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ABSTRACT
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis.
Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series
of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The
synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell
lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate
the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were
highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with
IC50 of 3.2 nM very close to positive control sorafenib (IC50 ¼ 3.12nM). Such compound exhibited a strong
cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5mM in comparison to sora-
fenib (IC50 ¼ 3.51 and 2.17mM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-
2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progres-
sion and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a
on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were
implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket.
Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study
their pharmacokinetic profiles
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1. Introduction

According to WHO reports, cancer is considered the second major
cause of death1. By 2030, the incidence of cancer deaths will
reach thirteen million worldwide2. Although the high advances in
the diagnosis and treatment of cancer diseases, the survival of
patients remains poor due to the widespread adverse effects of
anticancer agents3. So that, the discovery of new, effective, select-
ive, and less toxic anticancer agents remains one of the most
urgent needs4.

Angiogenesis process plays an important role in the growth
and regeneration of tissues. Such a role is crucial to prevent
ischaemic necrosis and facilitate the survival of the damaged tis-
sues5. During the normal state, angiogenesis is controlled by
some protein kinases (PKs), which comprise VEGFRs, FGFRs, and
EGFRs6. PKs can be deregulated under pathological conditions,
producing a disturbance in angiogenesis process. This leads to an
increasing in the rate of cell division, creating tumour disease7.

VEGFRs and their specific agonist (VEGF) are overexpressed in
many human tumours, especially solid tumours as gliomas and
carcinomas8. Therefore, VEGFRs are considered as one the most

important regulators of angiogenesis and consequently tumour
growth9. VEGFRs family comprises three subtypes including
VEGFR-1, VEGFR-2, and VEGFR-310. VEGFR-1 controls embryonic
vasculogenesis11. VEGFR-2 regulates both embryonic vasculogene-
sis and tumour angiogenesis12. On the other hand, VEGFR-3 is
responsible for lymphangiogenesis13. So that, VEGFR-2 is now the
foremost target for antiangiogenic therapy, and its blocking is a
relevant approach for the discovery of new drugs against angioge-
nesis–dependent malignancies14. VEGFR-2 inhibitors demonstrated
effective suppression of tumour progression. ATP binding site is
the main target of most VEGFR-2 inhibitors15.

The crystal structures of VEGFR-2 revealed the presence of
many pockets at the ATP binding site. (i) Hinge region which
locates on the front side and comprises two key amino acid resi-
dues (Cys919 and Glu917). These residues participate in H-bond
interactions with the adenine ring of ATP. (ii) Gatekeeper region
which separates between the hinge region and DFG-motif region.
(iii) DFG-motif region which locates on the backside and contains
two key amino acids (Glu885 and Asp1046). For maximum activity,
VEGFR-2 inhibitors have to bind with these two residues via H-
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bonds. (iv) Allosteric hydrophobic region which consists of much
hydrophobic amino acid residues16–19.

VEGFR-2 inhibitors can be classified into three types. Type I
inhibitors (ATP competitive inhibitors), e.g. sunitinib 1 can bind to
the adenine binding region of the ATP binding site15. Type II
inhibitors, e.g. sorafenib 2 induce inactive activation of DFG-out
confirmation of activation loop. Such type can bind additionally
the allosteric hydrophobic pocket of ATP20. Type III inhibitors, e.g.
vatalanib 3 can form covalent interaction with cysteine amino
acid residue at ATP binding site21,22.

Many drugs targeting VEGFR-2 have been approved for clinical
use in the treatment of different types of cancers (Figure 1).
Sorafenib 2 is a potent VEGFR-2 inhibitor23. It is mainly used in
the treatment of advanced renal cell carcinoma (RCC) and hepato-
cellular carcinoma (HCC)24. Regorafenib 4, a fluoro derivative of
sorafenib, has been developed to inhibits VEGFR1-325. Tivozanib 5,
a VEGFR-2 inhibitor, has been approved by the FDA in March

2021 for the treatment of RCC26–28. Sunitinib 1 is a VEGFR-2 kinase
inhibitor that was approved for the treatment of RCC and of
gastrointestinal stromal tumours (GIST)29.

Binding mode sorafenib, a representative example of VEGFR-2
inhibitors, against VEGFR-2 active site (PDB: 4ASD) was reported in
many publications. The heterocyclic (N-methylpicolinamide) moi-
ety is buried in the hinge region forming two H-bonds with
Cys919 through the N atom of the pyridine ring and NH group of
acetamide moiety. In addition, the urea moiety binds to the recep-
tor at the DFG motif through various H-bonding interactions with
Glu885 and Asp1046. The terminal phenyl ring occupies the allo-
steric site forming hydrophobic interactions with the hydrophobic
pocket created by the DFG flipping out30–32.

Studying the SAR of VEGFR-2 inhibitors and analysing the bind-
ing mode of sorafenib revealed that the majority of potent and
selective VEGFR-2 inhibitors have four common pharmacophoric
features that facilitate their fitting with the active binding

Figure 1. Some clinically used VEGFR-2 inhibitors as well as quinoxaline derivatives having VEGFR-2 inhibitory actions.
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pocket33–35. The first feature is a flat heteroaromatic ring system
(ahead) incorporating at least one H-bond acceptor to interact
with the crucial amino acid residue Cys919 in the hinge
region30,31. A second feature is a spacer group that gives the
inhibitor enough length36,37, making the third feature (pharmaco-
phore) near at DFG motif to bind with two crucial residues
(Glu883 and Asp1044)37,38. A pharmacophore is a functional group
that comprises at least one H-bond acceptor (HBA) and one H-
bond donor (HBD) group (typically amide or urea)31,38. The fourth
feature is a terminal hydrophobic moiety that can occupy the cre-
ated allosteric hydrophobic binding site16,39.

Apoptosis as a form of cellular suicide is one of the important
mechanisms by which anticancer agents can affect cancer cells40.
Apoptosis is regulated by several mediators41. Among these are
caspases, specifically caspase-3 and caspase-942,43. Caspase-3 pro-
tease is a major mediator of apoptosis catalysing the cleavage of
many vital cellular proteins leading to cell death44. Caspase-9 acti-
vates other executioner caspases as caspase-3, -6, and -7 initiating
apoptosis as they cleave several other cellular targets45. In add-
ition, the Bcl-2 family proteins are key regulators of apoptosis.
This family comprised pro-apoptotic proteins as BAX that promote
cell death and anti-apoptotic proteins as Bcl-2 which suppress cell
death46,47. The balance between pro-apoptotic and anti-apoptotic
proteins (BAX/Bcl-2 ratio) regulates cell fate48. Current evidence
suggested that inhibition of angiogenesis, anti-angiogenic thera-
pies have been shown to increase apoptosis in tumour cells49.
VEGFR-2 inhibitors were found to induce and accelerate apoptosis
in cancer cells which synergistically potentiates their antitumor
effect30,49–51.

Moreover, the literature survey revealed that different scaffolds
have been reported as excellent inhibitors of VEGFR-2. These scaf-
folds comprise quinoline (e.g. lenvatinib 652), quinazoline53, and
indazole54. Furthermore, quinoxaline, a bioisostere for the afore-
mentioned scaffolds, is considered an important nucleus for anti-
cancer drugs3,55–58. Many quinoxaline derivatives were reported to
possess significant VEGFR-2 inhibitory activities39,59–62.

In our previous work, we developed [1,2,4]triazolo[4,3-a]qui-
noxaline containing derivatives as VEGFR-2 inhibitors. Compounds
8 and 9 were the most potent candidates exhibiting an excellent
VEGFR-2 inhibitory activity with a promising cytotoxic efficacy
against breast and hepatocellular carcinoma63,64. In continuation
of our work63–65 aimed at synthesising new anticancer agents tar-
geting VEGFR-2 inhibition, new quinoxaline derivatives were
designed and synthesised. The synthesised compounds were eval-
uated for their anti-proliferative activity. In addition, VEGFR-2
inhibitory activities were estimated for all compounds to hint at
the potential mechanism of their cytotoxicity. Furthermore, deep
investigations were performed on the most active member to
assess its effect on apoptotic (caspase-3, caspase-9, and BAX) and
anti-apoptotic (Bcl-2) mediators.

1.1. Rational of design

Considering compounds 7 and 8 as leading compounds63,64. The
design included the replacement of [1,2,4]triazolo[4,3-a]quinoxa-
line in compound 7 and/or bis([1,2,4]triazolo)[4,3-a:30,40-c]quinoxa-
line of compound 8 by 3-methylquinoxaline scaffold. 3-
Methylquinoxaline is considered as bioisostere for N-methylpicoli-
namide moiety of sorafenib61. Two quinoxaline moieties (3-meth-
ylquinoxalin-2(1H)-one and 3-methylquinoxaline-2-thiol) were used
as a biological isostere. As in the lead compounds, N-phenylaceta-
mide moiety was utilised as a linker. The pharmacophore (HBD/
HBA) was designed to be an amide, diamide, and/or hydrazide

groups. Amide pharmacophore served as hydrogen bond donor
and acceptor in many reported VEGFR-2 inhibitors61,63,64,66. Finally,
different, aliphatic, and un/substituted aromatic derivatives were
selected to be the terminal hydrophobic moieties to occupy the
allosteric hydrophobic pocket (Figure 2).

2. Results and discussion

2.1. Chemistry

To reach the designed compounds, four Schemes 1–4 were
adopted. The synthesis was initiated by the reaction of o- phenyl-
enediamine 9 with sodium pyruvate 10 in glacial acetic acid
according to the reported procedure to furnish 3-methylquinoxa-
lin-2(1H)-one 1167. This starting material 11 was subjected to sub-
sequent treatment with potassium hydroxide to produce the
corresponding potassium salt 1267. Chlorination of compound 11
was achieved using phosphorous oxychloride to afford 2-chloro-3-
methylquinoxaline 1368. Refluxing the latter with thiourea in abso-
lute ethanol resulted in 3-methylquinoxaline-2-thiol 1469,70 which
was underwent heating with alcoholic potassium hydroxide to
provide the corresponding potassium salt 15 (Scheme 1).

According to the literature71–73, stirring of commercially avail-
able p-amino benzoic acid 16 with chloroacetyl chloride in dry
DMF in cold conditions yielded 4–(2-chloroacetamido)benzoic acid
17. Treatment of 17 with thionyl chloride in 1,2 dichloroethane
and a catalytic amount of DMF gave the key intermediate 4–(2-
chloroacetamido)benzoyl chloride 1863,74.

On the other hand, methyl esters of appropriate acid deriva-
tives, namely benzoic acid 21a and 4-nitrobenzoic acid 21b were
prepared by refluxing carboxylic acids in methanol with the pres-
ence of sulphuric acid75. The ester derivatives 22a,b were treated
with hydrazine hydrate to get the corresponding acid hydrazides
23a,b76,77. The produced acid hydrazides 23a,b were then allowed
to stir with 4-(2-chloroacetamido)benzoyl chloride 18 in aceto-
nitrile and TEA to furnish the intermediates 24a,b, respectively.
Likewise, stirring of phenyl hydrazine 20 with 4-(2-chloroacetami-
do)benzoyl chloride 18 yielded the corresponding intermediate 2-
chloro-N-(4–(2-phenylhydrazine-1-carbonyl)phenyl) acetamide 25.
Compound 18 was stirred at room temperature in acetonitrile in
the presence of a catalytic amount of TEA with appropriate
amines 19a–j namely, tertiary butyl amine, cyclohexyl amine, ben-
zyl amine, phenethyl amine, aniline, 2-methyl aniline, 2,6 dime-
thoxy aniline, 2,6 dimethyl aniline, 4-nitro-aniline, and 3-
chloropyridine to give the corresponding chloroacetamide inter-
mediates 26a–j, respectively (Scheme 2).

Synthesis of the final target compounds was illustrated in
Schemes 3, 4. The 3-methylquinoxalin-2(1H)-one derivative (com-
pounds 27a–f, 28, and 29) were obtained by heating of potas-
sium salt 12 in dry DMF and a catalytic amount of KI with the
previously prepared intermediates 26a,d,g–j, 24b, and 25,
respectively (Scheme 3).

Furthermore, heating of potassium salt 15 with the intermedi-
ates 26a–g,i,j, 24a,b, and 25 in dry DMF and a catalytic amount
of KI afforded the final target compounds 30a–i, 31a,b, and 32
(methylquinoxaline-2-thiol derivatives) (Scheme 4).

IR spectra of compounds 27a–f and 30a–i exhibited the pres-
ence of characteristic stretching bands at 3428–3215 cm�1 corre-
sponding to NH groups. Furthermore, the NMR spectra of
compounds 27a–f and 30a–i supported their assigned structures.
1H NMR charts of these compounds revealed the appearance of
two singlet signals around d 10.5 ppm attributed to the intro-
duced two amidic NH protons. It also demonstrated increased
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integration of the aromatic protons corresponding to the add-
itional phenyl ring. A characteristic up-field singlet signal equiva-
lent to CH2 of acetamide moiety was detected at about d
4.30 ppm. Additionally, a singlet signal of CH3 group of 3-methyl-
quinoxalin-2(1H)-one moiety appeared around d 2.49 ppm. 13C
NMR spectra displayed the presence of two peaks at the aliphatic
region attributed to the CH2 and CH3 groups around d 40.0 and
22.5 ppm, respectively.

1H NMR spectra of compounds 28, 29, 31a,b, and 32 demon-
strated the presence of the amidic protons of hydrazide moiety at
a range of d 10.02–12.71 ppm. Additionally, 13C NMR spectrum of
compounds 31b as an example of these compounds revealed the
appearance of two peaks at d 35.45 and 22.18 ppm corresponding
to CH2 and CH3 groups, respectively. Mass spectroscopic analysis

displayed a base peak at 517.0 (m/z) corresponding to the exact
mass of the compound 31b.

2.2. Biological testing

2.2.1. In vitro anti-proliferative activity
In vitro cytotoxic activities of the synthesised compounds were
evaluated against two different cancer cell lines; breast cancer
(MCF-7) and hepatocellular carcinoma (HepG2) using standard
MTT colorimetric assay as described by Mosmann78,79. Sorafenib
was used as a reference cytotoxic drug. The results of cytotoxicity
were expressed as growth inhibitory concentration (IC50) values
and summarised in Table 1.

Scheme 1. General procedure for preparation of the key potassium salts 12 and 15.

Figure 2. Rational design of new VEGFR-2 inhibitors.
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General investigation of the cytotoxicity results clarified that
the examined compounds had greater anti-proliferative activities
against HepG2 than MCF-7 cells. In particular, compound 27a was
found to be the most potent derivative. Such compound showed
strong anti-proliferative activities against MCF-7 and HepG2 cancer
cell lines with IC50 values of 7.7 and 4.5mM, respectively. These
values were close to that of the sorafenib (IC50 ¼ 3.51 and
2.17mM, respectively).

Additionally, compounds 28 (IC50 ¼ 17.2 and 11.7mM), 30f
(IC50 ¼ 18.1 and 10.7mM), 30i (IC50 ¼ 17.2 and 12.7 mM), and 31b
(IC50 ¼ 19.2 and 13.7 mM) demonstrated promising cytotoxicity

against MCF-7 and HepG2, respectively. Compounds 27f, 29, 30h,
and 31a showed moderate anti-proliferative activities against the
two tested cell lines with IC50 values ranging from 17.5 to
23.5 mM. While compounds 27d, 27e, and 30e showed moderate
activities against only HepG2 cells with IC50 values ranging from
24.1 to 27.5 mM.

On the other hand, compounds 30b, 30c, and 30d displayed
weak cytotoxic activities against the two cell lines with IC50 values
ranging from 32.4 to 43.8 mM. While compounds 27d, 27e, and
30e showed weak activities against only MCF-7 with IC50 values
ranging from 30.7 to 42.3mM. Compounds 27b, 27c, 30a, 30g,

Scheme 2. General procedure for preparation of the intermediates 24a,b, 25, and 26a–j.
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and 32 showed weak activities against only HepG2 with IC50 val-
ues ranging from 40.8 to 43.7 mM. In the contrast, these com-
pounds were inactive against the MCF-7 cell line.

Comparing to the lead compounds 7 (IC50 ¼ 7.2 and 4.1mM)
and 8 (IC50 ¼ 4.4 and 3.3mM), it was found that the most active
compounds 27a (IC50 ¼ 7.2 and 4.1mM) was slightly less active
than these compounds against MCF-7 and HepG2, respectively.

2.2.2. In vitro kinase inhibition assay
The newly prepared compounds have been further assayed for
their inhibitory activity towards sorafenib’s crucial target (VEGFR-
2). The results were reported as 50% inhibition concentration val-
ues (IC50, expressed as nM) in comparison to sorafenib as a refer-
ence drug (Table 1).

To a great extent, the reported results were in good agreement
with that of cytotoxicity. This may clarify the possible mechanism
of cytotoxic action for the designed compounds. Most of the
tested compounds exhibited excellent, moderate, to weak VEGFR-
2 inhibitory activities with IC50 values ranging from 3.2 to 38.9 nM,
compared to positive control sorafenib (IC50 ¼ 3.12 nM).

Among them, compound 27a was the most potent VEGFR-2
inhibitor with an IC50 value of 3.2 nM. Besides, compounds 28, 29,
30b, 30f, 30i, and 31b showed strong VEGFR-2 inhibitory activ-
ities with IC50 values of 4.2, 9.8, 8.7, 4.9, 6.1, and 5.1 nM respect-
ively. Furthermore, compounds 27c, 27f, 30c, 30d, 30h, and 31a
displayed moderate activities with IC50 values ranging from 10.7
to 15.7 nM. Finally, compounds 27b, 27d, 27e, 30a, 30e, 30g, and

32 presented weak activities with an IC50 value range
of 21.7–38.9 nM.

Comparing to the lead compounds 7 (IC50 ¼ 3.4 nM) and 8
(IC50 ¼ 3.2 nM), it was found that the most active compounds 27a
(IC50 ¼ 3.2 nM) had comparable VEGFR-2 inhibitory activity with
these lead compounds.

2.2.3. Cytotoxicity against primary rat hepatocytes (normal hep-
atic cells)
It is of high importance for anticancer agents to have minimum
side effects on normal cells. To assess the selectivity of the syn-
thesised compounds against cancer cells over normal ones, the
cytotoxicity of the most active anti-proliferative compounds 27a
and 30f was evaluated in vitro against primary rat hepatocytes
using sorafenib as reference80. The two compounds 27a and 30f
showed cytotoxic activity against cancer HepG2 cell line (4.5-fold
and 1.5-fold, respectively) more than cytotoxic activity against nor-
mal hepatic cells in comparison to sorafenib (8-fold) (Table 1).

2.2.4. Structure-activity relationship
It was noticed that the synthesised compounds were more effect-
ive against HepG2 than the MCF-7 cell line (Figure 3). The
obtained data from VEGFR-2 inhibition was highly matched with
that of cytotoxicity. So that, the SAR can be built on the results of
cytotoxicity and/or VEGFR-2 inhibition. SAR of the newly synthes-
ised compounds was studied along with the pharmacophoric fea-
tures outlined in the rationale of molecular design.

Scheme 3. General procedure for preparation of the target compounds 27a–f, 28, and 29.
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Firstly, the effect of the flat heteroaromatic ring on biological
activity was examined. Comparing the cytotoxicity and VEGFR-2
inhibitory activities of the synthesised compounds incorporating
3-methylquinoxalin-2(1H)one moiety (compounds 27a–f, 28, and
29) with that incorporating 3-methylquinoxaline-2-thiol moiety
(compounds 30a–i, 31a,b, and 32), it was found that 3-methylqui-
noxalin-2(1H)one moiety was more valuable than methylquinoxa-
line-2-thiol nucleus.

In addition, the impact of pharmacophore (HBD/HBA) moiety
was explored. Regarding 3-methylquinoxalin-2(1H)one derivatives,
it was found that compounds comprising the amide group (com-
pounds 27a–f) were more active than that containing diamide
group (compound 28), which in turn was more active than that
with hydrazide moiety (compound 29). Concerning for 3-methyl-
quinoxaline-2-thiol series, despite maintaining the same order of
activity, it was found that compounds bearing amide (compounds
30a–i), diamide (compounds 31a,b), and hydrazide (compound

32) groups showed decreased activity than that incorporating 3-
methylquinoxalin-2(1H)one nucleus.

Furthermore, the structure of the terminal hydrophobic tail
gave wide varieties of biological activity. In cornering methylqui-
noxalin-2(1H)one derivatives, it was noticed that hydrophobic ali-
phatic moiety was critical for activity as found in the most potent
member 27a containing tertiary butyl tail.

For the hydrophobic aromatic tail, the heterocyclic ring (com-
pound 27f) displayed high activity than non-heteroaromatic ones
(compounds 27a–d). Then, the effect of the substitution on the
aromatic rings was examined. it was observed that the cytotoxicity
and VEGFR-2 inhibitory activities were highly fluctuated by substi-
tution with electron-withdrawing (EWG) and electron-donating
(EDG)groups. The unsubstituted phenyl ring (compound 27b)
markedly decreased the biological activity. Substitution with EDG
as a 2,6-dimethoxy group (compound 27c) increased the cytotox-
icity. Changing the substitutions to be 2,6-dimethyl groups

Scheme 4. General procedure for preparation of the target compounds 30a–i, 31a,b, and 32.
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(compound 27d) markedly decreased the activity. Additionally, it
was found that the cytotoxicity decreased upon substitution with
the electron-withdrawing group as in compound 27e.

For 3-methylquinoxaline-2-thiol derivatives, it was found that
aromatic tails (compound 30c-i) were more effective than aliphatic
ones (compounds 30a and 30b). For aliphatic derivatives, the
bulky tertiary butyl tail (compound 30a) showed cytotoxic activity
higher than the alicyclic one (compound 30b). About aromatic
tail, comparing the IC50 of compounds 30f (2-tolyl derivative), 30h
(4-nitrophenyl derivative), and 30e (phenyl derivative), indicated
that substitution with EDG group was more advantageous than
substitution with EWG, which was more favourable than the
unsubstituted one. Shifting the 2-tolyl into 5-chloro-2-pyridinyl
(hetero-aromatic) moiety (compound 30i) produced a mild
decrease in activity. While changing the 2-tolyl into 2,6-dimethoxy
phenyl moiety (compound 30g) produced a dramatic decrease
in activity.

Investigating the activity of compounds 30c, 30d, and 30e
demonstrated that, insertion of carbon bridge between the phenyl
moiety (hydrophobic tail) and the pharmacophore moiety pro-
duced an increase in activity with higher priority for a one-carbon
bridge (compound 30c) over than two-carbon one (com-
pound 30d).

2.2.5. Cell cycle analysis
Tissue homeostasis is tightly controlled by the balance between
cell proliferation and cell death81. This creates a great link
between the cell cycle and apoptosis82. Therefore manipulation of
the cell cycle efficiently affected apoptotic response83.

Flow cytometry analysis as described by Wand et al.84,85 was
used to investigate the effect of the most active compound 27a
on the cell cycle progression and apoptosis induction utilising
HepG2 cell line. HepG2 cells were treated with 4.5mM (IC50 of
compound 27a) for 24 h, then analysed for its effect on cell cycle
distribution. The cell cycle parameters of the incubated cells were
compared with untreated control cells (Table 2 and Figure 4).

The data of flow cytometric analysis revealed the presence of
massive accumulation of the treated HepG2 cells at the G2/M
(34.14%, 3.5-fold) compared to control cells (9.62%). In addition, a
slight difference was observed at the S phase in the percentages
of the treated cells (26.96%) and control ones (29.32%). On other

Table 1. In vitro cytotoxicity of the synthesised compounds against MCF-7 and HepG2 cell lines, their VEGFR-2 inhibitory
activities on cancer HepG2 cell line, and cytotoxicity for compounds 27a and 30f against normal HepG2cell line.

Compounds

Cytotoxicity on cancer cells IC50 (mM)
a

VEGFR-2 IC50 (nM)
a

Cytotoxicity on
normal

hepatocytes IC50 (mM)
aMCF-7 HepG2

27a 7.7 4.5 3.2 19.94
27b 62.3 41.5 22.5 NT
27c 57.2 42.6 11.6 NT
27d 30.7 24.1 21.8 NT
27e 42.3 27.5 21.7 NT
27f 22.7 19.7 10.7 NT
28 17.2 11.7 4.2 NT
29 23.5 17.5 9.8 NT
30a 61.9 43.7 29.8 NT
30b 43.8 34.2 8.7 NT
30c 41.9 34.1 13.8 NT
30d 42.7 32.4 15.7 NT
30e 31.3 24.3 27.4 NT
30f 18.1 10.7 4.9 15.73
30g 61.7 40.8 38.9 NT
30h 21.3 17.7 11.8 NT
30i 17.2 12.7 6.1 NT
31a 23.1 18.7 10.7 NT
31b 19.2 13.7 5.1 NT
32 59.5 41.3 23.8 NT
Sorafenib 3.51 2.17 3.12 17.31
Compound 7 7.2 4.1 3.4 NT
Compound 8 4.4 3.3 3.2 NT

NT: not tested.
aAll IC50 values are calculated as the mean of at least three different experiments.

0

10

20

30

40

50

60

70

1234567891011121314151617181920

Cy
to

xi
ci

ty
 (I

C5
0)

Tested  Compounds

Cytotoxicity correla�on

HepG2

MCF-7

Figure 3. Correlation of cytotoxicity of the synthesised compounds on the two
tested cell lines; MCF-7 and HepG2 showing higher sensitivity against HepG2
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Table 2. Effect of compound 27a on cell cycle progression in HepG2 cells.

Sample

Cell cycle distribution (%)a

%Sub-G1 %G1 %S %G2/M

HepG2 1.13 ± 0.08 59.93 ± 1.16 29.32 ± 1.08 9.62 ± 0.98
Compound

27a/HepG2
1.24 ± 0.17 37.66 ± 2.16��� 26.96 ± 1.55 34.14 ± 1.22����

aValues are given as mean ± SEM of three independent experiments.���p< 0.001 and ����p< 0.0001 indicate statistically significant differences
from the corresponding control (HepG2) group in unpaired t-tests.
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hand, the percentage of HepG2 cells increased in the sub G1
phase from 1.13% (control cell) to 1.24% (treated cell). Also, it
decreased at the G1 phase from 59.93% (control cell) to 37.66%
(treated cell). Such outcomes indicated that compound 27a had a
high ability to hinder cell cycle progression of HepG2 cells at the
G2/M phase.

2.2.6. Detection of apoptosis
As compound 27a produced a high accumulation of HepG2 cells
at the G2/M phase, such compound was further investigated for
its apoptotic effect using Annexin V and PI double staining
assay86. In such a procedure, HepG2 cells were treated with com-
pound 27a at a concentration of 4.5mM and incubated for 24 h.

The results revealed that compound 27a induced an increase
of HepG2 cells at early (40.47%) and late (0.35%) stages of apop-
tosis by about five times more than the untreated cells (8.52 and
0.14%, respectively) (Table 3 and Figure 5).

2.2.7. Effects on the levels of active caspase-3 and caspase-9
To analyse the effect of the most active compound 27a on pro-
tein expression levels of caspase-3 and caspase-9, Western blot
analysis was utilised87. In this test, HepG2 cells were treated with
compound 27a at its cytotoxic concentration (4.5 mM) for 24 h.
The results displayed a marked increase in the level of caspase-3
(2.5-fold) and caspase-9 (3.43-fold) compared to the control cells
(Table 4 and Figure 6). Such findings are consistent with previous
reports declared that VEGFR-2 inhibitors can up-regulate both cas-
pase-3 and caspase-9 to induce apoptosis88,89.

2.2.8. Effects on the levels of Bcl-2 family and BAX/Bcl-2 ratio
In this study, BAX and Bcl-2 expression levels in the HepG2 cell
line after the treatment with compound 27a were determined by
quantitative Western blotting. The results revealed that compound
27a significantly affected the apoptosis pathway in HepG2 cells as
it increased the BAX level by 2.6-fold compared to the control

Figure 4. Flow cytometric analysis of cell cycle phases after treatment with compound 27a. (A) histograms showing the cell cycle distribution of control and treated
cells. (B) Column graphs showing the percentage of cells in each phase of the cell cycle.

Table 3. Stages of the cell death process in HepG2 cells after treatment with compound 27a.

Sample Viablea (left bottom)

Apoptosisa

Necrosisa (left top)Early (right bottom) Late (right top)

HepG2 91.20 ± 1.16 8.52 ± 1.16 0.14 ± 0.01 0.14 ± 0.011
Compound 27a/HepG2 58.98 ± 2.64 40.47 ± 2.55��� 0.35 ± 0.06 0.20 ± 0.04
aValues are given as mean ± SEM of three independent experiments.���p< 0.001 indicates statistically significant difference from the corresponding control (HepG2) group in unpaired t-test.
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cell. Also, it decreased the Bcl-2 level by 2-fold less than the con-
trol cells. In addition, the BAX/Bcl-2 ratio was increased 5-fold in
the treated cells compared to the control cell (Table 4 and Figure
6). Meanwhile, compound 27a increased BAX/Bcl-2 ratio, it could
trigger apoptosis in the experienced cells90,91.

2.3. In silico studies

2.3.1. Molecular docking studies
Computational docking studies were carried out against two
VEGFR-2 crystal structures (PDB ID; 2OH4 and 4ASD)92. Docking
studies were performed to explore the binding mode of the syn-
thesised compounds against the ATP binding pocket of VEGFR-2.
The docking experiments were carried out using MOE.14 software.

Sorafenib was used as a reference molecule. The binding free
energies (DG) of the tested ligands and sorafenib against each
protein were presented in Table 5.

At first, the co-crystallised ligands of each protein were re-
docked into the active pockets of VEGFR-2. The resulted RMSD
values between the original co-crystallised ligands and the re-
docked ones were 1.04 and 1.15 Å. Such values approved the val-
idation of docking processes (Figures 7 and 8).

Docking of sorafenib as a reference compound was performed
to compare its binding mode with those of the target com-
pounds. The proposed binding mode of the docked sorafenib was
the same in the two pockets. The urea moiety bound the receptor
through three hydrogen bonding interactions with the crucial
amino acids; Glu883 (Glu885) and Asp1044 (Asp1046). Moreover,
the N-methylpicolinamide moiety occupied the hinge region,

Figure 5. Flow cytometric analysis of apoptosis in HepG2 cells exposed to compound 27a.

Table 4. Effect of compound 27a on the levels of active caspases-3, active caspases-9, BAX, and Bcl-2
proteins in HepG2 cells treated for 24 h.

Sample

Protein expression (normalised to b-actin)a

Caspases-3 Caspases-9 BAX Bcl-2 BAX/Bcl-2 ratio

HepG2 1.00 ± 0.10 1.00 ± 0.10 1.00 ± 0.13 1.00 ± 0.11 1.00 ± 0.09
27a/HepG2 2.51 ± 0.27�� 3.43 ± 0.49�� 2.60 ± 0.20�� 0.52 ± 0.02� 5.03 ± 0.36���
aValues are given as mean ± SEM of three independent experiments.�p< 0.05, ��p< 0.01, ���p< 0.001 indicate statistically significant differences from the corresponding
control (HepG2) group in unpaired t-tests.
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where the pyridine moiety formed one hydrogen bond with
Cys917 (Cys919) (Figures 9 and 10).

The results of docking studies against VEGFR-2 (PDB ID; 2OH4)
showed that the tested ligands have binding modes similar to
that of sorafenib against the VEGFR-2 active pocket. From each
series, the most cytotoxic compound was selected to analyse its
biding mode against the active pocket. Compound 27a as a repre-
sentative example of 3-methylquinoxalin-2(1H)one series revealed
an affinity value of �25.71 kcal/mol. The pharmacophore (amide)
moiety bound to the key amino acids Asp1046 and Glu388, where
the NH group formed a hydrogen bond with Glu388 while the
C¼O group formed another hydrogen bond with Asp1046. Four
hydrophobic interactions took place between the phenyl ring
(linker) and the amino acid residues Val897, Cys1043, Val914, and
Lys866 in the linker region. Furthermore, the 3-methylquinoxalin-

2(1H)one moiety occupied the hinge region and was involved in
five hydrophobic interactions with Leu838, Leu1033, Phe1045, and
Phe916. The tert-butyl moiety occupied the allosteric pocket
(Figure 11).

The proposed binding mode of 30f as an example of 3-methyl-
quinoxaline-2-thiol series against VEGFR-2 (PDB ID; 2OH4) was like
that of sorafenib. The docking score of such a compound was
�23.22 kcal/mol. Compound 30f interacted with the key amino
acid Asp1046 via its hydrogen bond acceptor (C¼O) group of
amide moiety, while the hydrogen bond donor (NH) group inter-
acted with the carboxylate moiety of Glu388. Three hydrophobic
interactions were observed between the spacer phenyl ring and
amino acid residues Lys866, Val897, and Val914. In addition, 3-
methylquinoxaline-2-thiol moiety formed seven hydrophobic inter-
actions with Phe1045, Val846, Leu838, Phe916, and Leu1033.
Finally, the terminal 2-tolyl moiety occupied the allosteric biding
site forming two hydrophobic interactions with Ile868 (Figure 12).

The proposed binding mode of 28 against VEGFR-2 (PDB ID;
4ASD) was like that of sorafenib. The docking score of such a
compound was �29.46 kcal/mol. Compound 28 interacted with
Cys1045 via its hydrogen bond acceptor (C¼O) group of amide
moiety, while the hydrogen bond donor (NH) group interacted
with the carboxylate moiety of Glu885. Two hydrophobic interac-
tions were observed between the spacer phenyl ring and amino
acid residues Lys868, Phe1047. In addition, 3-methylquinoxaline
moiety formed one hydrogen bond with the key amino acid
Cys919 and one hydrophobic interaction with Leu840. Finally, the
terminal p-nitrophenyl moiety occupied the allosteric biding site
forming an extra hydrogen bond with Cys1024 (Figure 13).

2.3.2. In silico ADMET study
To predict the pharmacokinetics properties of the newly synthes-
ised compounds, computer-aided ADME studies were performed
using Discovery Studio 4.0 software. Sorafenib was used as a refer-
ence drug. These studies include the assessment of certain param-
eters as blood-brain barrier (BBB) penetration, absorption level,
aqueous solubility, CYP2D6 binding, and plasma protein binding.
Predictions of ADME properties for the studied compounds were
listed in Supplementary Data).

Figure 6. The immunoblotting of caspase-3, caspase-9, BAX, and Bcl-2 (normalised to b-actin). (A) Representative Western blot images show the effect of compound
27a (at its IC50 concentration) on the expression levels of BAX, Bcl-2, active caspases-9, and active caspases-3 proteins in HepG2 cells.

Table 5. The calculated DG (binding free energies) of the synthesised com-
pounds and reference drug against VEGFR-2 (PDB ID; 2OH4 and 4ASD) (DG in
Kcal/mole).

Comp.

VEGFR-2
(PDB ID: 2OH4)
DG [Kcal/mole]

VEGFR-2
(PDB ID: 4ASD)
DG [Kcal/mole]

27a �25.71 �28.56
27b �25.45 �25.51
27c �10.82 �11.23
27d �14.22 �20.33
27e �23.61 �22.41
27f �20.71 �21.06
28 �26.41 �29.46
29 �23.48 �25.22
30a �16.47 �22.47
30b �17.08 �23.62
30c �21.59 �28.38
30d �27.45 �24.17
30e �20.74 �19.11
30f �23.22 �16.83
30g �18.23 �25.34
30h �24.05 �20.07
30i �20.62 �27.93
31a �26.77 �29.15
31b �25.01 �23.61
32 �21.66 �23.49
Sorafenib �30.07 �36.05
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The results showed that compounds 30a–f have medium BBB
diffusion levels while the rest of the compounds showed low to
very low levels. Consequently, the CNS side effects were antici-
pated to be minimal for the majority of the synthesised com-
pounds. Regarding, aqueous solubility, compounds 27a–c, 27e,
28, and 29 exhibited good levels, while compounds 27d, 27f,
30a–i, 31a,b, and 32 showed poor levels. With respect to absorp-
tion parameter, all compounds demonstrated good absorption
levels except compounds 27e showed moderate absorption level
and compounds 28, 30h, and 31b which showed poor to very
poor intestinal absorption levels. Moreover, the effect on cyto-
chrome P450 2D6 was investigated. The results showed that all
the tested compounds were non-inhibitors of CYP2D6.
Consequently, hepatotoxicity is not expected upon their adminis-
tration. The plasma protein binding model displayed that

compounds 27a, 28, 30a–c, 30g,h, 31a,b, and 32 were antici-
pated to bind plasma protein <90%. On the other hand, com-
pounds 27b–f, 29, 30d–f, and 30i were expected to bind plasma
protein more than 90% (Figure 14).

2.3.3. In silico toxicity study
The toxicity profile of the synthesised compounds was determined
based on the validated and constructed models in Discovery stu-
dio 4.0 software93,94. This includes the prediction of certain param-
eters as FDA rodent carcinogenicity, carcinogenic potency TD50,
rat maximum tolerated dose, developmental toxicity potential, rat
oral LD50, rat chronic lowest observed adverse effect level
(LOAEL), ocular irritancy, and skin irritancy.

Figure 7. Alignment of the co-crystallised pose and the re-docked pose of the same ligand (PDB ID; 2OH4).
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Regarding the FDA rodent carcinogenicity model compounds
27a–f, 28, 30b, 30g, and 30i were forecasted to be non-carcino-
genic. For carcinogenic potency, TD50 mouse model compounds
27a,b, 29, 30a, 30c–f, 30h, i, 31a,b, and 32 showed TD50 values
ranging from 15,600 to 225,175mg/kg body weight, which is
higher than sorafenib (14,244mg/kg body weight), while com-
pounds 27c–f, 28, 30b, and 30g showed carcinogenic potency
TD50 lower than that of sorafenib. With respect to the rat max-
imum tolerated dose model (MTD), compounds 29, 30e,f, 30i,
31a, and 32 demonstrated maximum tolerated dose with a range
of 0.096 to 0.194 g/kg body weight, which is higher than that of

sorafenib (0.089 g/kg body weight). In Addition, all compounds
were predicted to be non-toxic against the developmental toxicity
potential model except compounds 27f, 30g, and 30i. For the rat
oral LD50 model, all compounds revealed oral LD50 values in a
range of 1.523 to 19.408 g/kg body weight which is higher than
that of sorafenib (0.823 g/kg body weight). For the rat chronic
LOAEL model, the examined members displayed LOAEL values
ranging from 0.036 to 0.376 g/kg body weight. These values are
higher than sorafenib (0.005 g/kg body weight). Additionally, all
the tested compounds were predicted to be mild irritants against
the ocular irritancy model and non-irritant against the skin

Figure 8. Alignment of the co-crystallised pose and the re-docked pose of the same ligand (PDB ID; 4ASD).
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irritancy model. The values of toxicity parameters were depicted
in the Supplementary Data.

3. Conclusion

New twenty quinoxaline derivatives were designed and synthes-
ised as anticancer agents with VEGFR-2 inhibitory activity. The syn-
thesised compounds were evaluated in vitro for their anti-
proliferative activities against breast cancer (MCF-7) and hepato-
cellular carcinoma (HepG2). Compound 27a was the most potent
derivative revealing strong anti-proliferative activity against MCF-7
and HepG2 cell lines with IC50 values of 7.7 and 4.5 mM, respect-
ively, comparing to sorafenib (IC50 ¼ 3.51 and 2.17mM,

respectively). In addition, compounds 28 (IC50 ¼ 17.2 and
11.7 mM), 30f (IC50 ¼ 18.1 and 10.7mM), 30i (IC50 ¼ 17.2 and
12.7 mM), and 31b (IC50 ¼ 19.2 and 13.7mM) demonstrated prom-
ising cytotoxicity against MCF-7 and HepG2, respectively. The
results of the VEGFR-2 enzyme assay were highly correlated with
that of cytotoxicity, where the most potent antiproliferative deriv-
atives exhibited good VEGFR-2 inhibitory effects. Compounds 27a
was the most potent VEGFR-2 inhibitor with an IC50 value of
3.2 nM in comparison to sorafenib (IC50 ¼ 3.12 nM). SAR revealed
that 3-methylquinoxalin-2(1H)one moiety was more efficient than
3-methylquinoxaline-2-thiol moiety as a heterocyclic ring. The
amide moiety was more advantageous as a pharmacophore than
the corresponding diamide and hydrazide moieties. In addition,

Figure 9. 2D binding mode of sorafenib into VEGFR-2 (PDB ID; 2OH4).

Figure 10. 2D binding mode sorafenib into VEGFR-2 (PDB ID; 4ASD).
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the tert-butyl moiety was the most effective hydrophobic tail. Cell
cycle analysis of compounds 27a revealed that such compound
can arrest HepG2 cell growth at G2/M phase by 3.5-fold greater
than control cell. Moreover, compound 27a induced apoptosis in
HepG2 cells by five times more than the control cells.
Furthermore, it increased the level of caspase-3 and caspase-9 by
2.5-folds and 3.43-fold, respectively. Also, compound 27a showed

an increase in the BAX level (2.6-fold), decrease in the Bcl-2 level
(2-fold), and elevation of BAX/Bcl-2 ratio (5-fold) for the control
cell. The results of docking studies revealed that the proposed
binding modes of the designed compounds were similar to that
of sorafenib. Finally, this work presents compound 27a as a lead
candidate that can be further optimised for the synthesis of a
promising VEGFR 2 inhibitor.

Figure 11. 2D binding mode compound 27a into VEGFR-2 (PDB ID; 2OH4).

Figure 12. 2D binding mode compound 30f into VEGFR-2 (PDB ID; 2OH4).
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Figure 13. 2D binding mode of compound 28 into VEGFR-2. PDB ID; 4ASD.

Figure 14. The expected ADMET study for the synthesised compounds.
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4. Experimental

4.1. Chemistry and material

All the reagents, chemicals, and apparatus were presented in
Supplementary Data. Compounds 1167, 1267, 1368, 1469,70, 1569,70,
and the intermediates (24a,b, 25, 26a–j)63,64 were prepared
according to the reported procedures.

4.1.1. General procedure for the synthesis of target compounds
27a–f, 28, and 29
A mixture of potassium salt 12 (0.5 g, 2mmol) and appropriate
intermediates 26a,d,g–j, 24b, and 25 (1mmol) in dry DMF (15ml)
with the presence of potassium iodide (0.2 g, 1.2mmol), was
heated over a water bath for 3 h. The reaction mixture was then
cooled, poured into ice-cooled water (150ml) with continuous stir-
ring. The solid separated was filtered, washed with water several
times, then dried and crystallised from the proper solvent to
afford the final target compounds 27a-f, 28, and 29, respectively.

4.1.1.1. N-(tert-butyl)-4-(2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)ace-
tamido)benzamide (27a). The product was crystallised from EtOH/
DCM mixture (50:50) as dark green crystal (0.3 g, 80%); m. p. ¼
230–232 �C; FT-IR (� max, cm�1): 3291 (NH), 3077 (CH aromatic),
2967 (CH aliphatic), 1648 (C¼O), 1601 (C¼N); 1H NMR (700MHz,
DMSO-d6) d (ppm):10.66 (s, 1H), 7.81–7.79 (m, 3H), 7.64–7.61 (m,
3H), 7.58–7.56 (m, 1H), 7.53 (dd, J¼ 8.5, 1.3 Hz, 1H), 7.38 (s, 1H),
5.16 (s, 2H), 2.49 (s, 3H), 1.38 (s, 9H); 13C NMR (176MHz, DMSO-d6)
d (ppm): 166.00, 165.63, 157.96, 154.85, 141.25, 133.48, 132.46,
131.07, 130.18(2 C), 129.27(2 C), 128.76, 123.92, 118.55(2 C), 115.20,
51.16, 45.76, 29.11(3 C), 21.59; MS (m/z): 393.19 (Mþ þ1, base
beak, 100%); Anal. Calcd. for C22H24N4O3 (392.46): C, 67.33; H, 6.16;
N, 14.28; Found C, 67.74; H, 6.32; N, 14.39%.

4.1.1.2. 4-(2-(3-Methyl-2-oxoquinoxalin-1(2H)-yl)acetamido)-N-phe-
nethylbenzamide (27b). The product was crystallised from EtOH/
DCM mixture (50:50) as white crystal (0.34 g, 85%); m. p. ¼
283–285 �C; FT-IR (� max, cm-1): 3274 (NH), 3038 (CH aromatic),
2921 (CH aliphatic), 1676, 1656, 1630 (C¼O), 1604 (C¼N); 1H NMR
(700MHz, DMSO d6) d (ppm):10.69 (s, 1H), 10.39 (s, 1H), 8.48 (t,
J¼ 5.6 Hz, 1H), 7.82–7.81 (m, 1H), 7.80 (q, J¼ 1.7 Hz, 1H), 7.67–7.62
(m, 2H), 7.57 (ddd, J¼ 8.5, 7.1, 1.5 Hz, 1H), 7.52 (dd, J¼ 8.5, 1.3 Hz,
1H), 7.38 (ddd, J¼ 8.1, 7.1, 1.2 Hz, 1H), 7.30 (tt, J¼ 7.7, 1.7 Hz, 2H),
7.26–7.23 (m, 2H), 7.22–7.19 (m, 1H), 5.16 (s, 2H), 3.47 (ddd,
J¼ 8.6, 7.5, 5.9 Hz, 2H), 2.86–2.82 (m, 2H), 2.49 (s, 3H); 13C NMR
(176MHz, DMSO-d6) d (ppm): 165.97, 165.69, 157.97, 154.84,
141.52, 140.03, 133.46, 132.46, 130.18(2 C), 129.28(2 C), 129.11(2 C),
128.81(2 C), 128.56, 126.55, 123.92, 118.79(2 C), 115.19, 45.76,
41.32, 35.64, 21.59; MS (m/z): 441.2 (Mþ þ1, 28.68%); Anal. Calcd.
for C26H24N4O3 (440.50): C, 70.89; H, 5.49; N, 12.72; Found C, 70.99;
H, 5.13; N, 12.64%.

4.1.1.3. N-(2,6-Dimethoxyphenyl)-4-(2-(3-methyl-2-oxoquinoxalin-
1(2H)-yl)acetamido)-benzamide (27c). The product was crystallised
from ethanol/gl.acetic acid mixture (80:20) as yellow crystal
(0.31 g, 80%); m. p. < 300 �C; FT-IR (� max, cm�1): 3422, 3293
(NH), 3058 (CH aromatic), 2929 (CH aliphatic), 1661 (C¼O), 1602
(C¼N); 1H NMR (700MHz, DMSO-d6) d (ppm):10.76 (s, 1H), 10.52
(s,1H), 7.97 (d, J¼ 6.5 Hz, 1H), 7.94–7.93 (m, 2H), 7.83 (d, J¼ 6.7 Hz,
1H), 7.77 (d, J¼ 8.7 Hz, 2H), 7.73–7.71 (m, 1H), 7.68 (t, J¼ 1.4 Hz,
1H), 7.57 (m, 2H), 7.48 (d, J¼ 1.3 Hz, 1H), 4.33 (s, 2H), 3.32 (s, 6H),
2.68 (s, 3H); 13C NMR (176MHz, DMSO-d6) d (ppm):167.11, 166.26,

165.46, 155.45, 151.97, 142.71, 140.82, 139.36, 135.19, 131.97,
130.93, 130.38, 130.05, 129.89, 129.05(2 C), 128.91, 128.68, 127.64,
127.43, 127.38, 118.85, 35.46(3 C), 22.19; Anal. Calcd. for
C26H24N4O5 (472.50): C, 66.09; H, 5.12; N, 11.86; Found C, 66.01; H,
5.15; N, 11.64%.

4.1.1.4. N-(2,6-Dimethylphenyl)-4-(2-(3-methyl-2-oxoquinoxalin-
1(2H)-yl)acetamido)-benzamide (27d). The product was crystallised
from EtOH/DCM mixture (50:50) as yellowish white crystal (0.35 g,
85%); m. p. ¼ 240–242 �C; FT-IR (� max, cm�1): 3429 (NH), 3067
(CH aromatic), 2934 (CH aliphatic), 1656, (C¼O), 1603 (C¼N); 1H
NMR (700MHz, DMSO-d6) d (ppm): 10.76 (s, 1H), 9.67 (s, 1H), 7.99
(d, J¼ 8.5 Hz, 2H), 7.81 (dd, J¼ 8.0, 1.5 Hz, 1H), 7.72 (d, J¼ 8.6 Hz,
2H), 7.58 (ddd, J¼ 8.5, 7.0, 1.5 Hz, 1H), 7.54 (dd, J¼ 8.6, 1.3 Hz, 1H),
7.42–7.35 (m, 1H), 7.12 (s, 3H), 5.19 (s, 2H), 2.50 (s, 3H), 2.18 (s,
6H); 13C NMR (176MHz, DMSO-d6) d (ppm): 165.77, 164.83, 157.98,
154.86, 141.88, 136.12, 135.89, 133.48, 132.48, 130.19(2 C),
129.64(2 C), 129.29(2 C), 129.02(2 C), 128.16, 127.07, 123.94, 118.95,
115.21, 45.79, 21.60, 18.56(2 C); MS (m/z): 440.18 (Mþ, 27.13%);
Anal. Calcd. for C26H24N4O3 (440.50): C, 70.89; H, 5.49; N, 12.72;
Found C, 70.54; H, 5.39; N, 12.52%.

4.1.1.5. 4-(2-(3-Methyl-2-oxoquinoxalin-1(2H)-yl)acetamido)-N-(4-
nitrophenyl)benzamide (27e). The product was crystallised from
ethanol/gl.acetic acid mixture (80:20) as brown crystal (0.29 g,
78%); m. p. > 300 �C; FT-IR (� max, cm�1): 3428 (NH), 3060 (CH
aromatic), 2955 (CH aliphatic), 1653, (C¼O), 1599 (C¼N); 1H NMR
(700MHz, DMSO-d6) d (ppm): 10.83 (s, 1H), 10.72 (s, 1H), 8.29–8.26
(m, 2H), 8.08–8.06 (m, 2H), 8.02–8.00 (m, 2H), 7.81 (dt, J¼ 8.0,
1.8 Hz, 1H), 7.77–7.74 (m, 2H), 7.59–7.53 (m, 2H), 7.39 (ddd, J¼ 8.2,
7.0, 1.4 Hz, 1H), 5.19 (s, 2H), 2.49 (s, 3H); 13C NMR (176MHz,
DMSO-d6) d (ppm): 165.92, 157.96, 154.85, 146.10, 142.82, 142.58,
133.46, 130.20(2 C), 129.62(2 C), 129.29(2 C), 129.18(2 C),
125.27(2 C), 123.95, 120.24(2 C), 118.90, 115.21, 45.82, 21.59. Anal.
Calcd. for C24H19N5O5 (457.45): C, 63.02; H, 4.19; N, 15.31; Found
C, 63.17; H, 4.13; N, 15.64%.

4.1.1.6. N-(5-Chloropyridin-2-yl)-4-(2-(3-methyl-2-oxoquinoxalin-
1(2H)-yl)acetamido)-benzamide (27f). The product was crystallised
from ethanol/gl.acetic acid mixture (80:20) as dark brown crystal
(0.36 g, 90%); m. p.< 300 �C; FT-IR (� max, cm�1): 3414 (NH), 3030
(CH aromatic), 2962 (CH aliphatic), 1660 (C¼O), 1600 (C¼N); 1H
NMR (700MHz, DMSO-d6) d (ppm): 10.78 (s, 1H), 10.21 (s, 1H), 7.97
(d, J¼ 8.4 Hz, 2H), 7.81–7.79 (m, 2H), 7.73 (d, J¼ 8.5 Hz, 2H), 7.58
(td, J¼ 7.6, 6.9, 1.5 Hz, 1H), 7.56–7.53 (m, 1H), 7.40–7.36 (s, 1H),
7.19 (t, J¼ 8.9 Hz, 2H), 5.19 (s, 2H), 2.49 (s, 3H); 13C NMR (176MHz,
DMSO-d6) d (ppm): 165.82, 165.15, 158.00, 157.96, 154.85, 142.05,
136.06, 133.46, 132.48, 130.18, 129.86(2 C), 129.21(2 C), 123.93,
122.62, 122.58, 118.86, 115.68, 115.55, 115.19, 45.80, 21.59; MS (m/
z): 448.1 (Mþ þ1, base beak, 100%); Anal. Calcd. for C23H18ClN5O3

(447.88): C, 61.68; H, 4.05; N, 15.64; Found C, 61.17; H, 4.13;
N, 15.36%.

4.1.1.7. 2-(3-Methyl-2-oxoquinoxalin-1(2H)-yl)-N-(4-(2-(4-nitroben-
zoyl)hydrazine-1-carbonyl) phenyl)acetamide (28). The product
was crystallised from EtOH/DCM mixture (50:50) as white crystal
(0.28 g, 74%); m. p. ¼ 257–259 �C; FT-IR (� max, cm�1): 3271 (NH),
3055 (CH aromatic), 2944 (CH aliphatic), 1656 (C¼O), 1601(C¼N);
1H NMR (700MHz, DMSO-d6) d 10.82 (s, 1H), 10.56 (s, 2H), 8.01 (m,
2H), 7.94 (m, 2H), 7.81 (d, J¼ 7.9 Hz, 2H), 7.73 (d, J¼ 8.7 Hz, 2H),
7.56 (dd, J¼ 22.6, 8.2 Hz, 3H), 7.39 (d, J¼ 7.6 Hz, 1H), 5.19 (s, 2H),
2.49 (s, 3H); 13C NMR (176MHz, DMSO-d6) d 165.86, 164.81 (2C),

1776 M. M. ALANAZI ET AL.

https://doi.org/10.1080/14756366.2021.1956488


157.97, 154.85, 149.86, 142.31, 138.75, 133.45, 132.47(2 C), 130.20
(2C), 129.46(2C), 129.06(3 C), 124.25(2C), 119.01(2C), 115.20, 45.81,
21.59. Anal. Calcd. for C25H20N6O6 (500.47): C, 60.00; H, 4.03; N,
16.79; Found C, 60.78; H, 4.54; N, 16.56%.

4.1.1.8. 2-(3-Methyl-2-oxoquinoxalin-1(2H)-yl)-N-(4-(2-phenylhydra-
zine-1-carbonyl) phenyl) acetamide (29). The product was crystal-
lised from ethanol/gl.acetic acid mixture (80:20) as greenish yellow
crystal (0.3 g, 75%); m. p.< 300 �C; FT-IR (� max, cm�1): 3291 (NH),
3041 (CH aromatic), 2967 (CH aliphatic), 1648 (C¼O), 1601 (C¼N);
1H NMR (700MHz, DMSO-d6) d (ppm): 10.70 (s, 1H), 10.31 (s, 1H),
10.02 (s, 1H), 8.33 (dd, J¼ 8.1, 1.4 Hz, 1H), 8.26–7.75 (m, 4H),
7.75–7.72 (m, 2H), 7.72–7.69 (m, 1H), 7.63 (d, J¼ 8.5 Hz, 1H),
7.59–7.56 (m, 1H), 7.49–7.46 (m, 1H), 7.38 (t, J¼ 8.1 Hz, 1H),
7.17–7.14 (m, 1H), 5.22 (s, 2H), 2.74 (s, 3H); 13C NMR (176MHz,
DMSO-d6) d (ppm): 157.97, 155.40, 154.86, 133.47, 132.47(2C),
130.20(3 C), 129.78, 129.29(2C), 129.05(3 C), 128.34(2C), 123.95,
123.50(2C), 115.69, 115.20, 45.79, 21.59; Anal. Calcd. for
C24H21N5O3 (427.46): C, 67.44; H, 4.95; N, 16.38; Found C, 67.73; H,
4.76; N, 16.54%.

4.1.2. General procedure for the synthesis of target compounds
30a–i, 31a,b, and 32
Equimolar amounts of potassium salt 15 (0.3 g, 1mmol) and
appropriate intermediates 26a–g,i,j, 24a,b, and 25 (1mmol) in dry
DMF (15ml) with the presence of potassium iodide (0.2 g,
1.2mmol) was heated on a water-bath for 3 h. After cooling, the
reaction mixture was poured into an ice-water (150ml) with con-
tinuous stirring. The resulted precipitate was filtered and crystal-
lised from the proper solvent to give the final target compounds
30a–i, 31a,b, and 32, respectively.

4.1.2.1. N-(tert-Butyl)-4-(2-((3-methylquinoxalin-2-yl)thio)acetami-
do)benzamide (30a). The product was crystallised from ethanol as
brown crystal (0.15 g, 70%); m. p. ¼ 231–233 �C; FT-IR (� max,
cm�1): 3315 (NH), 3048 (CH aromatic), 2969 (CH aliphatic), 1673,
1631 (C¼O), 1599 (C¼N); 1H NMR (700MHz, DMSO-d6) d (ppm):
10.64 (s, 1H), 7.97 (d, J¼ 8.2 Hz, 1H), 7.82 (d, J¼ 7.9 Hz, 1H), 7.78
(d, J¼ 8.3 Hz, 2H), 7.73–7.71 (m, 1H), 7.70–7.68 (m, 1H), 7.67 (d,
J¼ 8.3 Hz, 2H), 7.62 (s, 1H), 4.30 (s, 2H), 2.67 (s, 3H), 1.37 (s, 9H);
13C NMR (176MHz, DMSO-d6) d (ppm): 166.88, 166.11, 155.47,
151.98, 141.71, 140.81, 139.35, 130.97, 130.03(2C), 128.91(2C),
128.72, 128.68(2C), 127.36, 118.51, 51.14, 35.39, 29.11(3 C), 22.19;
MS (m/z): 409.1 (Mþ þ1, base beak, 100%); Anal. Calcd. for
C22H24N4O2S (408.52): C, 64.68; H, 5.92; N, 13.71; Found C, 64.56;
H, 5.89; N, 13.32%.

4.1.2.2. N-Cyclohexyl-4-(2-((3-methylquinoxalin-2-yl)thio)acetami-
do)benzamide (30b). The product was crystallised from ethanol as
dark brown crystal (0.18 g, 85%); m. p. ¼ 238–240 �C; FT-IR (� max,
cm�1): 3289 (NH), 3055 (CH aromatic), 2928, 2851 (CH aliphatic),
1671, 1628 (C¼O), 1607 (C¼N); 1H NMR (700MHz, DMSO-d6) d
(ppm): 10.66 (s, 1H), 8.07 (d, J¼ 7.9 Hz, 1H), 7.96 (s, 1H), 7.84–7.81
(m, 3H), 7.71 (ddd, J¼ 8.3, 6.9, 1.6 Hz, 1H), 7.70–7.67 (m, 3H), 4.30
(s, 2H), 3.77–3.72 (m, 1H), 2.67 (s, 3H), 1.83–1.72 (m, 4H), 1.63–1.59
(m, 1H), 1.33–1.27 (m, 4H), 1.12 (s, 1H); 13C NMR (176MHz, DMSO-
d6) d (ppm): 166.92, 165.21, 155.47, 151.98, 141.88, 140.82, 139.36,
130.04(2C), 128.91(2C), 128.68(2C), 127.37, 118.62(2C), 48.71, 35.38,
32.95(2C), 25.75, 25.44(2C), 22.18; MS (m/z): 435.1 (Mþ þ1, base
beak, 100%); Anal. Calcd. for C24H26N4O2S (434.56): C, 66.33; H,
6.03; N, 12.89; Found C, 66.39; H, 6.09; N, 12.98%.

4.1.2.3. N-benzyl-4-(2-((3-methylquinoxalin-2-yl)thio)acetamido)-
benzamide (30c). The product was crystallised from ethanol as yel-
low crystal (0.16 g, 75%); m. p. ¼ 235–237 �C; FT-IR (� max, cm�1):
3287 (NH), 3071 (CH aromatic), 2933 (CH aliphatic), 1674, 1633,
(C¼O), 1607 (C¼N); 1H NMR (700MHz, DMSO-d6) d (ppm): 10.69 (s,
1H), 8.94 (s, 1H), 7.96 (dd, J¼ 8.0, 1.5 Hz, 1H), 7.88 (d, J¼ 8.5 Hz,
2H), 7.82 (dd, J¼ 8.3, 1.6 Hz, 1H), 7.73–7.70 (m, 3H), 7.68 (td,
J¼ 7.6, 1.5 Hz, 1H), 7.32 (d, J¼ 6.3 Hz, 4H), 7.24 (tt, J¼ 5.9, 2.4 Hz,
1H), 4.47 (d, J¼ 5.9 Hz, 2H), 4.31 (s, 2H), 2.67 (s, 3H); 13C NMR
(176MHz, DMSO-d6) d (ppm): 166.97, 166.10, 155.45, 151.97,
142.13, 140.81, 140.27, 139.35, 130.04(2C), 129.49(2C), 128.90(2C),
128.73(2C), 128.69, 128.67, 127.67, 127.38, 127.16, 118.77, 43.02,
35.41, 22.18; MS (m/z): 443.1 (Mþ þ1, 79.98%); Anal. Calcd. for
C25H22N4O2S (442.54): C, 67.85; H, 5.01; N, 12.66; Found C, 67.73;
H, 5.09; N, 12.78%.

4.1.2.4. 4-(2-((3-Methylquinoxalin-2-yl)thio)acetamido)-N-phene-
thylbenzamide (30d). The product was crystallised from ethanol as
brown crystal (0.18 g, 85%); m. p. ¼ 220–222 �C; FT-IR (� max,
cm�1): 3299 (NH), 3026 (CH aromatic), 2925 (CH aliphatic), 1664,
1630 (C¼O), 1607 (C¼N); 1H NMR (700MHz, DMSO-d6) d (ppm):
10.67 (s, 1H), 8.47 (s, 1H), 7.98–7.94 (m, 1H), 7.85–7.79 (m, 3H),
7.72 (ddd, J¼ 8.4, 7.0, 1.7 Hz, 1H), 7.71–7.66 (m, 3H), 7.32–7.27 (m,
2H), 7.26–7.23 (m, 2H), 7.23–7.18 (m, 1H), 4.31 (s, 2H), 3.47 (ddd,
J¼ 8.7, 7.5, 5.9 Hz, 2H), 2.84 (t, J¼ 7.5 Hz, 2H), 2.67 (s, 3H); 13C
NMR (176MHz, DMSO d6) d (ppm): 166.95, 166.05, 155.45, 151.97,
141.98, 140.81, 140.04, 139.35, 130.03(2C), 129.76 (2C), 129.11(2C),
128.90, 128.81, 128.68(2C), 128.53, 127.38, 126.54, 118.75, 41.32,
35.66, 35.40, 22.18; MS (m/z): 457.2 (Mþ þ1, base beak, 100%);
Anal. Calcd. for C26H24N4O2S (456.56): C, 68.40; H, 5.30; N, 12.27;
Found C, 68.39; H, 5.09; N, 12.32%.

4.1.2.5. 4-(2-((3-Methylquinoxalin-2-yl)thio)acetamido)-N-phenyl-
benzamide (30e). The product was crystallised from ethanol as
brown crystal (0.18 g, 85%); m. p. ¼ 218–220 �C; FT-IR (� max,
cm�1): 3268 (NH), 3039 (CH aromatic), 2970, 2908 (CH aliphatic),
1666, 1640 (C¼O), 1597 (C¼N); 1H NMR (700MHz, DMSO-d6) d
(ppm): 10.75 (s, 1H), 10.14 (s, 1H), 7.98–7.95 (m, 3H), 7.83 (dd,
J¼ 8.0, 1.6 Hz, 1H), 7.80–7.76 (m, 4H), 7.72 (ddd, J¼ 8.3, 6.9, 1.6 Hz,
1H), 7.68 (ddd, J¼ 8.4, 7.0, 1.6 Hz, 1H), 7.37–7.33 (m, 2H), 7.09 (tt,
J¼ 7.4, 1.2 Hz, 1H), 4.33 (s, 2H), 2.67 (s, 3H); 13C NMR (176MHz,
DMSO-d6) d (ppm): 167.07, 165.34, 155.44, 151.97, 142.46, 140.82,
139.74, 139.36, 130.02(2C), 129.93, 129.20(2C), 129.04(2C), 128.89,
128.68(2C), 127.37, 123.97, 120.79, 118.79, 35.44, 22.18; MS (m/z):
429.1 (Mþ þ1, base beak, 100%); Anal. Calcd. for C24H20N4O2S
(428.51): C, 67.27; H, 4.70; N, 13.08; Found C, 67.04; H, 4.89;
N, 13.42%.

4.1.2.6. 4-(2-((3-Methylquinoxalin-2-yl)thio)acetamido)-N-(o-tolyl)-
benzamide (30f). The product was crystallised from EtOH/DCM
mixture (50:50) as white crystal (0.2 g, 90%); m. p. ¼ 247–249 �C;
FT-IR (� max, cm�1): 3262 (NH), 3056 (CH aromatic), 2911 (CH ali-
phatic), 1659, 1641 (C¼O), 1607 (C¼N); 1H NMR (700MHz, DMSO-
d6) d (ppm): 10.75 (s, 1H), 9.77 (s, 1H), 7.97 (dd, J¼ 8.4, 4.1 Hz, 3H),
7.84 (d, J¼ 8.1 Hz, 1H), 7.77 (d, J¼ 8.4 Hz, 2H), 7.73 (t, J¼ 7.5 Hz,
1H), 7.69 (t, J¼ 7.5 Hz, 1H), 7.34 (d, J¼ 7.8 Hz, 1H), 7.27 (d,
J¼ 7.5 Hz, 1H), 7.22 (t, J¼ 7.5 Hz, 1H), 7.17 (t, J¼ 7.4 Hz, 1H), 4.33
(s, 2H), 2.68 (s, 3H), 2.24 (s, 3H); 13C NMR (176MHz, DMSO-d6) d
(ppm): 167.05, 165.12, 155.46, 151.98, 142.42, 140.82, 139.36,
136.99, 134.13, 130.75, 130.05, 129.57(2C), 129.14(2C), 128.91,
128.69, 127.38, 127.03, 126.44, 126.33, 118.82, 35.44, 22.19, 18.40;
MS (m/z): 443.1 (Mþ þ1, base beak, 100%); Anal. Calcd. for
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C25H22N4O2S (442.54): C, 67.85; H, 5.01; N, 12.66; Found C, 67.73;
H, 5.09; N, 12.78%.

4.1.2.7. N-(2,6-Dimethoxyphenyl)-4-(2-((3-methylquinoxalin-2-yl)th-
io)acetamido) benzamide (30g). The product was crystallised from
EtOH/DCM mixture (50:50) as light brown crystal (0.17 g, 80%); m.
p. ¼ 258–260 �C; FT-IR (� max, cm�1): 3298 (NH), 3033 (CH aro-
matic), 2931 (CH aliphatic), 1665 (C¼O), 1607 (C¼N); 1H NMR
(700MHz, DMSO-d6) d (ppm): 10.77 (s, 1H), 9.37 (s, 1H), 7.98 (t,
J¼ 8.3 Hz, 4H), 7.93 (d, J¼ 8.1 Hz, 1H), 7.84 (d, J¼ 8.1 Hz, 1H), 7.79
(d, J¼ 8.3 Hz, 2H), 7.75–7.72 (m, 1H), 7.71–7.67 (m, 1H), 7.35–7.33
(m, 1H), 4.34 (s, 2H), 3.99–3.97 (s, 3H), 2.69 (s, 6H); 13C NMR
(176MHz, DMSO-d6) d (ppm): 167.09, 164.78, 155.46, 151.99,
151.84, 142.57, 140.83, 139.37, 137.68, 130.06, 129.45(2C), 129.05,
129.00, 128.92, 128.69, 127.39, 126.88, 124.35, 119.00, 118.90,
110.11, 56.46(2C), 35.46, 22.20; Anal. Calcd. for C26H24N4O4S
(488.56): C, 63.92; H, 4.95; N, 11.47; Found C, 63.56; H, 4.45;
N, 11.56%.

4.1.2.8. 4-(2-((3-Methylquinoxalin-2-yl)thio)acetamido)-N-(4-nitro-
phenyl)benzamide (30h). The product was crystallised from etha-
nol as pale yellow crystal (0.12 g, 60%); m. p. ¼ 200–202 �C; FT-IR
(� max, cm�1): 3316 (NH), 3028 (CH aromatic), 2921 (CH aliphatic),
1682, 1650 (C¼O), 1596 (C¼N); 1H NMR (700MHz, DMSO-d6) d
(ppm): 10.76 (s, 1H), 10.26 (s, 1H), 7.96 (dd, J¼ 9.2, 2.3 Hz, 3H),
7.82 (td, J¼ 7.6, 7.0, 1.8 Hz, 3H), 7.82–7.76 (m, 2H), 7.71 (ddd,
J¼ 8.3, 6.9, 1.6 Hz, 1H), 7.68 (ddd, J¼ 8.3, 6.9, 1.6 Hz, 1H), 7.43–7.38
(m, 2H), 4.33 (s, 2H), 2.67 (s, 3H); 13C NMR (176MHz, DMSO-d6) d
(ppm): 167.10, 165.42, 155.43, 151.96, 142.61, 140.81, 139.36,
138.73, 130.02, 129.61(3 C), 129.25(2C), 128.96(2C), 128.89, 128.68,
127.55, 127.36, 122.24, 118.80, 35.43, 22.18; Anal. Calcd. for
C24H19N5O4S (473.51): C, 60.88; H, 4.04; N, 14.79; Found C, 60.39;
H, 4.58; N, 14.66%.

4.1.2.9. N-(5-Chloropyridin-2-yl)-4-(2-((3-methylquinoxalin-2-yl)th-
io)acetamido)benzamide (30i). The product was crystallised from
ethanol as brown crystal (0.19 g, 90%); m. p. ¼ 190–192 �C; FT-IR
(� max, cm�1): 3274 (NH), 3041 (CH aromatic), 2945 (CH aliphatic),
1679 (C¼O), 1599 (C¼N); 1H NMR (700MHz, DMSO-d6) d (ppm):
10.86 (s, 1H), 10.78 (s, 1H), 8.44 (t, J¼ 2.6 Hz, 1H), 8.24–8.23 (m,
1H), 8.04–8.02 (m, 2H), 7.96 (d, J¼ 3.3 Hz, 2H), 7.91 (d, J¼ 4.8 Hz,
2H), 7.82 (d, J¼ 6.6 Hz, 1H), 7.76 (s, 1H), 7.72–7.71 (m, 1H), 4.32 (s,
2H), 2.67 (s, 3H); 13C NMR (176MHz, DMSO-d6) d (ppm): 167.35,
167.16, 155.42, 151.96, 151.48, 146.72, 140.80, 139.35, 138.27,
130.95, 130.04(2C), 129.69(2C), 128.91, 128.67(2C), 127.38, 118.86,
118.71, 116.18, 35.45, 22.18; MS (m/z): 464.1 (Mþ þ1, 68.32%),;
Anal. Calcd. for C23H18ClN5O2S (463.94): C, 59.54; H, 3.91; N, 15.10;
Found C, 59.56; H, 3.59; N, 15.35%.

4.1.2.10. N-(4-(2-benzoylhydrazine-1-carbonyl)phenyl)-2-((3-methyl-
quinoxalin-2-yl)thio) acetamide (31a). The product was crystallised
from ethanol as brown crystal (0.13 g, 65%); m. p. ¼ 195–197 �C;
FT-IR (� max, cm�1): 3262 (NH), 3038 (CH aromatic), 2921 (CH ali-
phatic), 1657 (C¼O), 1601 (C¼N); 1H NMR (700MHz, DMSO-d6) d
(ppm): 10.76 (s, 1H), 10.48 (s, 1H), 10.42–10.41 (s, 1H), 7.94 (d,
J¼ 6.8 Hz, 4H), 7.83 (d, J¼ 6.8 Hz, 1H), 7.77 (d, J¼ 4.6 Hz, 1H), 7.72
(d, J¼ 1.6 Hz, 1H), 7.69–7.67 (m, 1H), 7.60 (d, J¼ 6.1 Hz, 2H), 7.53
(m, 3H), 4.33 (s, 2H), 2.68 (s, 3H); 13C NMR (176MHz, DMSO-d6) d
(ppm): 167.11, 166.36, 165.77(2C), 155.45, 151.97, 142.68, 140.82,
139.36, 133.09, 132.32, 130.05(2C), 129.00(3 C), 128.98(2C),
128.68(2C), 127.93, 127.38, 118.90, 35.45, 22.19; MS (m/z): 472.1

(Mþ þ1, 53.18%); Anal. Calcd. for C25H21N5O3S (471.54): C, 63.68;
H, 4.49; N, 14.85; Found C, 63.88; H, 4.68; N, 14.99%.

4.1.2.11. 2-((3-Methylquinoxalin-2-yl)thio)-N-(4-(2-(4-nitrobenzoyl)-
hydrazine-1-carbonyl) phenyl) acetamide (31b). The product was
crystallised from ethanol as brownish red crystal (0.15 g, 70%); m.
p. ¼ 196–198 �C; FT-IR (� max, cm�1): 3261 (NH), 3044 (CH aro-
matic), 2911 (CH aliphatic), 1664 (C¼O), 1601 (C¼N); 1H NMR
(700MHz, DMSO-d6) d (ppm): 10.81 (s, 2H), 10.55 (s, 1H), 8.39 (t,
J¼ 8.7 Hz, 4H), 8.17 (s, 2H), 7.96 (d, J¼ 8.1 Hz, 1H), 7.93 (d,
J¼ 8.4 Hz, 1H), 7.84 (d, J¼ 3.8 Hz, 1H), 7.78 (d, J¼ 8.3 Hz, 1H), 7.72
(t, J¼ 7.6 Hz, 1H), 7.68 (t, J¼ 7.5 Hz, 1H), 4.33 (s, 2H), 2.67 (s, 3H);
13C NMR (176MHz, DMSO-d6) d (ppm): 165.70, 164.87, 164.85,
164.75, 155.44, 149.98, 149.89, 139.36, 138.67, 130.08(2C),
129.52(2C), 129.47(3 C), 127.38(3 C), 124.32(2C), 119.10, 118.93,
35.45, 22.18; MS (m/z): 517.0 (Mþ þ1, base beak, 100%); Anal.
Calcd. for C25H20N6O5S (516.53): C, 58.13; H, 3.90; N, 16.27; Found
C, 58.21; H, 3.98; N, 16.48%.

4.1.2.12. 2-((3-Methylquinoxalin-2-yl)thio)-N-(4-(2-phenylhydrazine-1-
carbonyl)phenyl) acetamide (32). The product was crystallised from
ethanol as white crystal (0.18 g, 85%); m. p. ¼ 185–187 �C; FT-IR (�
max, cm�1): 3272 (NH), 3083 (CH aromatic), 2931 (CH aliphatic),
1676 (C¼O), 1598 (C¼N); 1H NMR (700MHz, DMSO-d6) d (ppm):
12.71 (s, 1H), 10.76 (s, 1H), 10.20 (s, 1H), 7.92–7.88 (m, 2H),
7.84–7.79 (m, 2H), 7.76–7.73 (m, 2H), 7.69–7.65 (m, 2H), 7.38–7.31
(m, 2H), 7.15 (t, J¼ 7.7 Hz, 1H), 6.78 (d, J¼ 12.6, 8.0, 7.3 Hz, 2H),
4.32 (s, 2H), 2.69 (s, 3H); 13C NMR (176MHz, DMSO-d6) d
(ppm):155.42, 151.96, 143.54, 140.81, 139.35, 131.08, 130.96,
130.03(2C), 129.79(3 C), 129.19(3 C), 128.9(2C)0, 119.77, 118.91,
118.87, 112.78, 112.01, 35.45, 22.18; Anal. Calcd. for C24H21N5O2S
(443.53): C, 64.99; H, 4.77; N, 15.79; Found C, 64.54; H, 4.79;
N, 15.88%.

4.2. Biological testing

4.2.1. In vitro anti-proliferative activity
The in vitro antiproliferative activities were assessed using the
MTT assay protocol78,79,95. As shown in Supplementary Data.

4.2.2. In vitro VEGFR-2 enzyme inhibition assay
The synthesised compounds were estimated for their in vitro
inhibition on human VEGFR-2 in HepG2 cell line; using ELISA kit96

as described in Supplementary Data.

4.2.3. Flow cytometry analysis for cell cycle
Cell cycle analysis for the most potent candidate 27a has been
carried out through Flow cytometric analysis as described in
Supplementary Data84,85.

4.2.4. Flow cytometry analysis for apoptosis
Apoptosis analysis for compound 27a in HepG2 cells was carried
out using Annexin V-FITC as shown in Supplementary Data30,86.

4.2.5. Determination of active caspase-3 and caspase-9 levels
Quantitative assay of caspase-3 and caspase-9 activation was per-
formed using Caspase- Invitrogen Caspase-3 ELISA Kit (KHO1091)
and Invitrogen Caspase 9 Human ELISA Kit (BMS2025)87,97–99 as
shown in Supplementary Data.
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4.3. In silico studies

4.3.1. Docking studies
The docking studies were performed utilising MOE.14 software as
described in Supplementary Data57,100,101. The final figures were
visualised using Discovery studio 4.0102.

4.3.2. ADMET study
ADMET descriptors were determined using Discovery studio 4.0.
as described in Supplementary Data101,103.

4.3.3. Toxicity study
The toxicity parameters were calculated using Discovery studio
4.0. as described in Supplementary Data102.
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