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ABSTRACT

Motivation: The analysis of expression quantitative trait locus (eQTL)
data is a challenging scientific endeavor, involving the processing of
very large, heterogeneous and complex data. Typical eQTL analyses
involve three types of data: sequence-based data reflecting the
genotypic variations, gene expression data and meta-data describing
the phenotype. Based on these, certain genotypes can be connected
with specific phenotypic outcomes to infer causal associations of
genetic variation, expression and disease.
To this end, statistical methods are used to find significant
associations between single nucleotide polymorphisms (SNPs) or
pairs of SNPs and gene expression. A major challenge lies in
summarizing the large amount of data as well as statistical results
and to generate informative, interactive visualizations.
Results: We present REVEAL, our visual analytics approach to this
challenge. We introduce a graph-based visualization of associations
between SNPs and gene expression and a detailed genotype
view relating summarized patient cohort genotypes with data from
individual patients and statistical analyses.
Availability: REVEAL is included in MAYDAY, our framework for visual
exploration and analysis. It is available at http://it.inf.uni-tuebingen.
de/software/reveal/.
Contact: guenter.jaeger@uni-tuebingen.de

1 INTRODUCTION
The risk to come down with a complex disease such as cancer
or diabetes can be influenced by genetic variations. Genome-wide
association studies (GWASs) help with the identification of such
risk-increasing local DNA sequence variants. The ultimate goal
is to generate a complete view of the variability of a genome
of individuals. Modern microarray and sequencing technologies
already allow for the compilation of hundreds of thousands of so-
called single nucleotide polymorphisms (SNPs). In typical GWAS
studies, linkage analyses are performed, where each SNP is tested
for association with a specific phenotype of a disease. Thus, one or
more SNP genotypes are sought whose frequency can be correlated
with a disease. However, for many thus identified SNPs, little is
known about the molecular mechanisms underlying their phenotypic
manifestation.

Expression quantitative trait loci (eQTL) studies go one step
further, involving three types of data: sequence-based data reflecting
the genotypic variations, gene expression data and meta-data
describing the phenotype, e.g. the severity of disease or speed of
progression. This analysis is therefore highly challenging, since it
involves the scalable processing of very large, heterogeneous and
complex data. For example, the HapMap project (Gibbs et al., 2003)
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has generated genotype data for >3 million human SNPs. Such
genotype data contain for each individual and each assessed SNP a
pair of nucleotides, reflecting the two alleles (maternal and paternal)
of the individual.

Furthermore, the expression values of tens of thousands of
genes from thousands of individuals are gathered. Statistical
tests are used to compute for each pair of SNP and transcript
whether a significant association exists between the presence of
polymorphisms and a difference in gene expression. These statistical
analyses often generate a large number of SNPs being either
directly or indirectly associated with the expression of specific
genes.

The goal of eQTL data analysis is to generate a comprehensive
picture that connects certain genotypes (individual genetic
information) with specific phenotypic outcomes. Based on this
aggregated view of the data, analysts (e.g. biologists and
bioinformaticians) are enabled to infer causal associations of genetic
variation, expression and disease, i.e. to identify the genetic basis
for phenotypic variations. More generally, the ultimate goal is to
find a network of interacting genes whose expression changes are
correlated with genetic variation, allowing for a prognosis of disease
based on observed patient phenotypes.

A typical workflow for eQTL data analysis consists of applying
either machine-learning methods or statistical tests to extract
significant associations. The results, however, are often extremely
difficult to interpret. Biologists or clinicians are mainly interested
in the identification of correlated genes together with their
associated SNPs, and the phenotype connection. Visualizations in
this field are highly valuable and require views that can handle
interaction, filtering and zooming with these complex data. The
most important aspect of visual analytics in this context lies in
data aggregation, filtering and the creation of meaningful summaries
to allow researchers to extract the few important associations
with clinical significance from the enormous amount of input
data.

Here, we present Reveal, a visual analytics approach to this
challenge. A proof-of-concept implementation of Reveal was
submitted to the BioVis 2011 Contest (part of the IEEE VisWeek
2011 BioVis symposium). Every year, this newly inaugurated
contest focuses on a specific biological application domain and
solicits submissions combining data analysis and visualization. Last
year’s domain was eQTL analysis and Reveal was chosen as the
visualization experts’ favorite solution.

We have now significantly expanded our initial implementation.
We included a new visualization to analyze distributions of genetic
variations in more detail. Furthermore, we integrated Reveal into
our visual analytics software Mayday (Battke et al., 2010), allowing
for combined and highly interactive analyses of genotypic and
expression data as well as meta-data (e.g. disease phenotype). We
apply Reveal to the BioVis 2011 Contest dataset and discuss results
generated.
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2 RELATED WORK
A traditional visualization for genotype–phenotype associations
are Manhattan plots. They are a special kind of scatter plot of
significance, represented as the negative logarithm of the P-value,
of a trait against chromosomal location. All SNPs lying above a
pre-chosen significance threshold can easily be detected visually
if a conservative threshold is chosen. A popular stand-alone tool is
WGAViewer (Ge et al., 2008) which offers an interactive Manhattan
plot embedded into an annotation environment in order to help
identify those associations with large biological relevance.

Genevar (Yang et al., 2010) combines a database and a
visualization of SNPs associated with gene expression using
Manhattan plots. Although the Manhattan plot is useful for a small
number of traits, problems arise with a fully genome-wide screen
where millions of SNPs, for example in the human genome, are
tested for association with hundreds or thousands of traits.

Many applications in this area combine the (visual) detection
of significant SNPs with the genomic context, mainly integrated
in genome browsers. Two examples for this approach are eQTL
Explorer (Mueller et al., 2006) and the AssociationViewer (Martin
et al., 2009). Genome browsers have the advantage of allowing
simultaneous display of data and annotation in separate tracks. This
is useful if results of several studies shall be integrated into one view.
Furthermore, genome browsers are highly scalable and interactive.
However, if the eQTL data are collected in a genome-wide screen,
the genome browsing approach is of limited usability. In particular,
it will not allow for an identification of a comprehensive pattern of
association.

eQTL Viewer (Zou et al., 2007) is a web-based tool that visualizes
the relationships between the expression traits and candidate genes
in the eQTL regions. It displays eQTL mapping results and allows
one to generate plots in SVG format that are interactive and allow
the superimposition of mapped data and biological annotations.

A specialized application to visualize all HapMap genotypes
together with gene expression levels is SNPexp (Holm et al., 2010).
Although it is certainly helpful to offer ready-made solutions for
data that are often used, the specialization on one particular dataset
also limits the applicability of a tool. Furthermore, as with all web
services, users of SNPexp might not be willing to work on the web,
especially when sensitive data are concerned. At the time of writing,
SNPexp seemed to suffer from a problem with internal data files,
limiting our ability to evaluate it in practice.

A recently published study of the genome-wide association of
significant SNPs with celiac disease showed that a large number
of genes from regions within 500 kb of SNPs associated with
case/control differences are highly co-expressed (Dubois et al.,
2010). This impressive study is an example demonstrating that for
eQTL studies where SNPs are analyzed in the context of many genes,
networks that visualize both the interaction of genes as well as the
relationship of each gene with multiple SNPs are needed.

A visual analytics approach is followed with GenAMap (Curtis
et al., 2011). GenAMap’s strategy implements a typical association
mapping analysis workflow. Starting from quality-controlled data
of SNPs and phenotypes, machine-learning methods are used to
identify patterns in the data (e.g. patterns for SNPs and their
associated traits) which are then made available to the researchers for
interactive exploration using statistical/mathematical programming
environments and manual reformatting for the next step of
machine learning, where structured association results are produced.

These can again be explored manually. This approach is extremely
flexible and very promising, yet clearly engineered towards
bioinformaticians as opposed to researchers with a background in
biology and medicine.

Among the commercial tools for this type of data, the SNP
and Variation Suite (SVS 7) by (Golden Helix, 2012) offer
various statistical tests and visualization within an integrated
genome browser. Agilent’s GeneSpring (Agilent, 2012) has a
number of statistical and visualization methods for GWASs,
however, no specific eQTL analysis methods are offered. Illumina
GenomeStudio™ (Illumina, 2012) also offers an integrated use of
PLINK as well as a QTL viewer. In addition, several third-party tools
for eQTL data analysis are supported within Illumina’s workflow.

However, most commercial tools do not yet offer sophisticated
and specific eQTL data analysis or visualization methods.

In contrast to the described approaches, Reveal offers a graph-
based visualization that indirectly implies a gene regulatory network
on the basis of associations of SNPs with specific genes and, in
addition to that, allows one to combine the gathered results with a
detailed gene expression analysis.

3 REVEAL

We present Reveal, a tool for visual analyses of eQTL data. It is included
in our visual analytics tool Mayday through which further visualizations
and methods can be included in the analytical process. Reveal is based
on three views, one focusing on the network of associations defined by
the influences of SNPs on gene expression, the second providing detailed
information on patient cohort genotypes grouped by meta-data and the third
showing a traditional heatmap of the gene expression values.

3.1 Association gene network
The starting point of an analysis using Reveal is a list of SNPs and
genes, and data from a patient cohort covering the presence of the sequence
polymorphisms and the expression values of the genes. In addition, patients
are assigned to one of two groups depending on their outcome, e.g. into
‘affected’ and ‘unaffected’ patients.

On these data, statistical methods such as the PLINK tool (Purcell et al.,
2007) can be used to compute the significance of the association between any
SNP (or pair of SNPs) and differences in gene expression. These significances
are expressed as P-values. We use these pairs of SNPs to construct and display
an association graph (Fig. 1).

To construct the graph, each gene in the dataset is represented by a node.
We use the chromosomal location of SNPs to associate them with genes,
i.e. each SNP is associated with its closest gene (lying inside or close to
the gene’s locus). This allows us, for each gene, to determine the number of
significant SNP pairs with at least one pair partner associated with that gene.
Nodes of genes with at least one such pair are assigned a unique color, all
other nodes are painted using a gray fill.

Edges are added between nodes as follows: based on the P-values
computed for the association between SNP pairs and gene expression, create
a triple <gi,gj,gk > of genes for each SNP pair with partners in gi and gj

which is significantly associated with the gene expression of gk . For each gk ,
add an edge between the nodes of gi and gj with weight w=|{<gi,gj,gk >}|
and color c(gk). As SNPs located in or close to gi and gj can form pairs
which influence the expression of different target genes, the graph can contain
multi-edges which differ only in color (and probably also in weight).

To increase visual clarity, users can interactively manipulate a minimum
edge weight threshold τ , such that only edges with w≥τ are displayed.
User interaction further includes panning, rotating and zooming, as well
as rearranging nodes either manually or using layout algorithms (provided
by the Jung library (O’Madadhain et al., 2005)). Expression values can be
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Fig. 1. Elements of the association graph. Nodes represent genes, edges
represent significant SNP pairs. Genes significantly associated with SNP
pairs are colored using a distinct color, genes with no significant association
are drawn with gray fill. Each edge conveys four pieces of information: an
edge e of weight w starting in node s, ending in node t and drawn with color
c represents w SNP pairs. Each of them has one SNP in gene s and one in
gene t, and they are significantly associated with the expression of the gene
whose node is filled with color c. In this example, 1280 SNP pairs with SNPs
in CDH22 and CDH7 are associated with the expression of CDH10, while
570 SNP pairs with SNPs in CDH22 and CDH10 are associated with the
expression of CDH1, which does not contain any significant SNPs, itself

included in the visualization by mapping them to the node size. Furthermore,
if a node is selected, either all neighboring nodes or all edges drawn with
the same color as the selected node, i.e. edges containing SNP pairs that
significantly influence the expression of the selected node, can be highlighted
to improve the visual analytical process. Using the threshold τ , users can
narrow down the set of SNP pairs they want to investigate further. Another
possibility is to select one or more edges and only concentrate on SNPs
represented by those edges. Such a filtered set of SNP pairs can then be used
to create a genotype view for a more detailed inspection.

3.2 Genotype view: SNPs and meta-data
Although the association network nicely visualizes gene-to-gene interactions
based on SNP presence, it gives no detailed information about SNPs involved
in the network. However, including additional information such as statistical
significance values or the distribution of specific SNPs in the patient cohort
can be of great benefit to the analytical process, since it provides further
insight into a possible connection of genotype and disease state. Therefore,
we introduce a second visualization, namely the genotype view, that shows
detailed information about each SNP, integrating genotype information for
the complete patient cohort as well as for an individual patient (Fig. 2). It is
basically a tabular view, where each SNP is represented by one column.
Columns are initially ordered according to the genomic position of the
visualized SNPs. Other orderings are also possible, e.g. according to the
majority genotype in the patient cohort.

The view itself is subdivided into five sectors: in the bottom row of
the table, an individual patient’s genotype is displayed using color to
represent the different nucleotide combinations (solid colors for homozygous
genotypes and hashed fills for heterozygous genotypes). The displayed
individual can be selected by the user.Above it, the reference genotype (based
on the human genome reference assembly) is shown for comparison. Further
up, the patient cohort is presented in aggregated form: based on the meta-
data, the cohort is split into groups, e.g. ‘affected’ versus ‘unaffected’ and
aggregated independently for each group. Here, we use the same aggregation
strategy as iHat (Heinrich et al., 2012), our previously published prototype
tool for visual analytics of GWASs.

Firstly, a group summary is computed (similar to the ‘consensus’ in
multiple alignments) to reflect the majority of genotypes, simplified to one
of three states and mapped to gray-scale values: identical to the reference
(white), polymorphism in one allele and reference in the other (gray),
polymorphism in both alleles (black). Boxes for the two groups are displayed
next to each other by default. The strength of the consensus, i.e. the
percentage of patients with the majority phenotype, is mapped to the height

Fig. 2. A single SNP column of the genotype view. The column consists of
six elements. The ‘SNP statistical significance bar’ displays the −logP-value
of the association of the SNP with one of the quantitative traits. Depending
on the data, the ‘SNP identifier’ is either an #rs number identifying the
SNP or the SNP’s chromosomal location. Solid and hashed fills are used
to encode for the different allelic combinations. The ‘cohort genotype
distribution’ shows stacked distributions of allelic combinations in the
‘affected’ (left) and ‘unaffected’ (right) patients. The stacked distributions
are ordered alphabetically and distributions of the same allelic combination
in the affected and unaffected groups are aligned horizontally for direct
comparison. The ‘cohort genotype summary’ is an aggregated view of
the cohort genotype distribution where the height of each box expresses
confidence in the affected and unaffected groups. The ‘genome reference
sequence’ box is colored according to the SNP’s reference nucleotide. The
‘individual patient alleles’ box shows an individual’s allelic combination
encoded with the same solid and hashed fills used for the cohort genotype
distribution box

of the box such that the box has maximum height if all patients in the group
show the same (simplified) genotype. Users can switch to a stacked view
interactively, displaying the boxes on top of each other rather than next to
each other. This enables to quickly spot interesting columns especially when
a large number of columns are shown (zoomed-out overview; Fig. 5). By
zooming in, users can focus on the more detailed cohort distribution view
offered above the cohort aggregate row.

In the full cohort distribution row shown above the cohort genome
summary plot, each SNP column is divided into two sub-columns to display
the differences between the patients in the ‘affected’ and ‘unaffected’ group.
The distribution of real genotypes in the patient cohort groups is visualized
using a stacked bar plot and the same coloring as for the individual patient
alleles. The focus of this visualization is to allow users to compare the
genotypes between the cohort groups (e.g. ‘affected’ versus ‘unaffected’)
with respect to the respective SNP position. To facilitate this, bars for
identical genotypes (e.g. AC, shown with red/yellow hashed fill) are aligned
horizontally to be directly comparable.

At the top of each SNP column, the SNP identifier (or genomic location,
depending on the input data) is displayed together with a bar plot showing
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Fig. 3. Association graph based on all pairs of 3843 SNPs with a significant
association (P<0.05, PLINK two-locus results) with the gene expression
of one of 15 genes, showing all edges with weight ≥50. See Figure 1 for a
description of the graph’s elements

Fig. 4. Filtered association graph. Based on the graph shown in Figure 3,
only SNP pairs containing at least one highly significant SNP (R2 >0.1 and
P<0.05, PLINK single-locus result) were retained encompassing a total of
696 different SNPs. All edges with weight ≥50 are shown

Fig. 5. Genotype view showing the 696 SNPs contained in Figure 4. The SNPs were selected such that each of them is part of a highly significant SNP pair,
which in addition contains at least one SNP that is statistically significant by itself. In the cohort genotype summary, the boxes for the affected and unaffected
group are placed on top of each other which allows to quickly spot interesting columns

the negative logarithm of the P-value assigned to this SNP position. The
bar plot uses a similar approach to display SNP significance values as the
traditional Manhattan plot.

Interactive tooltips provide additional information about each of the five
sectors in a SNP column, as for example the values from the genotype
distribution or the exact chromosomal location of the chosen SNP. The
tooltips of the patient displayed in the bottom row provide information about
the family and individual identifier as well as the patient’s affection status.
Further interactions include scrolling, zooming and interactive selection of
SNPs of interest, which can then be used for example to be displayed in
Mayday’s genome browser.

3.3 eQTL expression viewer
Using Mayday’s strong visualization capabilities, we can visualize the gene
expression included in the eQTL dataset in several ways. Here, we use the
(enhanced) heatmap view (Gehlenborg et al., 2005), which we find most
useful in this context. In this case, the heatmap is enhanced by an additional
column showing false discovery rate (FDR)-corrected P-values of a t-test

between ‘affected’ and ‘unaffected’ patients. Other visualizations (profile or
parallel coordinate plots, scatter plots, box plots, PCA plots, etc.) can be
opened with the click of a button as linked views to further delve into the
data.

4 APPLICATION TO EQTL DATA
In order to use Reveal for the analysis, several different tab-
separated files are required containing the following information:
SNP information and gene expression values for each patient, the
reference nucleotide for each SNP as well as single- and two-locus
results from a PLINK linkage analysis.

To illustrate how Reveal can be used to analyze eQTL
data, we applied it to the data provided for the BioVis 2011
Contest (http://it.inf.uni-tuebingen.de/software/reveal). The data
encompasses human genomic polymorphisms (SNPs) for 7555
genomic loci, gene expression levels for 15 genes and an associated
disease state (‘affected’/‘unaffected’) for a hypothetical spiked-in
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Fig. 6. Genotype view showing the 33 SNPs which either have a difference
in the simplified cohort phenotype or in consensus strength (by at least 10%
points) between the ‘affected’ and the ‘unaffected’ groups

disease. Sequence data are available for a total of 500 patients
of which 193 are affected. Together with the data, results from a
statistical analysis using PLINK were also published.

We start our analysis using the results of the two-locus PLINK
analysis, which computed statistical significance P-values for all
pairs of SNPs based on how strongly their presence resp. absence is
correlated with the expression of one of the 15 genes. We visualized
the results of these 15 PLINK analyses as one association network,
covering 62 136 SNP pairs. We chose a minimum edge weight
threshold of τ =50 to focus only on very prominent features (Fig. 3).
The network impressively visualizes that there are four ‘heavy’
edges with weights ≥400 involving 4 of the 15 genes: CDH22–
CDH7, CDH22–CDH11, CDH22–CDH10 and CDH11–CDH7. Of
the four genes, two (CDH22 and CDH11) are represented by gray
nodes, meaning that there are no SNP pairs associated with their
expression. Three of these heavy edges result from SNP pairs
significantly associated with the expression of CDH1 and the fourth
edge results from SNP pairs significantly associated with PCDH8.
Thus, the most relevant SNP pairs in our data show trans effects,
i.e. they are significantly associated with the expression of a gene at
another genomic locus. Furthermore, 7 of the 15 nodes have a high
node degree (CDH2, CDH6, CDH7, CDH10, CDH11, CDH19 and

CDH22). Interestingly, all nodes sharing a heavy edge also show a
high node degree.

Besides two-locus (SNP pair) results from PLINK, Reveal can
also import P-values computed for the association between single
SNPs and gene expression. Including this data in the association
graph built from two-locus PLINK data, results in additional
filtering possibilities. We chose thresholds to keep only SNPs which
have a PLINK regression value (R2) >0.1 and a single-locus
P-value <0.05 in order to concentrate only on very significant
associations. 845 SNPs pass this filter based on the single-locus
data.

Furthermore, we restricted the association graph such that only
SNP pairs are kept where at least one SNP partner is among these 845
highly significant SNPs. This left us with 696 SNPs. This smaller
graph (shown in Fig. 4) is based on these 696 SNPs. Interestingly,
the heavy edges remain almost equally heavy. On the other hand,
the degrees of the nodes of CDH2, CDH7 and CDH19, which were
the highest in the initial graph, are now greatly reduced, while the
node of CDH5 now has the highest degree.

In the next analysis step, we want to explore the relevant
SNPs of the association network in connection with their genotype
distribution within the patient cohort. In particular, we want to find
out whether these SNPs (or at least some of them) have different
genotypes between the ‘affected’ and ‘unaffected’ patient group. For
this, we selected all 696 SNPs involved in the network of Figure 4
and explored them in more detail in the genotype view. This view
shows individual patient and reference genotypes, the distribution of
the patient cohort genotypes aggregated by meta information (e.g.
affected versus unaffected), as well as the distribution of cohort
genotypes and the (PLINK) P-values associated with each SNP. An
overview of all 696 SNPs is provided in Figure 5.

We concentrated on those SNPs that show either a difference in
the simplified cohort phenotype (i.e. two different levels of gray in
the cohort genotype summary) or a difference in consensus strength
(i.e. a difference of at least 10% points between the ‘affected’ and
the ‘unaffected’ groups). We found 33 relevant SNPs matching these
criteria (Fig. 6). Interestingly, while the differences in cohort group
phenotypes are readily apparent from the genotype summary view,
the distributions are not very different between the ‘affected’ and
the ‘unaffected’group, highlighting the usefulness of summarization
based on the simplified genotype.

Fig. 7. Full heatmap showing expression data for 15 genes in 500 patients. Centered expression values are mapped to a green–red color gradient. Patients
(columns) are grouped according to their disease state, indicated by a color bar above the heatmap (affected, orange; unaffected, cyan). Genes (rows) are
sorted according to the FDR-corrected P-value of a t-test (visualized on the left by a blue–white gradient centered on P=0.05) between the affected and
unaffected patients’ expression values, with the most significant gene on top
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Fig. 8. Aggregated Heatmap (transposed). All 500 patients were aggregated
into two mean expression profiles according to the patients’ disease state
(‘affected’ versus ‘unaffected’). Mean expression values were mapped to a
symmetrical green–red color gradient centered on zero. Genes (columns)
were sorted according to an expression-based clustering (Neighbor joining,
Euclidean distance)

Fig. 9. Bar plot showing the 33 SNPs from Figure 6. Each bar shows the
number of significant SNP pairs that contain the corresponding SNP

We also conducted a standard test of independence using
Pearson’s χ2 test. The null hypothesis was rejected for 375 of the
696 SNPs (P<0.05). Only 13 of the 375 SNPs are also among the
33 visually identified SNPs. For the other SNPs detected only by the
statistical test, the majority of the patients in both groups have the
same allele combinations. This shows that visual inspection helped
to identify more putatively relevant SNPs than a mere statistical
analysis.

Subsequently, we used Mayday to study the gene expression
of the 15 genes in the dataset. We conducted a t-test between
the affected and the unaffected patients’ expression values and
used FDR-corrected P-values to rank the genes according to their
significance. The heatmap view (shown in Fig. 7) nicely shows that
the genes CDH1, CDH10, CDH11, CDH19, PCDH1, PCDH10,
PCDH17 and PCDH19 are differentially expressed between the
two groups, which becomes even clearer when aggregating patients
according to their disease state (Fig. 8).

Together, heatmap and association graph strongly support the
conclusion that the expression of the significantly differentially
expressed genes is influenced by SNP pairs forming the heaviest
edges in the association graph (i.e. those genes which are indicated
by the edge color of the heaviest edges).

Further analysis of the 33 relevant SNPs showed that these are
inside or close to 4 of the 15 genes, namely CDH22, CDH2, CDH5
and CDH6. Notably, these four genes also showed the largest degree
in the association graph in Figure 4 after filtering both for significant
two-locus and single-locus SNPs. The three SNPs from the CDH22,

in addition, are involved in a larger number of significant SNP pairs
than the other 30 SNPs (Fig. 9). Interestingly, these 33 SNPs are also
only contained in SNP pairs that in combination are associated with
genes differentially expressed between ‘affected’ and ‘unaffected’
patients (Fig. 8). We conclude that they are very likely to be
correlated with, or even causal for, the disease.

5 DISCUSSION
Our visual analytics approach Reveal introduces two different
visualizations that allow biologists and bioinformaticians to visually
analyze eQTL data. The association graph visualizes significant
associations between pairs of SNPs and gene expression. Using the
edge color to denote a SNP pair’s target gene has the benefit of
allowing us to visualize trans effects, i.e. SNPs associated with the
expression of genes far away from their own genomic locations. At
the same time, cis effects are also easily visible as edges which are
painted in the same color as one of their respective end nodes.

The example data we used here resulted in a relatively small
association graph with 15 nodes and a few dozen edges. Larger
datasets will result in larger graphs. Our implementation can easily
display larger numbers of nodes as well as larger numbers of
significant SNP pair associations. However, there is a limit to the
complexity of a graph that can be meaningfully interpreted by a
human user. Using the filtering based on edge weights, such overly
complex graphs can be reduced to focus on the really important
associations which are most promising as targets for further research.
Although Reveal can handle hundreds or thousands of nodes, it
becomes difficult to distinguish the different colors associated with
each node, since only about 10 different colors are distinguishable
when showing categorial data (Ware, 2004). Furthermore, node-
link graphs quickly turn into ‘hairballs’ for large numbers of nodes.
Therefore, we introduce interactive highlighting of nodes and edges
with identical color in order to maintain usability for large graphs.
In addition to the association network, we plan to add a matrix-
based view, which does not suffer from the drawbacks of node-link
visualizations.

In this context, one can study for example the question, whether
the gene whose expression is significantly changed by the respective
SNP, is differentially expressed between the different phenotypes. To
answer this question, the user can select the respective node within
the graph, and a linked heatmap will show the expression of the
gene.

The complementary graph of the association network is a SNP
graph where SNPs are represented by nodes and an edge is drawn
between any two SNPs if they form a significant SNP pair. We plan
to combine these two graphs such that for example the user can
select edges in the association network and interactively construct
a new complementary SNP graph. It would be interesting to study
whether there are hubs or cliques in this complementary graph that
could indicate whether a specific SNP or SNP pair is relevant for
the phenotype.

The connection of the association graph with the genotype view
enhances the analytical process since interesting edges can be
selected in the association graph and a new genotype view can be
generated, visualizing the SNPs associated with these edges. While
the information on the cohort genotype distribution is useful for
very detailed analyses, our simplified cohort genotype summary
view allows for a quick overview of a large number of SNPs.
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Furthermore, as the genotype distribution of a relevant SNP might
only be marginally different between cohort groups (such as the
‘affected’ and ‘unaffected’ groups in our example), the summary
can help to highlight cases where the differences are too small
to be readily apparent from the full distribution view. This allows
users to rapidly narrow their analysis down to interesting SNPs.
In combination with filtering techniques, such as presented above,
the relevant information can quickly be uncovered even in large
datasets. Filtering by P-value alone is not always the direct route to
meaningful results. To go one step further, we added the possibility to
compare individuals to the whole cohort distribution in our genotype
view. This enables the user to make predictions on a person’s disease
state based on the set of selected SNPs of interest. In the current
version of the genotype view, it is only possible to distinguish
between two states of a phenotype. We plan to enhance this in the
future to be able to visualize more disease categories.

To capture the full picture presented by the data, the analysis of
expression levels of associated genes is indispensable. Reveal is
able to cover all these different aspects of the data through a tight
integration into the feature rich expression data analysis framework
Mayday.

6 CONCLUSION
We present Reveal, an interactive visual tool for the analysis of
eQTL data from GWASs. Reveal allows for an efficient analysis
of disease-related polymorphisms through a series of different
linked visualizations and enables one to study the influences of
these polymorphisms on the genotypic as well as on the gene
expression level. The two presented views build the basis of the
analysis: the association graph summarizes the given PLINK data by
generating a network of associations that can be filtered interactively
to concentrate on the most important aspects. In the genotype
view, SNPs of interest can be visualized in more detail, e.g. to
evaluate data from a single patient in the context of the complete
cohort of the samples. Being integrated into our visual analytics
software Mayday, Reveal can be used for combined analyses
of genotypic data, expression data and additional meta-data (e.g.
disease phenotype). This makes it a powerful visual analytical
tool that combines visualization and interpretation of genome-wide
association data with gene expression analysis.
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