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Chronic myeloid leukemia (CML) is initially driven by the bcr–abl fusion oncoprotein. The
identification of bcr–abl led to the discovery and rapid translation into the clinic of bcr–abl
kinase inhibitors. Although, bcr–abl inhibitors are efficacious, experimental evidence indi-
cates that targeting bcr–abl is not sufficient for elimination of minimal residual disease
found within the bone marrow (BM). Experimental evidence indicates that the failure to
eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus
curative strategies will likely need to focus on strategies where bcr–abl inhibitors are given
in combination with agents that specifically target the leukemic stem cell or the leukemic
stem cell niche. One potential target to be exploited is the Janus kinase (JAK)/signal trans-
ducers and activators of transcription 3 (STAT3) pathway. Recently using STAT3 conditional
knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly,
in the absence of treatment, STAT3 was not shown to be required for maintenance of the
disease, suggesting that STAT3 is required only in the tumor initiating stem cell population
(Hoelbl et al., 2010). In the context of the BM microenvironment, STAT3 is activated in a
bcr–abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown
to contribute to cell survival even in the event of complete inhibition of bcr–abl activity
within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an
attractive therapeutic target for developing strategies for targeting the JAK–STAT3 path-
way in combination with bcr–abl kinase inhibitors and may represent a viable strategy for
eliminating or reducing minimal residual disease located in the BM in CML.
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INTRODUCTION
The signal transducers and activators of transcription 3 (STAT3)
was identified as a DNA-binding protein capable of transduc-
ing signals from cytokine-stimulated cell surface receptors to the
nucleus, where it was capable of selectively binding to a palin-
dromic Interferon (IFN)-γ-activated sequence element and induce
transcription of acute-phase genes (Akira et al., 1994; Lutticken
et al., 1994; Zhong et al., 1994). Coincidentally, at the time of
STAT3 discovery, investigators in the chronic myeloid leukemia
(CML) field were trying to identify the major downstream sub-
strate of bcr–abl causative for CML transformation. In fact, when
researchers were just beginning to understand the biological prop-
erties and functions of STAT3, more than 30 years of research work
had already been conducted on CML. For example, it was already
established that; (a) CML could be diagnosed by the presence of
Philadelphia chromosome (Nowell and Hungerford, 1964), (b) the
Philadelphia chromosome was created by the reciprocal translo-
cation between chromosomes 9 and 22 and contained a gene
called BCR–ABL which encoded for a fusion protein called bcr–
abl (Lugo et al., 1990; Gishizky et al., 1993), (c) tyrosine kinase
activity of the bcr–abl proteins is required for the transformation
into CML (Carlesso et al., 1994), (d) herbimycin A, an inhibitor
of tyrosine kinase, showed inhibition of growth in cells express-
ing bcr–abl (Okabe et al., 1992, 1994a,b). This final observation

would ultimately lead to the discovery and use of the present-day
clinical bcr–abl kinase inhibitors, Imatinib (IM), Nilotinib (NI),
and Dasatinib (DA; Buchdunger et al., 1996; Druker et al., 1996;
Lombardo et al., 2004; Weisberg et al., 2005; Kantarjian et al., 2006,
2009, 2010, 2011; Hochhaus et al., 2009).

Signal transducers and activators of transcription 3 is a mem-
ber of a family of seven proteins, namely, STAT1, STAT2, STAT3,
STAT4, STAT5a, STAT5b, and STAT6, all of whom relay signals
from the plasma membrane to the nucleus, where they regu-
late gene expression (for review see, Darnell, 1997; Levy and
Darnell, 2002). STAT3 gene is located on chromosome 17q21
and was first independently cloned by Zhong et al. (1994). The
STAT3 gene codes for a 92-kDa protein spanning 770 amino
acids long with structural similarity to all other STAT member
of proteins. Briefly, the STAT3 proteins structurally comprises of
an N-terminal coiled–coiled domain involved in protein–protein
interactions, a DNA-binding domain, a linker, a Src homology-
2 (SH-2) domain, and a C-terminal transactivation domain (for
review see, Groner et al., 2008; Aggarwal et al., 2009). In order
to delineate the distinctive functions of each STAT family mem-
ber, gene targeting approaches proved very fruitful, except for
STAT3. Unlike all other STAT family members, targeted disrup-
tion of STAT3 gene, lead to early embryonic lethality (Takeda et al.,
1997). Because of this, normal physiological functions of STAT3
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had to be defined by tissue specific deletions of STAT3 (Akira,
2000).

Signal transducers and activators of transcription 3 plays a piv-
otal role in the hematopoietic system. The role of STAT3 in the
hematopoietic development has been studied by the use of floxed-
STAT3 mice that were crossed with transgenic mice expressing Cre
protein in specific hematopoietic cell type. For example, (a) Takeda
et al. (1998) showed that T-cell specific deletion of STAT3 resulted
in normal development of T-cells, however these cells showed
impaired IL-6 dependent suppression of apoptosis and the result-
ing T-cell proliferation. Furthermore, these T-cells show a defective
IL-2-induced IL-2α expression leading to a partial defect in IL-
2 dependent T-cell proliferation (Akaishi et al., 1998). (b) Mice
showing STAT3 deficiency in macrophages and neutrophils devel-
oped chronic enterocolitis (Takeda et al., 1999). STAT3 depleted
mice macrophages and neutrophil showed complete inhibition
of IL-10 mediated anti-inflammatory response leading to exces-
sive Th1 response in vivo. Additional phenotypic analysis showed
that these mice where susceptible to endotoxin shock and demon-
strated excessive secretions of cytokines like TNFα, IL-1, and IFNγ

(aiding the Th1 type immune response; Takeda et al., 1999). (c)
Studies performed on a subset of T helper cell, called Th17, showed
that this cells require the activity of STAT3 for its development and
in its ability to mount a Th17-dependent autoimmunity (Harris
et al., 2007). (d) In addition to T-cells, STAT3 also regulates the
early steps of B cell development, since deletion of STAT3 in the B
cell compartment leads to increase in pre–pro-B cells along with
a decrease in the pre-B and pro-B cell compartment (Chou et al.,
2006). STAT3 is also very critical in the T-cell-dependent terminal
differentiation of B cells (Fornek et al., 2006). (e) In the dendritic
cell compartment deletion of STAT3 abrogates the effects of Flt3L
on dendritic cell development and results in absence of dendritic
cell progenitors and thus results in a decrease in the dendritic
cell compartment (Laouar et al., 2003). (f) Finally, various studies
have shown that STAT3 may aid hematopoietic stem cell renewal
in the very early stages of stem cell regeneration, however in adult
homeostatic conditions STAT3 activity did not alter self-renewal
or differentiation (Oh and Eaves, 2002; Takizawa et al., 2003; Kato
et al., 2005; Chung et al., 2006). Even though, the above mentioned
studies identify STAT3 as an essential player in the hematopoietic
compartment, the phenotype arising from the complete deple-
tion of STAT3 in the all of the components of the hematopoietic
compartment remains to be seen.

Experimental evidence indicates that STAT3 plays a very cru-
cial role in hematopoiesis, in mediating immune response and in
regulation of differentiation, proliferation, angiogenesis, metasta-
sis, and apoptosis through its modulation of STAT3 target genes
(Seita et al., 2008; Hankey, 2009). Inhibition of STAT3 activity by
either STAT3 knock-out or through inhibition of STAT3 function,
blocked v-Src-induced transformation, indicating the important
role of STAT3 in malignant transformation (Bromberg et al.,
1998; Turkson et al., 1998). The oncogenic potential of STAT3
was demonstrated by induction of malignant transformation and
tumor formation in mice by over-expressing a constitutive form
of STAT3 (STAT3C; Bromberg et al., 1999). Constitutively active
STAT3 induces the expression of anti-apoptotic genes includ-
ing Bcl-2, Bcl-xl, Mcl-1, and also up-regulates the expression

of inhibitors of apoptotic machinery like survivin and c-IAP2
(Epling-Burnette et al., 2001; Bhattacharya et al., 2005; Cuevas
et al., 2006; Gritsko et al., 2006). STAT3 activation can promote
cell cycle progression by inducing expression of cyclin D1 mRNA
and hence protein levels (Sinibaldi et al., 2000; Cuevas et al., 2006).
The cumulative effect of persistent STAT3 activity in cells is the
promotion of cell growth and survival, leading to transformation,
and tumorigenesis. Thus, it is not surprising that STAT3 is a criti-
cal player for development, progression, and maintenance of many
human tumors (for a list of STAT3-mediated tumors see, Johnston
and Grandis, 2011). In the following sections we briefly review the
activation, regulation, and targeting of STAT3 in CML.

STAT3 ACTIVATION PATHWAY
In the canonical STAT3 activation pathway, STAT3 lies latent in
the cytoplasm in a resting cell (see Figure 1). STAT3 can be acti-
vated by a variety of diverse agents ranging from cytokines, growth
factors, oncogenes, non-receptor tyrosine kinases to even pep-
tides like angiotensin II (Marrero et al., 1995; Herrington et al.,
2000, Reddy et al., 2000; Ihle, 2001). The first step in the acti-
vation of STAT3 involves a tyrosine phosphorylation activation
event-mediated creation of a docking site for recruitment of the

FIGURE 1 | Activation and regulation of the STAT3 signaling pathway.

The STAT3 signaling pathway is turned on by the activation of cell surface
receptor (growth factor or cytokine receptors) leading to recruitment and
activation of JAK-family of proteins, which in turn recruits and
phosphorylates STAT3. STAT3 can also be directly phosphorylated by
non-tyrosine kinase receptors (Src or c-abl). Phosphorylated STAT3
homodimerizes and translocates to the nucleus where it regulates gene
expression. The signaling pathway can be switched off by the actions of a
phosphatase which dephosphorylates STAT3 and prevents dimer formation.
Also, PIAS and SOCS family of protein can directly compete with STAT3 for
either binding opportunities with the activating receptor or for dimerization
and translocation into the nucleus. STAT3, signal transducers and activators
of transcription 3; JAK, Janus kinase; SOCS, suppressors of cytokine
signaling; PTP, protein-tyrosine phosphatase; PIAS, protein inhibitor of
activated STATs.
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dormant cytoplasmic STAT3 (Zhang et al., 2000). This docking
is mediated through the SH-2 domain of STAT3. Once docked
the latent STAT3 is targeted for phosphorylation, either by the
intrinsic kinase activity of the activated receptor tyrosine kinase
or through the aid of the tyrosine kinase receptor-associated Janus
kinase (JAK; Heinrich et al., 1998, 2003; Quesnelle et al., 2007).
Irrespective of the activating kinase protein, STAT3 gets phos-
phorylated at the Tyr705 residue in the C-terminal domain and
this phosphorylation leads to its activation (Heinrich et al., 1998,
2003; Quesnelle et al., 2007). The activated phosphorylated STAT3
disengages from its activating kinases and undergoes homodimer-
ization by reciprocal interaction between the SH-2 domain of one
monomer and the phosphorylated Tyr705 residue of its dimeriz-
ing partner (see Figure 1). STAT3 dimers translocate to the nucleus
and bind specific DNA sequence and regulate the transcription of
the responsive gene (Shuai et al., 1993, 1994). In addition, STAT3
can also be phosphorylated on the Ser727 residue, located in the
transactivation domain, which allows for the maximal activation
of transcription of genes (Zhang et al., 1995; Wen et al., 1995). It
should be noted that in a normal cell, STAT3 activation sequence
is very rapid and transient and is very tightly regulated as will be
discussed in the following sections.

Bcr–abl INDUCED ACTIVATION OF STAT3 IN CML
Both bcr–abl and STAT3 protein share the ability to induce trans-
formation in cells when they are over-expressed or activated. Thus
it was speculated that one of the likely downstream signaling events
that leads to CML transformation is the activation of the STAT3
pathway by oncogenic bcr–abl protein. To test this hypothesis,
Ilaria and Van Etten (1996) transfected BaF/3 cells with p210 and
p190 forms of BCR–ABL cDNA. BaF/3 cells are IL-3 dependent
and non-leukemogenic, however these cells are transformed into
IL-3 independence and are leukemogenic when expressing BCR–
ABL cDNA (Daley and Baltimore, 1988; Ilaria and Van Etten,
1995). Thus, any differences in STAT activity between the parental
and bcr–abl transformed BaF/3 cells could be directly attributed
to the action of bcr–abl. Ilaria and Van Etten (1996) demonstrated
that STAT1, STAT3, and STAT5 are constitutively tyrosine phos-
phorylated in bcr–abl transformed BaF/3 cells, with the intensity
of the phosphorylation being STAT5 � STAT3 ∼ STAT1. More-
over, the intensity of phosphorylation matched the DNA-binding
activity of STAT5, STAT3, and STAT1 in the BCR–ABL trans-
formed BaF/3 cells. Surprisingly, STAT6 was only phosphorylated
in the p190 BCR–ABL cDNA expressing BaF/3 cells and STAT2
and STAT4 were not phosphorylated in any of the bcr–abl trans-
formed BaF/3 cells (Ilaria and Van Etten, 1996). Furthermore, the
activation of STATs by bcr–abl was found to be JAK-independent
thereby indicating a mechanism of direct activation of STATs by
bcr–abl. On the other hand, Carlesso et al. (1996) in their study,
only detected constitutive STAT5 and STAT1 activity in bcr–abl
positive CML cell lines, but like the previous study they also con-
firmed the observation that STAT activation in bcr–abl positive
cells was not consistent with JAK kinase activity, suggesting the
possibility of direct STAT activation by bcr–abl.

The role of STAT5 as the direct downstream target of bcr–abl
was further confirmed by (de Groot et al., 1999) and Sillaber et al.
(2000) by over-expressing a dominant negative isoform of STAT5.

In both of these studies, the over-expression of the negative iso-
form of STAT5 led to inhibition of STAT5 phosphorylation and
subsequent inhibition in cell growth in CML cell lines (Sillaber
et al., 2000; de Groot et al., 1999). Further a direct interaction
between bcr–abl and STAT5 was demonstrated by Nieborowska-
Skorska et al. (1999) by showing that the SH-2 and SH-3 domain of
bcr–abl protein is required for STAT5 activation, since mutations
in these domains completely abolished STAT5 activation by bcr–
abl. More recently, Hantschel et al. (2012) confirmed the finding
that STAT5 was directly phosphorylated by bcr–abl and this acti-
vation was required for the maintenance of bcr–abl driven CML
disease.

On the other hand, Coppo et al. (2006) have shown that in bcr–
abl expressing cell lines (UT7-210, MO7E-p210, and K562) and
in primary CD34+ CML progenitor cells, bcr–abl greatly phos-
phorylated STAT3 Ser727 residue and, to a lesser extent STAT3
Tyr705 residue. The tyrosine kinase activity of bcr–abl and the
Tyr177 residue of the bcr–abl oncoprotein was required for this
activation, since the Δ1172 tyrosine kinase mutant and the Y177F
mutant bcr–abl constructs expressed in UT7 cell lines led to not
only a reduction in phosphorylation of the STAT3 Ser727 residue
but also to the reduction in the total STAT3 protein level. Also,
they reported JAK1 and JAK2 were constitutively phosphorylated
in UT7/9 and K562 cells and this was required for specifically
phosphorylating the STAT3 Tyr705 residue but not the STAT5
Tyrosine residue (Coppo et al., 2006). Furthermore, by indepen-
dently utilizing a MEK inhibitor and a MEK1 construct with a
dominant negative activity, these same investigators were able
to show that phosphorylation of the STAT3 Ser727 residue, but
not STAT3 Tyr705 residue, required the activity of MEK in CML
cells and in CD34+ CML progenitor cells from two patients
(Coppo et al., 2006). Finally, in the same study inhibition of
bcr–abl activity by the use of IM led to a dose-dependent down-
regulation of STAT3 protein and mRNA, suggesting that bcr–abl
transcriptionally regulates STAT3 gene.

In summary, there are many conflicting reports published con-
cerning the status of STAT3 activity in CML cells. Our own obser-
vations in CML cells (K562 and KU812), show that these cells have
very high phosphorylation of the STAT5 Ser694 residue and barely
detectable levels of phosphorylated STAT3 Try705 residue as seen
by western blotting (Bewry et al., 2008). However, when cultured
with bone marrow (BM) stromal cells, these cells showed increased
STAT3 phosphorylation. In addition, the constitutive STAT5 phos-
phorylation, but not the STAT3 phosphorylation, was inhibited
when these co-cultured CML cells were treated with bcr–abl kinase
inhibitors (Bewry et al., 2008; Nair et al., 2011).

STAT3 ACTIVITY REQUIREMENT FOR bcr–abl INDUCED
TRANSFORMATION
In the studies enumerated above, only a correlative link is provided
for STAT3 activation by bcr–abl to cellular transformation. In
order to provide more direct evidence, Spiekermann et al. (2002)
used a different molecular methodology to address whether STAT3
and STAT5 are required for the transformation of hematopoi-
etic cells. In their study, they utilized constitutively active STAT5
(STAT5A1∗6) and STAT3 (STAT3C) mutants to stably transfect
BaF/3 cells. Not surprisingly, both mutants induced long-term
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cytokine-independent growth in BaF/3 cells, a finding support-
ing a fundamental role for STAT3 and STAT5 in the malignant
transformation of hematopoietic cells (Spiekermann et al., 2002).
A more conclusive role for STAT3 and STAT5 in driving Bcr–
abl dependent transformation of myeloid cells was recently pro-
vided by Hoelbl et al. (2010). In the study, they first reported
that p210-BCR–ABL cDNA expressed in STAT5null/null fetal liver
hematopoietic stem cells resulted in complete absence of myeloid
transformation, indicating the critical dependence of STAT5 for
the bcr–abl induced transformation event. Next they utilized BM
cells derived from STAT3fl/flMx1Cre mice that were treated with
polyinosinic: polycytidylic acid to induce STAT3 deletion in vivo.
Similar to STAT5, significant reduction in colony numbers were
observed for STAT3Δ/Δ cells upon transduction with p210-BCR–
ABL cDNA. Taken together, the study indicate that STAT3 and
STAT5 were absolutely required for the initial Bcr–abl dependent
transformation event (Hoelbl et al., 2010). Further experiments in
the same study also confirmed that once the cells are transformed,
STAT5 but not STAT3 is required for bcr–abl induced myeloid
leukemia maintenance in vivo. However, the role of STAT3 in
maintaining minimal residual disease following bcr–abl inhibitor
treatment was not addressed in this disease model.

STAT3 ACTIVATION BY bcr–abl IN EMBRYONIC STEM CELLS
Chronic myeloid leukemia is a stem cell disease as demonstrated
by the presence of minimal residual disease in the form of a consis-
tently detectable population of quiescent bcr–abl positive CD34+
progenitor cells that possess the ability for self-renewal and the
capability to differentiate (Holyoake et al., 1999). Murine embry-
onic stem cells proved to be a very suitable system to study the
effects of bcr–abl expression in an in vitro self-renewal and differ-
entiation clonal model. For example, the direct effect of bcr–abl
expression on murine embryonic stem cell differentiation was
demonstrated in an in vitro embryonic stem cell differentiation
system that utilized stromal cell co-culture to aid the differenti-
ation of the stem cells into distinct hematopoietic lineages (Era
and Witte, 2000). These stem cells where then transduced with
a tetracycline regulated expression of bcr–abl vector employing a
promoter that ensures 100% expression of bcr–abl in all the dif-
ferentiated cells (Gossen and Bujard, 1992; Nakano et al., 1994).
The results of their study indicated a bcr–abl dependent increase
in the number of multipotent and myeloid lineage committed
progenitor cells and at the same time a suppression of the develop-
ment of committed erythroid progenitors (Era and Witte, 2000).
This study established that bcr–abl was sufficient to establish the
chronic phase of CML without the need for any additional genetic
changes.

Even though the above murine embryonic stem cell model
described the ability of bcr–abl to differentiate and propagate into
CML chronic phase like disease, the molecular mechanism of the
bcr–abl dependent self-renewal of murine embryonic stem cell was
unknown. Previous studies showed that self-renewal of murine
embryonic stem cell required the activation of STAT3 by leukemia
inhibitory factor (LIF) acting through the gp130–JAK activation
pathway (Niwa et al., 1998; Ernst et al., 1999). To investigate if
bcr–abl can substitute for the action of LIF by maintenance of
a self renewing capacity in cells despite LIF withdrawal, Coppo

et al. (2003) utilized 129/SV-derived CCE embryonic stem cell.
They demonstrated that bcr–abl expressing embryonic stem cells
retained their “stemness” in the absence of LIF, confirming the
absence of differentiation. The persistence of the embryonic stem
cell morphology was directly attributed to specific STAT3 but not
STAT5 activation and was independently verified by EMSA and
over-expression of a dominant negative STAT3 mutant in bcr–
abl expressing embryonic stem cells (Coppo et al., 2003). Next, to
address whether bcr–abl directly phosphorylate STAT3 or did it
require a messenger as an intermediary signaling protein, Naka-
mura et al. (2005) stably transfected a wild type murine embry-
onic stem cell line and a MEKK1−/− embryonic stem cell line
with p210-bcr–abl called WTp210 and MEKK1−/−p210, respec-
tively. They reported that, on LIF withdrawal, MEKK1−/−p210

showed less STAT3 activity than WTp210 and formed large flattened
colonies having weak alkaline phosphatase activity, indicating a
phenotype of differentiated embryonic stem cells (Nakamura et al.,
2005). These results indicate that MEKK1 plays a role in bcr–abl
induced activation of STAT3 (see Figure 2). Finally, in order to
explain how bcr–abl driven activation of STAT3 can cue stem cells
to differentiate and also self-renew, Coppo et al. (2009) proposed
that bcr–abl induced these opposite phenotypes based on STAT3
activity in murine embryonic stem cells (Coppo et al., 2009). They
reported in their study that embryonic stem cells expressing bcr–
abl maintained an undifferentiated phenotype through activation
of a STAT3-mediated self-renewal program. However, decreased
STAT3 levels led to a rapid commitment of the bcr–abl expressing
cells to differentiate, through the activation of the MAPK–ERK
pathway (see Figure 2; Coppo et al., 2009). At present, the reason

FIGURE 2 | Regulation of self-renewal and differentiation in bcr–abl

transformed murine embryonic stem cell. In bcr–abl transformed murine
embryonic stem cell, STAT3 is activated in the LIF-independent
MEKK1-dependent manner. Activation of MEKK1 by bcr–abl also leads to
activation of Erk 1/2. It has been proposed that increased STAT3 activity
within the stem cell promotes self-renewal and inhibition of differentiation,
however decreased STAT3 activity leads to increased Erk 1/2 activity which
in turn promotes rapid differentiation. This model has to be tested in bcr–abl
transformed human stem cells. STAT3, signal transducers and activators of
transcription 3; LIFR, leukemia inhibitory factor; Erk 1/2, extracellular
signal-regulated kinases 1/2; MEKK1, mitogen-activated protein kinase
kinase kinase.
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for decreased STAT3 activity within the bcr–abl expressing murine
embryonic cells is not well understood and remains to be investi-
gated. Taken together, all this studies confirm the role of STAT3 as
a self-renewal factor operating downstream of bcr–abl in murine
embryonic stem cells.

All the studies enumerated above where carried out in murine
embryonic stem cell model, wherein LIF–gp130–STAT3 activity is
very much essential for maintenance of self-renewal of the stem
cells. However, it should be noted that in non-human primate
embryonic stem cells like in cynomolgus monkey embryonic stem
cells, the maintenance of the undifferentiated embryonic state
is maintained through a LIF/gp130/STAT3-independent pathway
(Sumi et al., 2004). Similarly, Daheron et al. (2004) reported that
in human embryonic stem cells, human LIF can induce STAT3
activation and nuclear translocation. However, the LIF–gp130–
STAT3 pathway is unable to maintain pluripotency in human
embryonic stem cells. Also, undifferentiated human embryonic
stem cells did not show activated STAT3, indicating that in these
embryonic stem cells STAT3-independent mechanism govern the
self-renewal machinery (Daheron et al., 2004). In light of these
reports, transformation of human embryonic cells with bcr–abl
and the resultant dependence on STAT3 for self-renewal and dif-
ferentiation in these transformed embryonic cells remain to be
tested.

REGULATION OF THE STAT3 ACTIVATION PATHWAY
Since STAT3 plays a very important role in a myriad of cel-
lular functions, the activation of STAT3 is tightly regulated in
normal cells (see Figure 1). This regulatory control is exerted
at multiple levels of the STAT3 activation pathway and begins
with the negative regulation of the activating receptor. Either after
ligand binding or after receptor phosphorylation, the activated
receptor gets tagged for endocytosis, thus preventing any fur-
ther activation of receptor and thereby attenuating the signaling
to STAT3 (Bild et al., 2002). The next level of regulation comes
from protein-tyrosine phosphatase (PTP), which can dephospho-
rylate the receptor tyrosine kinases, JAKs or STAT3 directly thus
ensuring the termination of STAT3 signaling (see Figure 1). PTPs
implicated in regulating STAT3 signaling include SHP-1, SHP-2,
PTP1B, and PTPεC (for review see, Xu and Qu, 2008). A unique
PTP is the nuclear PTP TC45 which dephosphorylates STAT3
dimers that are present within the nucleus and thereby terminates
STAT3-mediated transcription (Herrmann et al., 2007).

The family of suppressors of cytokine signaling (SOCS1–
SOCS7) can antagonize STAT3 signaling by; (a) by binding and
inhibiting JAKs, (b) by competing with STAT3 for docking sites on
the activated tyrosine kinase receptor, and (c) by binding to JAKs
and kinase receptors and targeting them for ubiquitin proteoso-
mal degradation (for review see, Croker et al., 2008). Interestingly,
SOCS is a part of the negative feedback loop, wherein activation
of STAT3 increases the expression of SOCS, which then terminates
the STAT3 activation by one of the before mentioned mechanisms
(Yoshimura et al., 2003). Finally, the last level of regulation is
exerted by the constitutively expressed protein inhibitor of acti-
vated STATs (PIAS; for review see, Shuai, 2006). PIAS, specifically
PIAS3, can bind the dimeric activated STAT3 and block the DNA-
binding ability of STAT3 (Chung et al., 1997). In addition to

preventing binding of activated STAT3 to the promoter region
of its regulatory genes, PIAS can utilize its SUMO ligase activity
to recruit co-repressors at the STAT3 transcriptional complex and
thus modulate STAT3-mediated transcription (Yamashina et al.,
2006; Lee et al., 2007).

EXPRESSION OF THE REGULATORS OF THE STAT3 ACTIVITY IN CML
Inactivation or reduced expression of SOCS, PIAS, or PTP pro-
teins may lead to sustained activation of STAT3. Deregulation of
the JAK–STAT3 pathway due to variations in the expression of
the SOCS and PTP have been reported in CML cells. Not sur-
prisingly, in most of the cases decrease in the proteins involved in
the negative feedback mechanism, results in sustained activation
of JAK–STAT3 pathway leading to increased progression of CML
or to development of resistance toward anti-leukemic drugs. For
example, SHP-1, the non-receptor type PTP, expressed primarily in
hematopoietic cells has been shown to be silenced in various highly
aggressive lymphoma and leukemia cell lines (Oka et al., 2001).
Oka et al. (2002) demonstrated that this gene silencing is due a
aberrant promoter methylation of the SHP-1 gene in leukemias
and lymphomas. Specifically, Oka et al. (2002) showed that 73%
of the CML patients tested showed very strong CpG island methy-
lation of the SHP-1 gene and remaining 27% showed very weak
methylation of the same gene. Similarly, Amin et al. (2007) in
their study reported that SHP-1 levels were markedly decreased
in advanced stage CML patients compared to patients in chronic
phase and this correlated with IM resistance seen in advanced
stage CML patients. However, in contrast to the study published
by Oka et al. this paper did not find any DNA methylation in the
promoter region nor did they find any mutations in the SHP-1
protein rather they attributed the decreased expression of SHP-1
to an as-yet undefined post-transcriptional modification (Amin
et al., 2007). Finally, SHP-1 and SHP-2 have antagonistic biologi-
cal functions in cells, in that, SHP-1 is a negative transducer while
SHP-2 is a positive transducer of growth factor signaling pathway
(Qu et al., 1999; You et al., 1999; Wang et al., 2006; Chong and
Maiese, 2007). Indeed, in CML cells, SHP-1 physically associates
with bcr–abl and blocks bcr–abl dependent transformation and in
addition mediates PP2A-induced bcr–abl proteosome degradation
(Bruecher-Encke et al., 2001; Neviani et al., 2005). Esposito et al.
(2011) showed that in CML cell lines there is a physical interaction
between SHP-1 protein with SHP-2 such that SHP-1 modulates
the activation signals that SHP-2 receives from both bcr–abl and
membrane receptor tyrosine kinase. Moreover, decreased SHP-1
expression is a determinant of IM sensitivity in CML patients, with
patients failing IM treatment showing significantly lower levels of
SHP-1 protein. Interestingly, knocking down SHP-2 levels in IM-
resistant KCL22-R CML cells reduced STAT3 activation and cell
survival in IM treated cells (Esposito et al., 2011).

Various studies have been reported showing that variations
in expression, due to single nucleotide polymorphisms (SNPs,)
within the STAT3 regulatory protein genes can have an impact
on disease prognosis. For example, Guillem et al. (2012) showed
that SNPs in SOCS1 (rs243327) and PTPN22 (rs2476601) genes
correlated with the risk of primary resistance to IM were adverse
prognostic factors for failure-free survival in CML patients. Poly-
morphism in the STAT3 gene has already been shown to co-relate
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with higher proclivity in patients for asthma, inflammation, and
autoimmune diseases, so it is attractive to speculate that SNPs
affecting the expression levels of STAT3 protein may also predict
the treatment outcome when utilizing immune therapy like IFN-
α in CML (Litonjua et al., 2005; Ferguson et al., 2010; Jabalameli,
2011). For example, IFN-α therapy is very effective in inducing
hematological remission and a sustained cytogenetic response in
CML (Talpaz et al., 1986, 1991). However, the effect of the therapy
is very limited since only 8–30% of the treated patients achieve
complete cytogenetic remission (Allan et al., 1995; Bonifazi et al.,
2001). The molecular basis for the resistance or the heterogeneous
response among patients is poorly understood. However, it was
hypothesized that SNPs encoded within the STAT3 gene regulating
its expression could be responsible for the observed heterogene-
ity. Indeed, Kreil et al. (2010) demonstrated that a polymorphism
associated with STAT3 expression in CML could explain the differ-
ence in treatment response of CML patients to IFN. Specifically,
the levels of STAT3 mRNA, but not STAT5a or STAT5b, corre-
lated with an rs6503691 genotype and response of CML patients
to INF-α (Kreil et al., 2010). In light of this studies, it is interesting
to speculate if determination of individual status of STAT3 SNPs
would help lead to a personalized treatment regimen for clinical
decisions for initiating IFN-α treatment in CML patients.

TARGETING STAT3 FOR INHIBITION IN CML
In the preceding sections, we have enumerated how the dysfunc-
tion of STAT3 regulatory pathway leads to a drug resistant pheno-
type in CML. Hence it is attractive to speculate that inhibition of
STAT3 activity would lead to drug sensitization and cell death in
CML cells. Evidence for direct inhibition of STAT3 leading to cell
death in CML cells was provided by a study published by Ma et al.
(2010), wherein they showed that CML K562 cell line transduced
with STAT3 siRNA lead to inhibition of growth and proliferation,
cell cycle blockade, and induction of apoptosis. These observations
were further strengthened in the study conducted by Mencalha
et al. (2010), who utilized a STAT3 specific inhibitor, LLL-3. LLL-3
reduced cell viability and induced cell death through the activation
of Caspases-3/7 pathway in K562 cells. Additionally, when used in
combination with IM, LLL-3 showed an additive effect on cell
death thereby suggesting a potential therapeutic value of combin-
ing these two drug regimens for the treatment of CML (Mencalha
et al., 2010).

Various studies have also looked at treatment regimens that
indirectly decreased STAT3 activity and have reported its effect on
CML cell survival. Wetzler et al. (2006) studied the effect of arsenic
trioxide on JAKs and bcr–abl, both of which has been shown to
activate STAT3. In their study, arsenic trioxide not only reduced
STAT3 activation by JAKs but also reduced the phosphorylation
of bcr–abl kinase. Not surprisingly, in vitro study has shown addi-
tive to synergistic cytotoxic activity of IM (depending on CML
cell line and drug concentrations) when used in conjunction with
arsenic trioxide in CML cells (Wetzler et al., 2006). Expression of
Src family kinase in CML cells has been shown to induce resis-
tance to IM in a kinase-dependent manner and inhibition of Src
activity restored IM sensitivity (Pene-Dumitrescu and Smithgall,
2010). However, in solid tumors, the requirement for simulta-
neous inhibition of Src and STAT3 activity to induce cell death

has been observed. In these tumors, cancer cell survival after Src
kinase inhibition has been demonstrated to be due to reactivation
of STAT3 as a compensatory pathway in surviving cells. Abrogation
of STAT3 activity, by use of JAK inhibitors, along with Src inhi-
bition was necessary to result in synergistic cytotoxicity (Johnson
et al., 2007). Interestingly, Jia et al. (2009) have corroborated this
finding in resistant K562 CML cells (IM-resistant (K562/G) and
Adriamycin-resistant-P gp-expressing K562 CML cells (K562/A)),
in which Src family kinases and p-STAT3 activity was increased
and consequently the Bax/Bcl-2 ratio was decreased, when com-
pared to the parental K562 cells. Use of ZD6474, an orally available,
small-molecule tyrosine kinase inhibitor resulted in an in vitro and
in vivo growth arrest of the parental and the resistant cell lines.
The mechanism of action of ZD6474 was reported to be simulta-
neous inhibition of Src kinase and STAT3 activity and the resultant
increase in Bax/Bcl-2 ratio (Jia et al., 2009). Zhu et al. (2011) in
their study utilized Icaritin, a hydrolytic product of Icariin which
is a constituent of Chinese herbal medicine Epimedium, to show
potent anti-leukemic activity on CML in vitro and in vivo. Icar-
itin was shown to inhibit proliferation of CML cell line K562 and
primary CD34+ CML cells and induce apoptosis through a bcr–
abl independent manner. Instead the cause of death was shown to
correlate with down-regulation of phosho-STAT3, -JAK2, -ERK,
-AKT, and -p38 in a dose and time-dependent manner (Zhu et al.,
2011).

Combination drug therapy have also been studied with the
purpose of circumventing the problem of bcr–abl kinase inhibitor
resistance in CML. Dai et al. (2004), have shown that combination
therapy of sub-toxic concentrations of a proteosome inhibitor,
Bortezomib with a broad spectrum inhibitor of cyclin-dependent
kinases, Flavopiridol resulted in a synergistic increase in mito-
chondrial dysfunction, and apoptosis in CML cells. In this study,
cell death observed in both IM-sensitive cell lines and IM-resistant
cell lines co-related with, among other events, marked reduction
in bcr–abl, STAT3 and STAT5 activity. In another study, Dasma-
hapatra et al. (2006) used BaF/3 cells expressing wild type bcr–abl
that is sensitive to IM and BaF/3 cells expressing three clinically
relevant bcr–abl mutations, namely, E225K, M351T, and T351I,
that are known to cause resistance toward IM. They reported
that the use of adaphostin, an adamantly ester derivative of the
bcr–abl kinase inhibitor tryphostin AG957, induced cell death in
these cell lines via caspase-3 activation and PARP degradation. The
cell death was also accompanied by an attenuation of STAT3 and
STAT5 phosphorylation. More importantly, in combination with
proteosome inhibitor, Bortezomib, adaphostin potently induced
reactive oxygen species and cell death in the resistant cell lines.
These results indicate that adaphostin plus Bortezomib circumvent
IM-resistance due to point mutations and thus offer a treatment
strategy to treat resistant CML (Dasmahapatra et al., 2006).

In addition to the direct or indirect inhibition of STAT3 phos-
phorylation, the effects of STAT3 activity could also be nullified
by inhibiting the expression/activity of its regulated gene. Not
surprisingly the expression of a large number of genes with over-
lapping functions are regulated by both STAT3 and STAT5, and
thus for the above mentioned strategy to work, choosing the right
target is critical. One such candidate protein is Mcl-1, a well char-
acterized member of the Bcl-2 family with a strong anti-apoptotic
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activity that is up-regulated by both STAT3 and STAT5 (Kozopas
et al., 1993, Fukuchi et al., 2001; Allen et al., 2011). More impor-
tantly, Mcl-1 was shown to be expressed in primary CML cells in
a constitutive manner (Aichberger et al., 2005). As proof of prin-
ciple, to demonstrate that Mcl-1 is a viable target for inhibition in
CML, Aichberger et al. (2005), utilized a Mcl-1 antisense oligonu-
cleotide and showed co-operative anti-leukemic effects when used
in combination with IM.

Taken together the reported studies indicate that STAT3 is an
important target in CML and inhibition of STAT3 activity may
provide an important strategy to induce cell death in CML cells
that are resistant to the currently available therapy of bcr–abl
kinase inhibitors.

TARGETING STAT3 FOR INHIBITION IN CML WITHIN THE
CONTEXT OF THE BONE MARROW MICROENVIRONMENT
It has become very clear that minimal residual disease (MRD)
in CML is found predominantly in the BM, thus giving rise to
the hypothesis that eradication of the disease would require not
only shutting down the oncogenic signals arising from within the
CML cells (the seed), but also from disrupting the interactions
between the cells and the BM microenvironment (the soil; Paget,
1889). For example, our laboratory has demonstrated that when
CML cells were cultured in conditioned media (CM) derived from
human BM stromal cells, the CML cells were resistant to mul-
tiple bcr–abl kinase inhibitors including imatinib, nilotinib, and
dasatinib mediated cell death (Bewry et al., 2008). This resistance
was attributed to BM stromal-derived cytokine and growth factor
milieu-mediated activation of STAT3 in the CML cells. The sus-
tained and persistent activation of STAT3, was not abolished by the
presence of bcr–abl kinase inhibitors and resulted in the increased
expression of anti-apoptotic genes Mcl-1, Bcl-xl, and survivin in
CML cells (Bewry et al.,2008). Indeed,our study found that knock-
down of STAT3 by use of siRNA technology could sensitize CML
cells, cultured in stromal cell derived CM, toward IM-mediated
cell death.

In our follow-up study, we showed that activation of STAT3
is important not only for protection against bcr–abl inhibitors
but also for the survival of CML cells within the BM microenvi-
ronment (Nair et al., 2011). Indeed, we established that in CML
cells, the BM stromal-derived cytokine and growth factor milieu
induced phosphorylation of STAT1, STAT3-S727, and STAT5 but
not of STAT3-Y705, was abolished in the presence of NI, indicat-
ing that phosphorylated STAT1, STAT3-S727, and STAT5 were not
important players in mediating BM milieu-induced NI resistance
(Nair et al., 2011). Finally, reducing the expression of both JAK2
and TYK2 or utilizing a pan-JAK inhibitor blocked CM-mediated
STAT3 activation and sensitized CML cells to NI-mediated cell
death. The hypothesis that the BM microenvironment contributes
to drug resistance by providing survival cues through the JAK–
STAT3 pathway has also be explored by other laboratories. Traer
et al. (2011) used CYT387,a JAK1/JAK2 inhibitor,and TG101209,a
relatively specific JAK2 inhibitor and demonstrated that the inclu-
sion of these inhibitors abolished the anti-apoptotic effect of BM
stromal HS-5 CM on CML cell lines. Interestingly, in their study
IM treatment alone increased STAT3 phosphorylation which was
further enhanced in the presence of CM. They concluded from

their observations that inhibition of bcr–abl induces a shift to
an adaptive JAK2–STAT3 survival pathway that gets substantially
reinforced within the BM microenvironment (Traer et al., 2011).
Furthermore, in vivo studies utilizing a high-dose combination of
TG101209 and NI while effective in eliminating CML cells also
lead to toxicity in the non-leukemic hematopoietic cells, suggest-
ing that such combination should be used with caution (Traer
et al., 2011).

Similarly, Hiwase et al. (2010) have showed that when CML-
CD34+ cells were treated with DA and then exposed to a mix-
ture of cytokines [six growth factors cocktail or granulocyte-
macrophage colony stimulating factor (GM-CSF) or granulocyte-
colony stimulating factor (G-CSF)], the cells remained viable, sug-
gesting that the bcr–abl dependence for survival could be overcome
by exposure to cytokines. Like previous studies, re-establishment
of the sensitivity to bcr–abl inhibitors in this progenitor cells
required inhibition of JAK-family of kinases (Hiwase et al., 2010).
However, amidst these reports suggesting that cytokine and growth
factor exposure can lead to drug resistance in CML cells, Jorgensen
et al. (2006) have shown that intermittent exposure to growth
factor, G-CSF, together with IM leads to significant reduction in
leukemic stem cells in vitro (Jorgensen et al., 2006). The hypothesis
put forward to explain this reduction was that leukemic stem cells
are quiescent and IM-resistant, however, G-CSF exposure pushes
these cells into cell cycle and thus restores IM sensitivity. Indeed,
this treatment regimen was further tested in 11 CML patients with
favorable results with the authors recommending further evalua-
tion of this therapy for newly diagnosed CML patients (Fang et al.,
2011). At the same time small pilot studies looking at eradication
of CML stem cells with the use of combination of C-CSF and IM
have concluded that there is no therapeutic benefit of adding G-
CSF to IM (Drummond et al., 2009; Foo et al., 2009). At present,
more studies have to be performed to delineate the exact effects of
G-CSF with bcr–abl inhibitors in CML patients.

In addition to exposure to the cytokine milieu within the BM,
CML cells also physically interact with the stromal cells utilizing
adhesion molecules like β1-integrins (Damiano et al., 2001). Such
interaction give rise to cell-adhesion mediated drug resistance
(CAM-DR) and has been demonstrated in multiple myeloma
to occur through a β1-integrins/STAT3/IL-6 autocrine activation
loop (Shain et al., 2009). Interestingly, inhibition of JAK–STAT3
pathway either by use of a pan-JAK inhibitor or a specific JAK2
inhibitor abolished the CAM-DR phenotype when primary CML
progenitor cells are co-cultured with HS-5 BM stromal cells (Nair
et al., 2011; Traer et al., 2011). Also, Guo-Bao et al. (2010) have
demonstrated a CAM-DR phenotype in K562 when this cells
were co-cultured with BM stromal cells derived from patients
with CML. In their study, sensitization of these K562 co-cultured
cells required treatment with arsenic trioxide, which was shown
to down-regulate the expression of β1-integrins in K562 cells and
thus cause a dose-dependent reduction in adhesion ability of K562
cells to the BM stromal cells. However, none of the studies above
delineated the role of cytokine milieu versus the adhesion compo-
nent as the critical contributing factor essential for development
of drug resistant phenotype.

There is accumulating evidence showing that in human CML
stem cells, enhanced bcr–abl kinase inhibition does not result
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FIGURE 3 | Mechanism for persistence of CML cells in the BM

microenvironment. After the acquisition of the oncogene BCR–ABL, cells
are dependent on bcr–abl for proliferation, survival, and differentiation
(oncogenic addiction). In circulating CML cells, shut down of the kinase
activity by use of a bcr–abl kinase inhibitor results in cell death and
decrease in circulating CML cell burden. However, within the BM
microenvironment, CML cells do not dependent upon bcr–abl activity for
survival. These cells depend on the adhesion and soluble factor-mediated
signaling for survival within the BM. In this scenario, inhibition of the
bcr–abl kinase activity has no effect on the survival of the CML cells leading
to the persistence of disease within the BM (minimal residual disease).

in decreased cell survival of these cells (Konig et al., 2008).
Furthermore, within the context of the BM microenvironment,
cytokine support along with adhesive interactions with the stromal

cells permitted CML stem cells to grow and survive even in the
absence of bcr–abl activity (see Figure 3; Corbin et al., 2011). In
fact, Reynaud et al. (2011) in their study have shown that proin-
flammatory tumor microenvironment affects leukemic progenitor
cells and contributes to CML pathogenesis (Reynaud et al., 2011).
Specifically, they showed that IL-6 expression is induced by bcr–abl
resulting in a paracrine feedback loop that sustained CML devel-
opment. Indeed, their study demonstrated that strategies utilized
to block IL-6 signaling significantly delayed the onset of CML
development even when the bcr–abl activity was maintained in
cells (Reynaud et al., 2011). Since IL-6 is a very potent activa-
tor of STAT3, it does remains to be seen if targeting STAT3 for
inhibition within the context of the BM also delays the onset of
CML.

CONCLUSION
In light of reported data on the role of STAT3 in CML, it still
remains to be seen, (i) if STAT3 is required for CML stem
cell regeneration and CML development; (ii) does STAT3 poly-
morphism have an effect on CML disease progression, develop-
ment of drug resistance and in maintenance of minimal resid-
ual disease; (iii) is there a functional overlap between STAT3
and STAT5 in CML cells so that JAK inhibitors might be
a better option to specific inhibition of STAT3 activity. And
lastly, (iv) what is the role of STAT3 in maintaining the mini-
mal residual disease during bcr–abl kinase inhibitor treatment.
Taken together, it would be interesting to test STAT3 as a very
important target for inhibition in CML that could complement
the existing bcr–abl kinase inhibitors in combating and revers-
ing drug resistant phenotype and bring us closer to a cure
for CML.
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