatest for models with the most vari‐
ables. This highlights potentially different inferences derived from 
model selection methodology depending on the estimation used, 
particularly when dealing with ISS. BIC results were more similar 
between ML and REML estimation, potentially due to the sample 
sizes we had available and the use of sample size corrected AIC. 
Because fixed effects vary among the models that were tested in 
these cases, ML would be most appropriate as opposed to REML 
(Verbeke & Molenberghs, 2000), although there are examples in the 
literature of using REML for MLPE (e.g., Emel & Storfer, 2014, Gurka, 
2006, Row et al., 2017, Zancolli, Rodel, Steffan‐Dewenter, & Storfer, 
2014). We provide both sets of results to highlight this aspect of 
model selection. Although limited by empirical data here, more ex‐
tensive ML compared to REML testing with MLPE using simulations 
may be important to fully address best practices in model selection 
methodology.

This study identifies landscape features that impede gene flow for 
the Columbia spotted frog while also assessing the effects of differ‐
ent sampling strategies on landscape genetic inference. Low‐density 

F I G U R E  2  Correlation between proportion of shared alleles and 
Nei’s Da (a) and proportion of shared alleles and Fst (b) using sites 
with 11 or more individuals

R² = 0.8132
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forest was the most supported model with PSS using ML and at 
the smaller sampling extent and density when using REML, while 
high‐density forest was the most supported model at the increased 
sampling extent and density when using REML. In addition, low‐den‐
sity and high‐density forest occurred in almost all of the supported 

models when ML was used. Results of low‐density forest and high‐
density forest models indicate a reduction in gene flow when these 
land cover types occur between breeding populations. These results 
are similar to those previously found for this species at a finer scale 
in the southwestern portion of this study area, where forest was 

TA B L E  5  Parameters and information theoretic (BIC) results for models of genetic distance (proportion of shared alleles) in north Idaho, 
USA, for the Columbia spotted frog (Rana luteiventris) using maximum likelihood (ML). Parameters are land cover of low‐density forest 
(forestld), high‐density forest (foresthd), agriculture (ag), shrub/clear‐cut (shrub), human development (dev), grassland (grass), distance 
(distance), solar radiation (solar). Individual sampling scheme (ISS) results are reported as average BIC of 100 bootstrapped 
replicates ± standard error (SE), with the number of times a model was competing (∆BIC < 2) reported in Num. Comp. Bold values indicate 
the top competing models (average BIC weight > 0.10). Population sampling scheme (PSS) represents sampling with a minimum of 11 
individuals being collected per site. Proportion available sampling scheme (PASS) represents sampling with all individuals collected, 
regardless of number of individuals collected per site

Model k

ISS, 18 sites PSS, 18 sites ISS, 40 sites PASS, 40 sites

BIC Weight Num. Comp. BIC Weight BIC Weight Num. Comp. BIC Weight

Grass + forest ld + forest 
hd + slope

7 0.01 ± 0.00 1 0.00 0.04 ± 0.01 10 0.03

Forest ld + forest 
hd + grass

6 0.05 ± 0.01 14 0.01 0.04 ± 0.01 9 0.77

Ag + dev 5 0.01 ± 0.00 1 0.00 0.09 ± 0.02 18 0.00

Solar + slope 5 0.04 ± 0.01 9 0.00 0.02 ± 0.01 2 0.00

Forest ld + dev 5 0.02 ± 0.00 1 0.07 0.03 ± 0.01 7 0.00

Solar + forest ld 5 0.04 ± 0.01 7 0.07 0.02 ± 0.01 4 0.00

Forest ld + shrub/cc 5 0.05 ± 0.01 9 0.08 0.09 ± 0.02 16 0.00

Ag 4 0.07 ± 0.00 15 0.00 0.04 ± 0.00 6 0.00

Forest hd 4 0.15 ± 0.02 51 0.00 0.10 ± 0.02 23 0.17

Grass 4 0.05 ± 0.01 18 0.00 0.03 ± 0.01 9 0.00

Slope 4 0.15 ± 0.02 47 0.00 0.19 ± 0.02 44 0.01

Dev 4 0.06 ± 0.00 15 0.02 0.08 ± 0.01 26 0.00

Riparian 4 0.05 ± 0.00 2 0.03 0.03 ± 0.00 1 0.00

Solar 4 0.05 ± 0.00 8 0.01 0.05 ± 0.00 16 0.00

Distance 4 0.05 ± 0.00 2 0.01 0.04 ± 0.00 9 0.00

Forest ld 4 0.08 ± 0.01 22 0.68 0.08 ± 0.01 24 0.00

Shrub/cc 4 0.07 ± 0.00 16 0.01 0.03 ± 0.00 5 0.00

TA B L E  6  Correlation matrix results for land cover parameters of low‐density forest (forestld), high‐density forest (foresthd), agriculture 
(ag), shrub/clear‐cut (shrub), human development (dev), grassland (grass), distance (distance), solar radiation (solar) using all 40 populations of 
Columbia spotted frogs (Rana luteiventris) across northern Idaho, USA

Forest ld Shrub/cc Distance Slope Forest hd Ag Dev Solar Grass Riparian

Forest ld 1.000

Shrub/cc 0.553 1.000

Distance 0.673 0.889 1.000

Slope 0.466 0.560 0.632 1.000

Forest hd 0.456 0.702 0.744 0.773 1.000

Ag 0.689 0.807 0.781 0.624 0.791 1.000

Dev 0.662 0.867 0.988 0.642 0.712 0.762 1.000

Solar 0.680 0.857 0.977 0.574 0.708 0.782 0.972 1.000

Grass 0.221 0.526 0.661 0.174 0.207 0.460 0.661 0.674 1.000

Riparian 0.659 0.818 0.963 0.554 0.677 0.721 0.949 0.966 0.678 1.000
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found to restrict gene flow (Goldberg & Waits, 2010a). However, 
Goldberg and Waits (2009) found breeding sites to be near low‐ and 
high‐density forest; specifically, proximity to low‐density forest was 
the most important land cover variable for the presence of breeding 
populations of this species. Together, these findings indicate the im‐
portant influence that forests have on Columbia spotted frogs in this 
region, and the difference between habitat requirements and land 
cover contributions to functional connectivity.

Landscape features may influence gene flow differently across a 
species range depending on range‐wide variation in interactions with 
climate and other variables. In this study area, slope was not supported 
outside of a correlation with high‐density forest, but in more moun‐
tainous regions, topographic features were supported as an important 
influence on functional connectivity for this species (Funk et al., 2005; 
Murphy, Dezzani, Pilliod, & Storfer, 2010). The range of variation of inter‐
est may be key to explaining observed differences among study regions, 
which may explain differences in inferences of range‐wide connectiv‐
ity (Cushman & Landguth, 2010; Short Bull et al., 2011). Although not 
tested in this study, there is evidence that other at‐site abiotic and biotic 
factors, such as frost‐free period, presence of predatory fish, and site 
productivity, are also important for this species (Murphy et al., 2010).

It is important to highlight the limitations of this research as 
it uses empirical data on a single species, the Columbia spotted 
frog. This species has clear population boundaries, and further re‐
search into this sampling question could benefit from a focus on 
species that are more continuous distributed or at lower densities 
across the landscape. For example, Luximon et al. (2014) found 
that ISS was more appropriate with continuously distributed spe‐
cies in simulation. The minimum number needed to reach similar 
results to a population sampling scheme may depend on the de‐
gree of population structure and distribution. Using an individ‐
ual sampling scheme approach may reduce concerns of defining 
populations for landscape genetic analyses when a priori popu‐
lation delineations do not exist. Of particular concern, if genetic 
clustering algorithms are used, is that erroneous population de‐
lineations may occur depending on the assumptions and levels of 
migration within the system. Erroneous delineation could lead to 
incorrect downstream landscape genetic inferences, as inappro‐
priate grouping of populations may drastically change calculated 
genetic distances (Schwartz & McKelvey, 2008). Detecting cor‐
rect population structure can also be influenced by uneven sam‐
pling sizes; uneven sampling can lead to an incorrect inference 

TA B L E  8  Parameters and information theoretic (BIC) results for models of genetic distance (proportion of shared alleles) in north Idaho, 
USA, for the Columbia spotted frog (Rana luteiventris) using restricted maximum likelihood (REML). Parameters are land cover of low‐density 
forest (forestld), high‐density forest (foresthd), agriculture (ag), shrub/clear‐cut (shrub), human development (dev), grassland (grass), distance 
(distance), solar radiation (solar). Individual sampling scheme (ISS) results are reported as average BIC of 100 bootstrapped 
replicates ± standard error (SE), with the number of times a model was competing (∆BIC < 2) reported in Num. Comp. Bold values indicate 
the top competing models (average BIC weight > 0.10). Population sampling scheme (PSS) represents sampling with a minimum of 11 
individuals being collected per site. Proportion available sampling scheme (PASS) represents sampling with all individuals collected, 
regardless of number of individuals collected per site

Model k

ISS, 18 sites PSS, 18 sites ISS, 40 sites PASS, 40 sites

BIC Weight Num. Comp. BIC Weight BIC Weight Num. Comp. BIC Weight

Grass + forest ld + forest 
hd + slope

7 0.00 ± 0.00 0 0.00 0.00 ± 0.00 0 0.00

Forest ld + forest 
hd + grass

6 0.00 ± 0.00 0 0.00 0.00 ± 0.00 0 0.00

Ag + dev 5 0.00 ± 0.00 0 0.00 0.03 ± 0.02 5 0.00

Solar + slope 5 0.01 ± 0.01 1 0.00 0.00 ± 0.00 1 0.00

Forest ld + dev 5 0.00 ± 0.00 1 0.00 0.00 ± 0.00 2 0.00

Solar + forest ld 5 0.01 ± 0.00 1 0.00 0.00 ± 0.00 1 0.00

Forest ld + shrub/cc 5 0.01 ± 0.01 2 0.00 0.01 ± 0.00 5 0.00

Ag 4 0.08 ± 0.00 23 0.00 0.04 ± 0.00 8 0.00

Forest hd 4 0.18 ± 0.02 60 0.00 0.13 ± 0.02 35 0.88

Grass 4 0.07 ± 0.01 25 0.00 0.05 ± 0.01 14 0.00

Slope 4 0.21 ± 0.02 65 0.00 0.33 ± 0.03 66 0.07

Dev 4 0.07 ± 0.00 16 0.02 0.09 ± 0.01 25 0.01

Riparian 4 0.06 ± 0.00 3 0.04 0.03 ± 0.00 0 0.01

Solar 4 0.06 ± 0.00 8 0.02 0.05 ± 0.00 13 0.01

Distance 4 0.06 ± 0.00 2 0.02 0.04 ± 0.00 8 0.00

Forest ld 4 0.11 ± 0.01 41 0.89 0.14 ± 0.02 42 0.01

Shrub/cc 4 0.08 ± 0.00 19 0.01 0.03 ± 0.00 6 0.00
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on the number of subpopulations (Puechmaille, 2016). Working 
with empirical data also meant that we were limited to treating 
the dataset with the greatest statistical power as truth, in con‐
trast with simulation studies. It is possible that the results from 
the population sampling scheme do not reflect the true drivers 
of functional connectivity in this system; however, it represented 
our most‐informed dataset.

One additional concern may be that we used unweighted al‐
lele‐sharing genetic distances. This system has high levels of 
population structure (Goldberg & Waits, 2010a); because fre‐
quency‐weighted allele‐sharing metrics are often void of the 
grouping of the individuals (e.g., Greenbaum, Templeton, & Bar‐
David, 2016), it may not be appropriate to apply them in cases 
with such patterns of isolation. Second, frequency‐weighted al‐
lele‐sharing metrics, such as Lynch and Ritland (1999), appear to 

be most appropriate when dealing only with levels of high related‐
ness (Van De Casteele, Galbusera, & Matthysen, 2001). Third, for 
some frequency‐weighted allele‐sharing genetic distance metrics, 
it is assumed frequency distributions are identical for all loci and 
mating was completely random, which is unlikely to be the case 
in anuran systems (Arak, 1988; Davies & Halliday, 1977; Howard, 
1980; Reading, 2001).

The most appropriate sampling scheme in landscape genetics 
is still a question that needs further investigation, and will vary by 
system (Balkenhol et al. 2015, Segelbacher et al., 2010, Storfer et al., 
2007). Increased statistical power is obtained by increasing individ‐
uals sampled (Prunier et al., 2013), and so increasing sampling den‐
sity or extent by adding more individuals or populations may result 
in similar conclusions; however, we observed increasing extent may 
not result in the same conclusion if the additional area encompasses 

F I G U R E  3  Number of times model was competing (∆AICc < 2) out of 100 replicate datasets and number of competing models for varying 
number of individuals randomly sampled from full dataset of Rana luteiventris in the Palouse region near Moscow, ID. (a, d) Varying number 
of individuals at sites where minimum number of individuals allowed for population‐level genetic distance calculations (N = 18). Low‐density 
forest was the top model when using all individuals for the PSS dataset (average AICc weight = 0.87) while riparian was until 8 individuals 
were used when using REML. Forest low density + development or solar or forest high‐density or by itself were most competitive in the PSS 
dataset when ML (average AICc weight = 0.15, 0.16, 0.19, and 0.36, respectively). (b, e) Varying number of individuals at all sites sampled 
(N = 40). High‐density forest was the top model using all individuals in the PASS dataset (AICc weight = 0.82); slope was correlated with 
high‐density forest and was competitive across all ISS models when using the 40‐site dataset with REML. The fullest model and forest low 
density + shrub/clear‐cut + grass were most competitive when using ML (average AICc weight = 0.28 and 0.71, respectively). (c, f) Number 
of competing models as number of individuals was increased. Competitive threshold for average AICc weight was 0.1, and threshold for 
number of replicates out of 100 was 30 replicates
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different landscape patterns and processes. The question of increas‐
ing extent or sampling density in lieu of number of samples per site is 
something that needs to be explored through both simulations and 
additional empirical work. This is particularly true with the proposed 
PASS sampling scheme, which allowed us to increase the study ex‐
tent as opposed to removing sites completely due to not reaching 
the targeted number of individuals per population. In addition, re‐
search on the proportion available sampling scheme may help with 
experimental design where available number of individuals varies 
with site. Other systems and datasets may already be available to 
explore these questions, and simply incorporating the bootstrap 
methodology used here could allow for more robust inferences on 
sampling scheme by adding additional systems to test the observed 
thresholds.
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