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A-484954 is a known eEF2K inhibitor with submicromolar IC50 potency. However, the

binding mechanism and the crystal structure of the kinase remains unknown. Here,

we employ a homology eEF2K model, docking and alchemical free energy simulations

to probe the binding mechanism of eEF2K, and in turn, guide the optimization of

potential lead compounds. The inhibitor was docked into the ATP-binding site of a

homology model first. Three different binding poses, hypothesis 1, 2, and 3, were

obtained and subsequently applied to molecular dynamics (MD) based alchemical

free energy simulations. The calculated relative binding free energy of the analogs

of A-484954 using the binding pose of hypothesis 1 show a good correlation with

the experimental IC 2
50 values, yielding an r coefficient of 0.96 after removing an

outlier (compound 5). Calculations using another two poses show little correlation with

experimental data, (r2 of less than 0.5 with or without removing any outliers). Based

on hypothesis 1, the calculated relative free energy suggests that bigger cyclic groups,

at R1 e.g., cyclobutyl and cyclopentyl promote more favorable binding than smaller

groups, such as cyclopropyl and hydrogen. Moreover, this study also demonstrates the

ability of the alchemical free energy approach in combination with docking and homology

modeling to prioritize compound synthesis. This can be an effective means of facilitating

structure-based drug design when crystal structures are not available.

Keywords: free energy calculation, eEF2K inhibitor, docking, molecular dynamics, kinase, drug discovery

Introduction

Computer-based virtual screening (VS) approaches, including docking, pharmacophore, and simi-
larity searching have been proposed and applied at the hit-identification stage of the costly drug
discovery process (Singh et al., 2003; Ravindranathan et al., 2010; Kaoud et al., 2012; Wang
et al., 2012; Hu et al., 2013; Rea et al., 2013; Sahner et al., 2013; Teli and Rajanikant, 2013; De
Luca et al., 2014; Wang et al., 2014; Zhang et al., 2014). These approaches are only effective
statistically, e.g., they only provide a meaningful prediction of active compounds in a certain
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percentile of a large number of samples, rather than information
on specific compounds. Such inability hinders their applications
in drug discovery processes where relative binding affinities
of certain compounds are of interest, for example, in lead-
optimization, when tens to hundreds of analogs need to be
examined and prioritized for synthesis. Therefore, computational
approaches that can correctly predict relative binding affinities
are of crucial importance.

Relative free energy of binding as a computable property is
a good measure of the binding affinity between two molecules.
There is a history of applying physics-based force fields (Jor-
gensen et al., 1983; Kaminski et al., 2001; Ponder and Case,
2003; Wang et al., 2004; Jiao et al., 2008; Vanommeslaeghe et al.,
2010; Ren et al., 2011; Shi et al., 2012; Zhang et al., 2012) or
combined quantum mechanics/molecular mechanics (QM/MM)
(Raha and Merz, 2005; Wang and Bryce, 2009; Hayik et al.,
2010; Min et al., 2010; Wang and Bryce, 2011) methods to
predict protein-ligand binding. Specifically, the accuracy of the
alchemical free energy approaches in combination with well-
tuned force fields has been demonstrated to have a reasonable
agreement with experiment results. For example, the typical root
mean square differences (RMSD) in hydration free energy of
small organic molecules between experiment and prediction are
around 1.0 kcal/mol using the commonly used fixed charge force
fields, e.g., AMBER/GAFF, CHARMM, and OPLS-AA (Shirts
et al., 2003; Shirts and Pande, 2005b; Mobley et al., 2009). While a
RMSD of 0.7 kcal/mol has been reported on a smaller scale study
of small organic molecules using the multipole-based polarizable
AMOEBA force field (Ren et al., 2011). Compared to calcula-
tions of hydration free energy, absolute protein-ligand binding
free energy calculation is more challenging as the introduction
of the protein adds significantly more degrees of freedom to the
system (Deng and Roux, 2006; Jayachandran et al., 2006; Mob-
ley et al., 2007; Boyce et al., 2009). Fortunately, the absolute
binding free energy is not required to predict the relative bind-
ing affinity of two compounds. Instead, the change in binding
free energy (11G) between two compounds is often needed.
By constructing an arbitrary thermodynamic path between the
two end states (or ligands), the free energy change between
them can be obtained by integrating the energy derivative along
the path in the so-call thermodynamic integration method (TI)
(Kollman, 1993; Shirts and Pande, 2005a). In addition to the
TI method which is used in this study, the free energy pertur-
bation (FEP) approach or Bennett acceptance ratio (BAR) are
also commonly used in alchemical free energy calculations (Ben-
nett, 1976; Kollman, 1993). In some earlier retrospective stud-
ies, the error of the calculated binding free energy is shown
to be 1–2 kcal/mol (Jayachandran et al., 2006; Jiao et al., 2008;
Michel and Essex, 2008; Boyce et al., 2009; Jiao et al., 2009;
Rocklin et al., 2013). Prospective studies, e.g., calculation-driven
inhibitor design, have also occasionally been reported in the lit-
erature (Jorgensen et al., 2006; Kim et al., 2006; Boyce et al.,
2009; Bollini et al., 2011). Building on these recent advances in
the theoretical development of the alchemical free energy cal-
culation, we seek here to incorporate this approach to discov-
ery potential inhibitors of eukaryotic elongation factor 2 kinase
(eEF2K).

Eukaryotic elongation factor 2 kinase is believed to be a regu-
lator of protein synthesis by phosphorylating the eukaryotic elon-
gation factor 2 (eEF2) protein, which promotes the translocation
of the ribosome along mRNA. Upon phosphorylation of eEF2
by the eEF2K, translation elongation is impeded (Carlberg et al.,
1990; Kruiswijk et al., 2012). A recent study suggests a regula-
tory connection between eEF2K and nutrition deprivation. Cells
undergoing nutrition deprivation survive by blocking the energy-
demanding translation elongation process induced by eEF2K.
However, the tumor cells can also exploit this pathway to sur-
vive from the metabolic stress (Leprivier et al., 2013). This makes
eEF2K a potential target of therapeutic interest in drug discovery.
Recently, a selective eEF2K inhibitor A-484954 (we refer to it as
compound 3 in this study) with a submicromolar IC50 value was
reported (Chen et al., 2011). However, the binding mechanism of
this compound with eEF2K remains unclear, in part due to the
lack of a crystal structure of the kinase.

In this study, we explored the possibility of using in silico
approaches to design inhibitors for novel targets that do not have
crystal structures. Based on a homology model of eEF2K that we
built earlier (Devkota et al., 2014), three hypothetical binding
poses of A-484954 were first generated from docking. The rel-
ative binding free energies of seven novel analogs of A-484954
were calculated for each hypothetical pose using alchemical free
energy approach. The predictions were subsequently compared
and validated with the experiment IC50 values we reported ear-
lier (Edupuganti et al., 2014) although docking and alchemical
free energy calculations were performed before the actual chem-
ical and biochemical experiments. The computational results
were utilized to prioritize the synthesis of the analog compounds
in lead-optimization and provide a better understanding of the
molecular interaction between eEF2K and the analogs. Based on
the correlation between the calculation and experimental data,
the most plausible binding mechanism of the compounds was
also discussed.

Method

Structure Preparation and Docking
As no X-ray crystal structure for eEF2K is in the public domain,
a homology model has been built in our group (Devkota et al.,
2014) using the crystal structures of the alpha-kinase domain
of myosin heavy chain kinase A (MHCKA, PDB ID: 3LKM)
(Ye et al., 2010) and transient receptor potential (TRP) chan-
nels (ChaK) (PDB ID: 1IA9) (Yamaguchi et al., 2001). Based on
this 3D model structure, compounds were docked into the ATP
binding site of eEF2K using the ChemPLP (Korb et al., 2009)
and Goldscore (Jones et al., 1995, 1997) scoring functions in the
GOLD5.1 software package.

Free Energy Approach
To evaluate the change in the binding free energy between two
analog compounds, a two-step free energy calculation scheme
was applied. As shown in Figure 1, the change in the binding
free energy between compounds A and B can be calculated either
by 1G3 − 1G2 or by 1G4 − 1G1. Usually, the later formula is
chosen since it is computationally more feasible and practical. To
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FIGURE 1 | Illustration of the thermodynamic cycle of the perturbation
between the analog compounds A and B. Core represents the common

part between two analogs. The two panels above represent the ligand in the

unbound state in water, while the two panels below represent the ligand in the

bound state in water.

obtain 1G4 and 1G1, two independent perturbations between
compounds A and B need to be conducted in the solvent envi-
ronment (water in this case) with the protein present and absent
respectively. The free energy change 1G of each perturbation
can be evaluated by an alchemical approach, such as the thermo-
dynamic integration (TI) approach used in this study (Kollman,
1993).

For each pair of compounds, an identical protein and octa-
hedral water box were constructed using the leap module in
the AMBER12 software package (Case et al., 2012). A buffering
region of 10 Å is used to solvate the protein-ligand complex and
the ligand in the water box. This results a system of ∼30,500
atoms for each protein-ligand complexes. The parameters for
protein and water are taken from the ff99SB force field (Hornak
et al., 2006) and the TIP3P water model (Jorgensen et al., 1983)
respectively. The ligand parameters are obtained from GAFF
(Wang et al., 2004) with the charges fitted fromHF/6-31G∗ calcu-
lations. All the simulations were started with a quick minimiza-
tion to remove the close contacts in the structure, followed by a 50
ps NVT simulation to heat the system up to 300K and another 50
ps NPT simulation to equilibrate the density of the system, both
with a time step of 1 fs. ProductionNVT simulations of 2–4 ns are
then conducted for data collection with a time step of 2 fs. Peri-
odic boundary condition and particle mesh Ewald were used to
capture long-range effects. The thermodynamic integration along
with a softcore potential implementation (Steinbrecher et al.,
2011) in AMBER12 was applied to estimate the free energy. Each
perturbation used 11 windows with λ values of 0.01, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, where electrostatic and van
derWaals interactions were perturbed simultaneously. This saves
considerable simulation time than perturbing electrostatic and

TABLE 1 | The analogs tested in free energy calculations.

Compound R1 R2 R3

1 Cyclopropyl H CONH2

2 Cyclopropyl Me CONH2

3 (A-484954) Cyclopropyl Et CONH2

4 Cyclopropyl Pr CONH2

5 Cyclopropyl Et CSNH2

6 Cyclobutyl Et CONH2

7 Cyclopentyl Et CONH2

8 Me Me CONH2

van der Waals interaction separately. All the molecular dynamics
(MD) simulations were performed using the AMBER12 software
package (Case et al., 2012). Generally, a good convergence in
the thermodynamic integration of the ligands in water can be
obtained within 1 ns; in contrast, 2–3 ns are normally required
for perturbations with the presence of the kinase using the cur-
rent setting (see data in Supplementary Material). As a result, by
using 11 nodes each with two, eight-core Xeon E5-2680 (Sandy
Bridge) processors running at 2.7GHz on Stampede supercom-
puter in Texas Advanced Computing Center, it takes about 1 day
to obtain the free energy change between two ligands.

Preparation of the Compounds
To probe the structure-activity-relationship of the eEF2K
inhibitor, a number of analog compounds were designed by
replacing different chemical groups at the R1, R2, and R3 sites
(Table 1). The analogs were designed based on the predicted
importance of the chemical groups in binding from docking and
chemical intuition, as well as the ease of chemical synthesis. As a
result, three sites of A-484954 (compound 3) were modified with
different substituents. The R1 (cyclopropyl) and R2 (ethyl) moi-
eties were substituted by both smaller and bigger hydrophobic
groups, including methyl, ethyl, propyl, cyclopropyl, cyclobutyl,
and cyclopentyl. At the R3 site, the CONH2 group in compound
3, which forms a key hydrogen-bond network with the hinge
residues of eEF2K, was replaced by a less polar CSNH2 group.
Details about the synthesis and biochemical experiments can be
found in reference (Edupuganti et al., 2014).

Results and Discussion

Docking Results and the Hypothetical Binding
Poses
Two poses were obtained from two independent docking runs
(Figures 2A,B). In the first run, the ChemPLP (Korb et al., 2009)
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FIGURE 2 | A-484954 (compound 3) and its hypothetical binding poses
to eEF2K homology model structure; (A) is hypothesis 1; (B) is
hypothesis 2; (C) is hypothesis 3; and (D) is the structure of A-484954
shown in green sticks. The hinge region of eEF2K is shown in purple, the

glycine-rich loop is shown in blue, and the pocket deep inside the ATP adenine

binding site is shown in gray surface.

function was used as the primary scoring function with the Gold-
score (Jones et al., 1995, 1997) function used for rescoring. By
ranking with the ChemPLP score, 7 out of the top 10 poses
from 20 generic algorithm optimizations agree with hypothesis
1 (Figure 2A), including the top 3 poses. The ChemPLP score for
the 7 poses ranges from 68.6 to 67.3, while their corresponding
Goldscore ranges from 46.9 to 37.7. In the second run, the two
scoring functions were switched, i.e., the Goldscore was used as
the primary scoring function, while ChemPLP used to rescore the
poses. By ranking the poses with Goldscore, all the top 10 poses
out of 20 generic algorithm optimizations agree with hypoth-
esis 2 (Figure 2B) with Goldscores ranging from 53.6 to 52.8,
while the ChemPLP scores range from 52.2 to 43.9 for the same
poses. It should be noted that the scores between different scor-
ing functions cannot be compared directly. Only the relative
scores of the same scoring function can be compared, ideally the
higher the better. The results indicate a clear difference in pref-
erence between the two scoring functions, i.e., ChemPLP favors
hypothesis 1, while Goldscore favors hypothesis 2.

In both hypothesis 1 and 2, three residues, K170, I232, and
Y236, play a key role in the binding. Y236 is predicted to hold the
ligand via pi-pi stacking with the pyridopyrimidine ring of com-
pound 3 in both binding poses. K170 and I232 all form hydrogen
bonds with the ligand, however, differently in the two poses. In
hypothesis 1, the carbonyl group oxygen (O2) and amine nitro-
gen (N3) of the ligand form hydrogen bonds with the side chain
of K170 and the backbone oxygen atom of I232 respectively.
The cyclopropyl moiety of compound 3 fits into the deep cav-
ity of the ATP-binding site of the kinase (shown in gray surface
in Figure 2), while the ethyl group goes underneath the glycine-
rich loop. In contrast, the hydrogen-bonding network changes to

TABLE 2 | Average hydrogen bond distances (in Å) between the kinase
and compound 3 from 10ns molecular dynamics simulations (measured
between non-hydrogen atoms).

Ligand K170 I232 (O) I232 (N) G234

Hypothesis 1 Compound 3 2.8 3.2 N/A 2.9

Compound 5 2.9 3.4 N/A 5.2

Hypothesis 2 Compound 3 3.1 N/A 3.1 N/A

Hypothesis 3 Compound 3 6.5 3.3 3.0 N/A

Data from first 2 ns of each simulation were excluded.

O of compound 3 with K170 and O1 with the backbone nitro-
gen of I232 in hypothesis 2. The ethyl group still goes under-
neath the glycine-rich loop, however, the cyclopropyl group is
pointing outwards of the pocket. In addition, residue G234 also
contributes to the hydrogen bond network with the ligand in
hypothesis 1.

Based on the visual inspection of hypotheses 1 and 2, we
then deduced hypothesis 3 (Figure 2C), which was obtained by
manually flipping the ligand around O2 in hypothesis 1. This
promotes the O and N4 of the ligand forming the hydrogen bond
network with the backbone nitrogen and oxygen of I232 respec-
tively. Another difference between hypothesis 3 and 1 is that the
position of the ethyl and cyclopropyl group is switched. The ethyl
group flipped into the cavity inside the binding pocket and the
cyclopropyl went to underneath the glycine rich loop.

To examine the stability of these hydrogen bonds in each
poses, all three structures were minimized and relaxed by means
of MD simulations for 10 ns. The measurement of the hydrogen
bond distance suggests the hydrogen bonds predicted in docking
are reasonably stable in general (Table 2). The average distances
between the heavier atoms of the hydrogen bonds are generally
around 3 Å. However, in hypothesis 3, the manually docked pose,
the hydrogen bond between O2 of the ligand and K170 dimin-
ished quickly during the MD simulation, resulting an average
distance of 6.5 Å (Table 2).

Determine the Binding Mode
To determine the binding pose of compound 3, the binding free
energy change from compound 3 to its analogs are calculated and
compared with the experiment IC50 values (Table 3). As we have
three hypothetical poses, the calculation was repeated for each
of them. As free energy methods have been shown to have good
accuracy in predicting the relative binding free energy, the hypo-
thetical binding pose which is closer to the true binding mode
should give the best correlation between the predicted binding
free energy and the experimentally measured binding affinity.

It should be noted that the binding free energy calculated here
is the relative binding free energy, i.e., the cost in free energy
by substituting compound 3 with another compound. A positive
value suggests a cost in energy, thus the substituted compound
(i.e., 3) should be a stronger binder than the other. Conversely,
a negative value means the substituent binds better. For exam-
ple, in Table 3, from compounds 3 to 1, the predicted change in
binding free energy is 2.0 kcal/mol based on hypothesis 1, thus
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TABLE 3 | Calculated binding free energy change (11G, kcal/mol) of the
analogs against A-484954 and their experimental IC50 values (µM).

Compound IC*

50
11G w.r.t. compound 3

Hypothesis 1 Hypothesis 2 Hypothesis 3

1 6.6 2.0 ± 0.3 1.6 ± 0.5 1.1 ± 0.5

2 6.1 1.5 ± 0.2 0.5 ± 0.1 −0.5± 0.1

3 (A-484954) 0.42 0 0 0

4 0.93 0.7 ± 0.3 2.9 ± 0.3 0.3 ± 0.4

5 >25 0.4 ± 0.3 6.9 ± 0.6 5.8 ± 0.4

6 N/A −1.1± 0.4 N/A N/A

7 N/A −2.6± 0.4 N/A N/A

8 >25 3.1 ± 0.4 −0.6± 0.3 0.7 ± 0.5

A positive change in 11G indicates a cost in energy of the mutation from compound 3,

which suggests a decrease in potency. *Details about the measurement can be found in

ref (Edupuganti et al., 2014).

compound 3 is predicted to have a higher binding affinity than
compound 1.

To determine the binding mode of compound 3, each of the
hypothetical binding poses need to be justified. In hypothesis 2
(Figure 2B), for example, the CONH2 group forms a hydrogen
bond with the hinge residue of eEF2K, which implies that the
oxygen atom may be important in binding. Substituting CONH2

(compound 3) with CSNH2 (compound 5) yield a 6.9 kcal/mol
energy cost based on the free energy calculation (Table 3). This
is in accordance with the trend of measured IC50 values, which
increases from 0.42µM to >25µM for compound 5. However,
when the cyclopropyl group in compound 3 is substituted by
methyl (compound 8), an increase in affinity would be expected
as the cyclopropyl is exposure to solvent in hypothesis 2, sub-
stituting it with a smaller hydrophobic group might be more
favorable. Not surprisingly, the calculated free energy change
based on this pose suggests this is a favorable substitution, given
a free energy change of -0.6 kcal/mol. However, the measured
IC50 value indicates this is an unfavorable change, where the
IC50 of compound 8 is at least 50-fold weaker than compound
3. Nonetheless, such results demonstrate a good prediction of
the free energy change, but possibly indicate a bad binding pose
predicted in hypothesis 2.

Similarly, when the ethyl group in compound 3 was substi-
tuted by the methyl group (compound 2), the free energy calcu-
lated based on hypothesis 3 suggested it is a favorable change (-0.5
kcal/mol), while the calculation based on hypothesis 1 suggested
an unfavorable change (1.5 kcal/mol). Comparing the IC50 value
of 6.1µMof compound 2with 0.42µMof compound 3, it is clear
that the prediction based on hypothesis 1 is more accurate. To
make a conclusion, a systematic comparison of the correlation
between the calculated relative free energy and the experimental
IC50 values are conducted.

To facilitate the comparison, relative ln(IC50) values were cal-
culated based on the original experiment IC50 data. For each
compound, the natural logarithms were first obtained. Then the
relative values were calculated against compound 3, to be con-
sistent with the free energy calculations. As the IC50 values for
compounds 5 and 8 have beenmeasured only to be>25µM, they

were all considered to have an IC50 value of 25µM to simplify the
comparison. For compounds 6 and 7, due to the difficulties in
synthesis, they were not included in the comparison. This results
six data points for each of the hypothetical binding poses.

As shown in Figure 3, the calculated relative binding free
energy was plotted against the experimental IC50 values. A good
correlation between the calculation and experiment is observed
for hypothesis 1 in general (Figure 3). In contrast, neither
hypothesis 2 nor 3 shows strong correlation between the pre-
dictions and the actual experiment measurements. If all six data
points were considered, the r2 correlation coefficient for hypoth-
esis 1, 2, and 3 are 0.37, 0.08, and 0.31 respectively, while the
Kendall’s τ rank correlation coefficient are of 0.55, 0.14, and 0.55.
All are not meaningful. However, if one outlier (compound 5)
is removed in hypothesis 1, the best r2 coefficient becomes 0.96.
In contrast, the best r2 coefficient of hypothesis 2 and 3 after
removing any outliers are 0.42 (removing compound 8) and 0.49
(removing compound 8; removing compound 5 yields a r2 of
0.13) respectively. The Kendall’s τ rank correlation coefficient
becomes 0.97, 0.69, and 0.55 (0.41) by removing the same com-
pounds. With such a good correlation for hypothesis 1, it is likely
that this pose is closer to the true binding mode of compound 3

in eEF2K.

Ranking and Prioritizing the Compounds
It is shown that hypothesis 1 may be the closest to the true
binding mode of compound 3 with eEF2K in previous section.
The relative potency of five (out of six) compounds is correctly
predicted. The correlation between the prediction and exper-
imental measurement of the five compounds is rather good,
with an r2 correlation coefficient of 0.96 and a Kendall’s τ rank
correlation of 0.97 (Figure 3). The calculation correctly pre-
dicted the structure-activity-relationship of the R1 and R2 sites
of compound 3 (Tables 1, 3). At the R1 site, the calculation sug-
gested that bigger hydrophobic groups, for example cyclobutyl
and cyclopentyl tested in calculation, are generally more potent
than smaller groups in the order of cyclopentyl (compound 7)
> cyclobutyl (compound 6) > cyclopropyl (compound 3) >

methyl (compound 8). The change in binding free energy from
compound 3 to compounds 7, 6, and 8 are −2.6, −1.1, and
3.1 kcal/mol respectively. A negative change in the binding free
energy suggests a favorable change, i.e., a more potent com-
pound, while a positive change suggests an unfavorable change,
i.e., a less potent compound. The prediction for the change from
compound 3 to compound 8 has been verified by experimental
IC50 values of 0.42 and >25µM for the two compounds respec-
tively. However, for compound 6 and compound 7, experimental
results are not obtained due to the difficulties in synthesis of the
two compounds. Another compound, which uses ethyl to sub-
stitute cyclopropyl at the R1 site, has an IC50 value between 1 ∼
2µM (Edupuganti et al., 2014). This is in accordance with our
predicted structure-activity-relationship.

At the R2 site, the calculated free energy suggested that the
ethyl group of compound 3 is the optimal group. Replacing it
with bigger or smaller hydrocarbon groups all lowers the potency
of the compound. The calculated binding free energy change
from substituting ethyl with hydrogen (compound 1), methyl
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FIGURE 3 | Plots of the calculated relative binding free energy and the
experimental relative ln(IC50) values, i.e., compounds X—compounds 3
(X = 1, 2, 4, 5, 8), use each of the three hypothetical binding poses
(dots for hypothesis 1, asterisks for hypothesis 2 and triangles for
hypothesis 3). After removing one outlier (either compound 5 or 8), the best

r2 correlation coefficient for hypothesis 1, 2, and 3 are 0.96 (removing

compound 5), 0.42 (removing compound 8), and 0.49 (removing compound 8;
removing compound 5 yields a r2 of 0.13), respectively, while the Kendall’s τ

rank correlation are 0.97, 0.69 and 0.55 (0.41), respectively, by removing the

same compound in r2 calculation.

(compound 2) and propyl (compound 4) are 2.0, 1.5, and 0.7
kcal/mol, respectively. This is in an excellent agreement with
the experimental IC50 values of 0.42, 6.6, 6.1, and 0.93µM for
compounds 3, 1, 2, and 4.

FIGURE 4 | Two eEF2K inhibitors, (A) A-484954 and (B) compound 2 in
the reference (Lockman et al., 2010), (C) in complex with eEF2K with
the conformations of hypothesis 1.

An earlier study (Lockman et al., 2010) also reported a com-
pound (Figure 4B), which has similar scaffold as compound 3,
favors relatively bigger groups (e.g., furan and isobutyl) than
smaller groups (e.g., hydrogen atom and methyl) at R1 in gen-
eral. After docking this compound to eEF2K in reference to the
binding poses of compound 3 in hypothesis 1 and 2, two bind-
ing poses are obtained. We then calculated the relative binding
free energy upon the substitution of the hydrogen atom with a
furan group at R1 of the compound (Figure 4). The calculated
changes in binding free energy are of−0.8± 0.4 and−2.6± 0.3
kcal/mol for the two poses, respectively. Given the experimental
IC50 values of 2.5 and 0.64µM of the compounds with hydro-
gen and furan at R1, respectively, the calculated results based on
hypothesis 1 (11G = −0.8± 0.4 kcal/mol) is clearly better cor-
related with the 4-fold increase in binding affinity measured in
experiment.

Problem in Free Energy Calculation between
Compounds 3 and 5
As discussed in previous sections, the calculated change in the
binding free energy from compound 3 to 5 in hypothesis 1 was
the only outlier in comparison with the experimental IC50 values
(Figure 3). However, the independent MD simulations of com-
pounds 3 and 5 clearly indicates that the later lost one key hydro-
gen bond between the N3 atom of the compound and the Gly234
residue in the hinge region of the kinase (Figure 2 and Table 2).
A short hydrogen bond distance of 2.9 Å between Gly234 and
compound 3 suggests a strong interaction between the kinase
and the ligand. However, after the CONH2 group is substituted
with CSNH2, this hydrogen bond is completely lost, given an
average distance of 5.2 Å in the MD simulation of compound
5 (Table 2). Quantum mechanical calculations (HF/6-31G∗) for
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compounds 3 and 5 suggest that the substitution of CONH2

with CSNH2 is associated with significant change on the charge
distribution of the atoms nearby. As a result, the restrained
electrostatic potential (RESP) method fitted partial charges of
the neighbor NH2 group, as well as the carbon atoms, are less
polar in compound 5 comparing to the charges in compound
3. The calculated electrostatic interaction energy between com-
pound 5 and eEF2K is about 9.1 kcal/mol less favorable than
that of compound 3, while the contribution from vdWs inter-
action of compounds 5 and 3 are about the same, of −40.5 and
−40.8 kcal/mol, respectively (averaged energy from MD simula-
tions). This shift in energy is in accordance with the observed
shift in hydrogen bond distances. These evidences all suggest
that compound 5 may be a weaker binder than 3. The fail-
ure of the free energy calculation between compounds 3 and 5

might be a combination of many factors, e.g., the force field and
the free energy method. More studies are needed before a con-
clusion can be drawn. This, however, is out the scope of our
study.

Conclusion

In this study, the binding mechanism of a known eEF2K
inhibitor (Chen et al., 2011) (compound 3) has been studied
using docking and alchemical free energy approaches in con-
junction with experimental measurements. The inhibitor was
firstly docked into the ATP-binding site of a homology model
(Devkota et al., 2014) we built earlier. Then, three different
binding poses, hypothesis 1, 2, and 3, were used to predict the
structure-activity-relationship (SAR) of the inhibitor. The cal-
culated relative binding free energy of analogs of compound 3

using the pose in hypothesis 1 shows a good correlation with
the experimental IC50 values, giving an r2 coefficient of 0.96 after
removing a suspicious outlier (compound 5). Calculations using
another two poses merely show correlations with experiment,
given the r2 coefficients of <0.5 either or not remove any single

outliers (Figure 3). Based on hypothesis 1, further free energy
calculations suggest bigger cyclic groups, e.g., cyclobutyl and
cyclopentyl, at R1 might be more favorable in binding than
smaller groups, e.g., cyclopropyl and hydrogen. This is in accor-
dance with previous study of an eEF2K inhibitor which has simi-
lar core scaffold as compound 3 (Lockman et al., 2010). At R2, the
ethyl group might be close to the optimal size, as either longer or
shorter side chains do not increase the potency of the compound.
Moreover, this study also demonstrates the ability of the alchem-
ical free energy approach in prioritizing the compound synthe-
sis in combination with docking and homology modeling when
experimental protein structures are not available, suggesting an
alternative way to reduce the dependence of crystal structures in
structure-based drug design, as well as the possibility to reduce
the total number of compounds that need to be synthesized and
tested.
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