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Abstract
This study presents a 2-stage heartbeat classifier of supraventricular (SVB) and ventricular

(VB) beats. Stage 1 makes computationally-efficient classification of SVB-beats, using sim-

ple correlation threshold criterion for finding close match with a predominant normal (refer-

ence) beat template. The non-matched beats are next subjected to measurement of 20

basic features, tracking the beat and reference template morphology and RR-variability for

subsequent refined classification in SVB or VB-class by Stage 2. Four linear classifiers are

compared: cluster, fuzzy, linear discriminant analysis (LDA) and classification tree (CT), all

subjected to iterative training for selection of the optimal feature space among extended

210-sized set, embodying interactive second-order effects between 20 independent fea-

tures. The optimization process minimizes at equal weight the false positives in SVB-class

and false negatives in VB-class. The training with European ST-T, AHA, MIT-BIH Supra-

ventricular Arrhythmia databases found the best performance settings of all classification

models: Cluster (30 features), Fuzzy (72 features), LDA (142 coefficients), CT (221 decision

nodes) with top-3 best scored features: normalized current RR-interval, higher/lower fre-

quency content ratio, beat-to-template correlation. Unbiased test-validation with MIT-BIH

Arrhythmia database rates the classifiers in descending order of their specificity for SVB-

class: CT (99.9%), LDA (99.6%), Cluster (99.5%), Fuzzy (99.4%); sensitivity for ventricular

ectopic beats as part from VB-class (commonly reported in published beat-classification

studies): CT (96.7%), Fuzzy (94.4%), LDA (94.2%), Cluster (92.4%); positive predictivity:

CT (99.2%), Cluster (93.6%), LDA (93.0%), Fuzzy (92.4%). CT has superior accuracy by

0.3–6.8% points, with the advantage for easy model complexity configuration by pruning

the tree consisted of easy interpretable ‘if-then’ rules.
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Introduction
Early detection of cardiac arrhythmias is potentially life-saving as any disturbance in the rate,
regularity, site of origin or conduction of electrical impulses through the myocardium might
refer to a structural or functional heart disease with the risk of developing heart failure [1].
Automatic detection and classification of heartbeats is an important computerized diagnostic
tool, assisting cardiologists in the task of careful expert inspection of long-term electrocardio-
gram (ECG) recordings, marking the presence of sustained or casual (e.g. transient, short-term
or infrequent) arrhythmias. Considering the inter-patient and intra-patient variation of the
ECG waveform, some beat classification systems aim to improve their performance by taking
the advantage from a local expert assistance for initial annotation of a group of typical or
pathological beats in one ECG recording rather than only relying on a global learning strategy
[2–7].

The analysis of the P-QRS-T waveform complexity and regularity of the cardiac cycle dura-
tion (RR-interval) is used for extraction of a diverse set of features which are then subjected to
optimization in different decision support systems aiming at the most reliable classification of
normal or abnormal beats with supraventricular or ventricular origin. The feature extraction
techniques can be grouped according to the mathematical models used to assess the P-QRS-T
waveform complexity. The widely used approach applies P-QRS-T onset/offset delineation or
extraction of QRS patterns within a fixed-length window around the fiducial point to measure
morphological features in the time domain, including amplitudes, areas, specific interval dura-
tions or magnitudes and angles of the QRS vectors in the vectorcardiographic (VCG) planes
[2–5,8–19]. Other ECG descriptors rely on QRS frequency components calculated either by
discrete Fourier transform (DFT) [11,18,20] or by computationally efficient algorithms with
filter banks [4,21]. The waveform of fixed-length QRS patterns is analyzed either in the time
domain by cross-correlation with a reference beat template [4,22] or in the time-frequency
domain by decomposition to large-scale basis functions and extraction of their coefficients by
discrete wavelet transform (DWT) [10,15,18,19,23–25], wavelet packet decomposition (WPD)
[11,26], Matching Pursuits [5,27], Hermite basis functions [10,28–30], principal-component
analysis (PCA), referred also as Karhunen-Loève transform [2,6,23,31]. The dynamic ECG fea-
tures estimated as a variation of the neighboring RR-intervals are considered in almost all pub-
lished works.

Different mathematical approaches for decision support systems have been proposed for
the automatic classification of heartbeats. Widely applied classification methods are based on
linear programming using the Kth nearest-neighbours (KNN) using clustering technique [5,9–
11,26], linear discriminant analysis (LDA) [3,13–15], fuzzy analysis [4,12,21] and decision tree
classifiers [7,8,16,17,21,25,32]. Another frequently used classifier is the support vector machine
(SVM)–least square SVM applying linear kernel function [22–24] or SVM relying on quadratic
optimization by mapping of the feature space into a high dimensional space using various ker-
nel transformations like hyperbolic tangent sigmoid transfer function [18] or Gaussian radial
basis function [19,20,23,24]. Artificial neural networks (ANNs) are also employed for heartbeat
classification [2,23,27–29,31], although ANNs involve time consuming complex computations
in the application phase, masking the features which are useful or worthless and the net deci-
sion making [32]. The latter study underlines the decision tree among a set of 16 classifiers,
such as ANNs, nearest-neighbours, kernel density, etc. as the most accurate, the most time effi-
cient, very flexible and easily interpretable representation language. The good performance of
the decision tree is also demonstrated in a recent study [30], which combines a set of individual
neural classifiers working in parallel and a subsequent decision tree to integrate the results,
thus reporting about 9.5% lower error than in the case of the runner-up method of integration
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using the weighted voting mechanism. Decision trees are also well employed in the final classi-
fication step of a complex features extraction scheme by DWT, PCA and independent compo-
nent analysis [25]. Such complicated computation schemes, however, are losing the benefit
from simplicity that gains the decision tree model, which is the core for building remote auto-
mated real-time ECG analysis modules, such as PDAs (Personal Digital Assistants) [32] or
wireless Holter monitors [7,8].

The existence of redundant feature vectors affects the performance of the classifier if not
appropriately handled. Reduction of the feature space dimension by excluding irrelevant fea-
tures carrying conflicting, duplicating or little information to the classifier is applied by means
of higher order statistics [26], genetic algorithm [11,20], perturbation method [19], fuzzy c-
means clustering [31], or Hermite function decomposition [28].

The objective of this work is to develop and compare the best performance of four indepen-
dent realizations of linear programming beat classifiers based on cluster analysis, LDA, fuzzy
analysis and classification tree (CT), all subjected to iterative training for selection of the opti-
mal feature space. The general concepts followed during the development, training and test
process are:

- Computationally efficient and robust real-time beat classifier, without the need for local
expert intervention, mandatory in fully automated monitoring devices for cardiac
patients.

- Beat class labeling according to the ANSI/AAMI EC57 standard [33].

- Better generalization properties of the optimal feature set by multidatabase training
approach.

- Unbiased performance evaluation on independent training [34–36] and test [37] ECG
databases which are a common standard for inter- and intra-study comparisons.

- Input feature space formed by a set of basic features with a physiological meaning, track-
ing the morphology and RR-interval variation, and correlation to noise robust average
beat templates.

- Iterative training for selection of the optimal feature space, aiming at each step to mini-
mize the number of false positive and false negative errors.

ECG Databases
The study involves all full-length recordings in four ECG databases owing internationally rec-
ognized heartbeat annotations of many common and life-threatening arrhythmias:

- АHА –AHA database [34]: 80 ECG recordings, 2 leads, 30min in duration;

- EDB–European ST-T database [35]: 90 ECG recordings, 2 leads, 2h;

- SVDB–MIT-BIH Supraventricular Arrhythmia Database [36]: 78 ECG recordings, 2
leads, 30min;

- MIT-BIH–MIT-BIH Arrhythmia Database [37]: 48 ECG recordings, 2 leads, 30min.

ECG signals are processed with a common sampling rate of 250Hz. EDB and AHA keep
their original sampling rate (250Hz), while MIT-BIH (360Hz) and SVDB (125Hz) are linearly
interpolated to 250Hz. Filtering in a bandwidth 0.05–75Hz is applied, although, signals could
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be already more band-limited within the databases. Two composite leads are next analyzed:

Magnitude : mag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lead12 þ lead22

p
; Velocity : vel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDlead1Þ2 þ ðDlead2Þ2

q
;

where Δlead1 and Δlead2 are the first order derivatives of lead1 and lead2, estimated as the dif-
ference between two neighboring lead samples on the time scale.

An automatic heartbeat detector is run and the correctly identified QRS complexes which
can be paired with the database reference beat annotation labels within a window of 150ms are
further included in the heartbeat classification study. The original database beat annotation
labels are converted to one of the five beat types recommended by ANSI/AAMI EC57:1998
standard [33]:

- N-beat: Sinus node beat, including normal beat, left and right bundle branch block;

- S-beat: Supraventricular ectopic beat, including an atrial or nodal (junctional) premature
or escape beat, or an aberrated atrial premature beat;

- V-beat: Ventricular ectopic beat, including a ventricular premature beat, R-on-T ventricu-
lar premature beat, or ventricular escape beat;

- F-beat: Fusion of ventricular and normal beat;

- Q-beat: Unclassified beat, including unknown beat, paced beat, a fusion of paced and nor-
mal beat.

- Two general heartbeat classes are defined in the beat classification task:

- SVB-class: the class of beats with supraventricular origin (N+S beats);

- VB-class: the class of beats with ventricular origin (V+F beats).

This generalization to a binary class model (SVB and VB) is a clinically relevant pre-step of
the beat type (N,S,V,F) classification problem that distinguishes between beats of normal mor-
phology (narrow supraventricular beats) and abnormal morphology (dangerous wide ventricu-
lar beats).

Independent datasets are used for training (AHA, EDB, SVDB) and test-validation (MIT-
BIH) with a total duration of about 300h and 24h, respectively. Table 1 shows the number of
annotated beats which have been analyzed in each database.

Methods
The presented beat classifier is based on a two-stage decision system (Fig 1), applying initial
fast assignment of beats to SVB-class, close matching the reference beat template of the
patient’s predominant rhythm (Stage 1), and a subsequent classification of the non-matched
beats to SVB or VB-class (Stage 2). Different classification methods which allow implementa-
tion of a real-time processing concept are studied as a Stage 2 beat classifiers, including Cluster,
Fuzzy, Discriminant and Classification tree models. The next subsections briefly describe the
background of each method.

Stage 1: Beat template matching
Stage 1 is a kind of PQRST waveform preprocessor, which accumulates average beat templates,
makes template matching for fast assignment of beats in SVB-class and calculates a set of fea-
tures only for the non-classified beats.
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During the learning period (initial 10s of the recording), the predominant normal (refer-
ence) beat template is created. For this purpose, all heartbeats within the learning period are
assigned to subgroups of similar morphologies. The number of members and the QRS duration
of each subgroup are used in a weighted combination for finding the largest subgroup with the
shortest QRS duration. Averaging of all beats in this subgroup defines the predominant normal
beat template, which is compared to each further beat.

The embedded template matching algorithm relies on correlation between the beat and the
template waveforms. The template matching condition requires a correlation above an adap-
tive correlation threshold (ACT), which may vary between 80% and 98%. ACT is slowly
adapted to the current noise conditions every 10s:

ACTðiÞ ¼ 0:75 �ACT ði�1Þ þ 0:25 �OCTði�1Þ;

where: i is the index of non-overlapping 10s segments; OCT is the optimal correlation thresh-
old–the highest possible threshold value which fulfills the basic rule: at least 75% of beats in a
10s segment must match at least 25% of the other beats in the same segment. The intention is
that OCT is set in the way that not every beat is in its own subgroup (too high threshold) and
that not all the beats are always in the same subgroup (too low threshold). We expect that at
least 75% of the beats can be assigned to not more than 4 different subgroups. The remaining
25% of the beats may be random, e.g. artefacts. OCT is calculated every 10s using all beats
within the previous 10s segment and by scanning from 98% downwards in steps of 0.5% until
the basic rule is fulfilled or the minimal value of 80% is reached. This procedure has been
proven to be effective to follow changing noise conditions in many recordings from different
patients.

Table 1. Sample size, including the total number of N, S, V, F beats in ECG databases.

Supraventricular beats (SVB-class) Ventricular beats (VB-class)

Beat Annotation N beats S beats V beats F beats

EDB–Training 784633 1100 4467 354

SVDB–Training 162340 12198 9943 23

AHA–Training 160585 0 16496 829

MIT-BIH–Test 90388 3025 7235 803

doi:10.1371/journal.pone.0140123.t001

Fig 1. Concept diagram of the two-stage beat classifier.

doi:10.1371/journal.pone.0140123.g001

Beat Classifier by Cluster, Fuzzy, Discriminant, Decision Tree Models

PLOS ONE | DOI:10.1371/journal.pone.0140123 October 13, 2015 5 / 29



During the test phase, each beat is compared to the reference template and if matching is
found then the current beat is assumed to resemble the patient’s sustained rhythm, it is
assigned to SVB-class and the reference template is dynamically updated. If the current beat
does not match the reference template, then matching to other beat templates is verified and
the matched one is updated. Otherwise a new template is created. The other beat templates are
created for repetitive beat morphologies that do not match the predominant normal (reference)
beat template. They help to distinguish a repetitive beat pattern from a random pattern (e.g.
monomorphic ventricular beats vs. polymorphic ventricular beats or artefacts). A limited num-
ber of templates is supported (e.g. up to 8 templates) in order to save computation time in a
real-time environment which is started and running for an undetermined amount of time. The
correlation calculation requires many operations and the number of calculated correlation
coefficients for every new beat increases proportionally with each additional beat template.
Non-matched beats create a new template only if the limit of templates is not exceeded or may
replace an existing template. Replacement of templates is just an option for a long-term acqui-
sition, but it has not actually been done in the training and testing datasets. A possible strategy
may be the replacement of the template with the smallest number of beat members that has not
been hit for the longest time.

Some potential distinguishing properties of SVB vs. VB beats are well-known and were used
as prior knowledge when creating the basic feature set with a related physiological meaning: P-
wave existence (P wave is usually not present for VB-class), morphological similarity with the
predominant reference template (typical for SVB-class), QRS complex properties (larger QRS
duration/area, lower QRS frequency content are typical for VB-class), relative beat timing (VB
beats occur earlier in time than the next expected beat). Stage 1 calculates a set of 20 basic fea-
tures only for the beats not assigned to SVB-class, considering the time-domain behavior of the
current beat, the neighboring beats (previous, next), and the noise robust reference template:

- 3 ternary discrete features, indicating if the current, previous and next beats are: matching
the reference template (0), matching another beat template (1) or not matching any beat
template (-1).

- 2 binary discrete features, indicating if the current beat and the reference template have a
P-wave (no = 0 or yes = 1).

- 3 correlation coefficients, showing the waveform similarity of the current beat, the previ-
ous beat and the next beat against the reference template. The correlation (corr) is esti-
mated from the composite velocity lead of a single beat (Bvel) and beat template (Tvel)
within 180 ms window after the QRS onset:

corr ¼ 100

XQRSonþ180ms

i¼QRSon

Bveli � TveliffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXQRSonþ180ms

i¼QRSon

Bvel2i �
XQRSonþ180ms

i¼QRSon

Tvel2i

s ; ð%Þ

- 3 QRS durations (QRSdur) of the current beat, the reference template and the difference
between both, where QRSdur is defined between the QRS boundaries:

QRSdur ¼ QRSoff �QRSon; ðmsÞ
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- 3 features for the relative QRS activity (QRSact) of the current beat, the reference template
and the difference between both. QRSact is the mean QRS magnitude (mag) within 180
ms window after the QRS onset normalized to the maximal QRS magnitude. QRSact with
large mean estimation is expected for the extended area QRS morphologies (VB beats).

QRSact ¼ 100
Mean

QRSonþ180ms

i¼QRSon
ðmagiÞ

Max
QRSonþ180ms

i¼QRSon
ðmagiÞ

; ð%Þ

- 3 features for the QRS mobility (QRSmob) of the current beat, the reference template and
the difference between both. QRSmob feature is the ratio of the velocity area divided by
the magnitude area within 180 ms window after the QRS onset that is the time domain
equivalent to a higher/lower frequency content ratio. High values are expected for fast ris-
ing(falling)/small area QRS morphologies (SVB beats) and low values for slower rising
(falling)/larger area QRS morphologies (VB beats). QRSmob is expected to be one of the
robust integral measures but with inverse behavior compared to QRSact.

QRSmob ¼ 100

XQRSonþ180ms

i¼QRSon

ðveliÞ

XQRSonþ180ms

i¼QRSon

ðmagiÞ
; ð%Þ

- 2 features for the current/next RR-interval durations normalized to the mean RR-interval
of the last four RR-intervals:

curRR ¼ 100 � Current RR interval
Mean RR interval

; ð%Þ
nextRR ¼ 100 � Next RR interval

Mean RR interval
; ð%Þ

- 1 feature for the relative RR-interval variability of the last 10 seconds:

relRRv ¼ 100 � Reference RR variability
Mean RR interval

; ð%Þ

During the learning period (10s), when there is no reference template, default values are set
to the reference template features: reference P-wave is present, corr = 80%, reference
QRSdur = 100ms, reference QRSact = 100%, reference QRSmob = 100%.

Stage 1 extends the 20 basic features to a vector of 210 features by computing products of
any two basic features (full factorial design with 2 factors). The factorial design is a common
technique in exploratory statistical analyses for studying significant interactions of combina-
tions of features (interactive second-order effects). Our goal is to produce a redundant but
informative set of features which can be further optimized during the learning phase of Stage 2
classifiers.
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Stage 2: Linear-programming classifiers
Cluster analysis. Different approaches to clustering data have been described, divided in

general at hierarchical (producing a nested series of partitions) and partitional (producing sin-
gle partition) [38]. In this study, we applied the k-means partitional clustering algorithm,
which is preferred for applications involving large data sets. The implemented method is
shortly described:

- Step 1: Selection of k cluster centroids by either using the principle of maximal initial dis-
tance between clusters (applicable for relatively small datasets), or coinciding them with k
randomly-chosen vectors in the feature space. In this study, we use random selection of
the initial cluster centroids and attempt to optimize the clusterization by using the best of
10 replicates (providing maximal initial distance between clusters).

- Step 2: Assignment of each vector to the closest cluster center. In this study, the distance
between vector x and the centroid of the jth cluster z j is computed as the Euclidean dis-
tance:

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðxi � zjiÞ2
s

;

where n is the number of features.

- Step 3: Recalculation of the cluster centers using the current cluster memberships.

- Step 4: If a convergence criterion is not met, return to Step 2. Typical convergence criteria
are: no (or minimal) reassignment of vectors to new cluster centers, or minimal decrease
in squared error.

- Step 5: Assignment of the cluster type according to its predominant beat class member-
ship. In this study, the generated clusters were labeled either as SVB, or as VB.

A problem accompanying the use of k-means algorithm is the choice of the number of
desired output clusters. In practice, therefore, the algorithm is typically run multiple times with
different starting states, and the best configuration obtained from all of the runs is used as the
output clustering [38].

After generation of clusters over the training dataset, the classification of a new case is based
on the type of the nearest cluster centroid (KNN classifier).

Fuzzy analysis. The fuzzy set theory deals with models, where the transition between full
membership and no membership is gradual rather than abrupt. A fuzzy subset A is defined by
a membership function μA(x), in the range [0,1], mapping the degree to which an element x
belongs to the fuzzy subset A from domain X.

A ¼ fðx; mA ðxÞÞ : x 2 X; mA ðxÞ 2 ½0; 1�g

The general structure of a fuzzy logic classifier consists of three basic components–fuzzifica-
tion unit at the input, inference block built on fuzzy logic control rules, and defuzzification unit
at the output [39]. Fuzzification is a process in which by means of a membership function (tri-
angular function, trapezoidal function, Gaussian membership function, etc.) the input features
are transformed to corresponding linguistic terms to get degree of fulfillment. It means con-
verting a crisp value into a fuzzy one by adding uncertainty. Defuzzification is the inverse pro-
cess of fuzzification, in which, the output linguistic terms are converted into crisp values
according to their degree of fulfillment. Widely used techniques for defuzzification are max-
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membership, center of gravity method, weighted average method, mean-max method and cen-
ter of sums method.

This study divides the domain of all heartbeats into two fuzzy subsets belonging to SVB and
VB-class. The membership functions of the crisp set of 210 features are estimated by the
observed statistical distributions in SVB and VB-class, using the percentiles as a robust measure
of the dispersion of the data rather than the Gaussian membership function. The confidence
that a beat belongs to SVB-class or VB-class is calculated by means of the percentile ranking in
the statistical distribution of the training dataset. The fuzzy logic control rule makes averaging
of the confidences of the selected feature space to assign SVB or VB-class membership, accord-
ing to the larger confidence value.

Discriminant analysis. The discriminant analysis is widely used for development of classi-
fication rules and for assessment of the relative importance of variables in the discrimination
between classes [40]. In this study, a linear discriminant function is derived to separate the fea-
ture space of the two classes–SVB vs. VB. Short description of the implemented method is pre-
sented below.

Let yij be a vector of q features in a training dataset, in which class membership is known,
for the i-th beat (i = 1,. . ., nj) in the j-th class (j = 1, 2). It is assumed that yij ~ Nq(μj, Sj), where
μj and Sj are the beat population mean vector and covariance matrix for the j-th class, estimated

by μ̂ j and Σ̂j, respectively.

The LDA classification rule assigns the ij-th vector to class 1 if:

lðyijÞ ¼ yij �
1

2
ðμ̂1 þ μ̂2Þ

� �T

â > lnðp̂2

p̂1

Þ

Otherwise, the vector is assigned to class 2.
The symbols in the above equation are indicative for

- T is the transpose operator,

- â ¼ Σ̂�1ðμ̂1 � μ̂2Þis the estimate of the linear discriminant function, a, where:

Σ̂ ¼ ðn1 � 1ÞΣ̂1 þ ðn2 � 1ÞΣ̂2

n1 þ n2 � 2

- π1 and π2 are the prior probabilities that a beat belongs to class 1 or 2, respectively.

Standardized discriminant function coefficients are obtained by multiplying â with a diago-
nal matrix of variable standard deviations.

Considering the use of independent datasets for training and testing, as well as the large size
of our training dataset (Table 1), we do not apply cross-validation or bootstrapping to calculate
the accuracy of the LDA model for the training dataset. Instead, the apparent error rate is esti-
mated during the training process, which asymptotically approximates the true prediction
error for large-sized training datasets [41]:

APER ¼ N � n11 � n22

N
;

where n11 and n22 are the number of beats correctly assigned to class 1 and 2, respectively.
The class membership of a new beat is predicted using LDA function derived over the train-

ing dataset.
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Classification tree. In most general terms, the purpose of the analyses via tree-building
algorithms is to determine a set of ‘if-then’ logical (split) conditions that permit accurate classi-
fication or prediction of cases, known as Classification & Regression tree (C&RT) models. The
target of the present study is focused on the heartbeat classification, and therefore, the pre-
sented theory is considering the C&RT model application to classification tasks.

Classification trees (CT) might be considered as a collection of rules that enable separate
sets of features to be linked into a common class. The tree classifier is built by consecutive
domain partitions of the feature set until uniformity is attained in created subsets. The tree
resembles a graph that consists of a root node from which at least two branches emerge, which
then lead to inferior nodes (child nodes). Each node is attributed to a class description, and
each branch refers to a decision rule, i.e. a condition related to features from the input data set
and describing the case when each branch is chosen. The most popular type of a decision rule
is the so called univariate split based on testing a single feature. By successive splitting of the
dataset, the child nodes become parent nodes. In common algorithms, the conditions on the
branches of each node must be complementary in a manner that provides one possible path
downward when ‘climbing the tree’. Nodes that do not have any child nodes are known as leaf,
terminal nodes or final decision nodes, and represent the final classes.

Tree design approaches are aimed at finding ‘optimal’ solutions: minimum sized trees with
high classification accuracy. Since a search on the whole set of possible trees for a given prob-
lem is almost always impractical, this study follows the most common tree building strategy
with two steps [42]:

- Step 1: Splitting of nodes–growing a tree, in a top-down way, until all possible leaf nodes
have been reached (i.e. purity), based on specific splitting criteria. The most popular con-
cept is based on splitting of independent variables at several split points taking into
account the homogeneity of data at each node. Rigorous measures of impurity, based on
computing the proportion of the data that belong to a class, such as entropy (maximal
deviance reduction), Gini index, twoing rule are among the most commonly used splitting
criteria to quantify the homogeneity in CT.

- Step 2: Pruning the tree by backward removing of particular branches based on specific
pruning criteria, remedying the usual over-fitting of the final solution reached by Step 1.
Complex trees usually exhibit meaningless extra nodes, i.e. with decision rules that don’t
make sense in terms of medical knowledge, and therefore, the accuracy, efficiency and
generalization capability of the final solution relies on using an optimal scheme for tree
pruning. To guide the tree pruning, the misclassification rate is typically measured so that
branches giving less improvement in error cost are first pruned.

The mathematical background presented below is defining the most common criteria for
splitting nodes and pruning the tree, which are the basis for the CT model development with
special application to heartbeat classification. The criteria are formulated for general number
of classes, which can be simplified to a two class problem, considering the target heartbeat
assignment to SVB and VB-classes.

Let assume that there are n observations in a parent node P and there are J classes labeled as
1,2,3,. . .J. Let nj be the number of beats in class j. The relative proportion nj/n of class j beats in
the node is denoted by pj. Each binary split si produces two child nodes–left (L), which contains
nL beats and right (R) with nR beats, such that nL+nR = n. The child nodes contain the relative
proportions pL = nL/n and pR = nR/n. The relative proportions of class j beats in the child nodes
are denoted by pjL and pjR. The notation i(p) is further used as a generic notation of impurity,
formulated below for the three most common splitting methods.
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- Splitting based on entropy or maximal deviance reduction
The entropy is defined as:

iEðpÞ ¼ �
XJ

j¼1

pj log pj

When the entropy of a node is zero, pj = 1 for class j, then the node is said to be pure, since it
contains beats of only one class. When the entropy is maximized, pj is uniform, then the node
is least pure because it contains equal proportions of beats from each class.

It is shown that the entropy and deviance based measurements of impurity differ by a con-
stant factor [43]. The deviance is defined as:

iD ¼ �2
XJ

j¼1

nj log pj ¼2niEðpÞ

In our case with two classes, this formulation can be reduced to:

iDðpÞ ¼ 2nð�p1 log p1 � p2 log p2Þ ¼ 2nð�p1 log p1 � ð1� p1Þ logð1� p1ÞÞ

These methods are valuable for splitting leaves that contain a large number of observations
[44].

- Splitting based on Gini index
The Gini index is defined as:

iGðpÞ ¼
X
pj 6¼pi

pipj ¼ 1�
XJ

j¼1

p2j

In our two-class problem, the Gini index can be simplified to:

iGðpÞ ¼ 1� ðp21 þ p22Þ ¼ 1� p21 � ð1� p1Þ2 ¼ 2p1ð1� p1Þ

This method looks for the largest class in a dataset and tries to isolate it from the other clas-
ses. The Gini index is equivalent to second-order entropy [45] and is claimed to result in trees
that are structurally similar to those, obtained when entropy (deviance) is used for splitting
[46,47].

The goal of the maximum deviance (entropy) reduction and Gini index is to reduce the
uncertainty until a pure leaf node is established.

- Splitting based on twoing rule
The twoing rule [46] has a much different splitting strategy than maximum deviance (entropy)
reduction and Gini index, and tends to be most useful in multi-class tree creation. It searches
for the split that maximizes:

iTðpÞ ¼
pLpR
4

ð
XJ

j¼1

jpjL � pjRjÞ2

This rule aims to divide the classes between the child nodes in a way that equal size nodes
are formed.
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- Pruning based on misclassification rate
The misclassification rate is an error function, which measures the discrepancy between the
beat annotations and the model’s outputs (i.e. the cost of misclassifying a beat from class VB as
belonging to class SVB and vice versa).

Considering a nodem, the proportion of a class j at this node is defined as:

pjm ¼ 1

nm

Xnm
k¼1

Iðyk ¼ jÞ; j ¼ 1; 2; 3. . .J ;

where nm is the number of beats in the tree nodem, yk is the tree response for beat k, and I is an
indicator function.

The observations in nodem are classified to the majority class:

jðmÞ ¼ arg max½pjm�

The misclassification error applied to guide the cost-complexity pruning of the tree is
defined as:

MCE ¼ 1

nm

Xnm
k¼1

Iðyk 6¼ jðmÞÞ ¼ 1�maxfpjmg

Pruning a node and its descendants leads to misclassification error increase, so that the
pruning algorithm iteratively selects to first prune the node with minimal influence on the mis-
classification rate.

Fig 2 shows a simple CT model, which is first split to a number of 20 final decision nodes,
and then it is backwards simplified to different pruning levels.

The CT model exhibits some important benefits:

- No need for prior optimization of the input feature space: The self-learning algorithm
analyses the training set and grows the tree in a stepwise mode by entering the feature
which has the most significant contribution for minimizing the error cost function.

- The final CT model can be easily interpreted as a set of ‘if-then’ rules. Such algorithm is
fast executable and applicable in real-time environment;

- The geometry of CT is simple and comes with a visual interpretation of the conjugation of
tests (the path leading from the root node to the final decision node);

- CT explicitly localizes the ranges of the feature space that are pertinent to the given class
of beats;

- Derivation of results without a need for deep knowledge on the tested beat features that
increases the practical applications of CT for solving heartbeat classification problems,
suggested also for more than two classes.

Results
The heartbeat classification performance of Stage 1 and Stage 2 are estimated by three statistical
indices that are adopted in the research community to provide comprehensive assessment of
imbalanced learning problems [48]: sensitivity (Se), specificity (Sp), positive predictive value
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(PPV).

Sp ¼ TN
TN þ FP

; Se ¼ TP
TP þ FN

; PPV ¼ TP
TP þ FP

;

where TN and FP are true negatives and false positives for SVB-class; TP and FN are true posi-
tives and false negatives for VB-class.

The scheme for performance evaluation of Stage 1, the training process of Stage 2 and the
performance evaluation of the combined classifier (Stage 1+Stage 2) is presented in Fig 3.

Stage 1: Performance evaluation
Stage 1 performance is evaluated by the statistical indices Se, Sp, PPV when considering the fol-
lowing interpretation of TN, FP, TP, FN cases:

- For N and S beats (SVB-class):

� TN =Matched beats to the predominant beat template

� FP = Non-matched beats to the predominant beat template

- For V and F beats (VB-class):

� TP = Non-matched beats to the predominant beat template

� FN =Matched beats to the predominant beat template

The performance of Stage 1 for the training and test databases is presented in Table 2. The
considerably low value of PPV, achieved at the output of Stage 1 (about 36%), indicates for the
need of a second beat classification stage dedicated to decrease of the FP rate.

Stage 2: Training process
All beat classification methods designed in Stage 2 (including Cluster, Fuzzy, LDA and CT
models) are implemented in Matlab7.5 (The Mathworks Inc.), using the standard functions
embedded in the Statistical toolbox. The input dataset for the training process of Stage 2
involves those beats from the training databases (EDB, AHA, SVDB) which are not matched to
the predominant beat template by Stage 1, i.e. 50175 N-beats, 2757 S-beats, 29263 V-beats, 900

Fig 2. General view of an example CTmodel.CT has a total number of 73 nodes, 36 branches, 20 decision nodes, including 31 variables (identification
numbers are assigned as x114, x154, x121, etc. counting the input vector of 210 features). The classification process starts at the root of the tree. An
incoming beat travels down the branches of the tree depending on the result of the test on a feature. The procedure ends when the beat arrives at a leaf ‘1’
(SVB-class) or ‘0’ (VB-class). The tree is backwards pruned to level 10, and the pruned nodes and branches are shown with dotted lines. The subsequently
pruned groups of nodes and branches are highlighted in common areas, starting from pruning level PL = 1, 2, . . .10.

doi:10.1371/journal.pone.0140123.g002
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F-beats. The training is an iterative process for selection of the optimal feature space, trying at
each step to minimize the number of errors. We consider at equal weight the FPs in SVB-class
and FNs in VB-class, therefore, the optimization criterion aims to maximize Se and PPV, con-
sidered to effectively evaluate the classification performance in imbalanced learning scenarios

Fig 3. Block-diagram of the training and test-validation of the two-stage beat classifier. It shows the performance evaluation of Stage 1, the training
process of Stage 2 and the performance evaluation of the combined classifier (Stage 1+Stage 2).

doi:10.1371/journal.pone.0140123.g003

Table 2. Classification performance of Stage 1.

Stage 1 decision Matched beats to a predominant template (assigned to SVB-
class)

Non-matched
beatsto a

predominant
template

Sp (%) Se
(%)

PPV
(%)

Training
databases

EDB 95.86 96.20 12.48

SVDB 93.09 92.76 43.39

AHA 94.79 93.97 66.05

Total training 95.28 93.93 36.29

Test database

MIT-BIH 91.22 94.39 48.05

doi:10.1371/journal.pone.0140123.t002
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[48], by the common index:

MeanðSe; PPVÞ ¼ ðSeþ PPVÞ
2

:

Cluster analysis. The cluster model implemented in the study has two settings influencing
the output–the number of clusters and the selected feature space. These items are not indepen-
dent, but rather the selection of the feature space affects the cluster number and vice versa. The

maximal number of clusters is limited to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
210features=2

p � 10 clusters following the ‘rule of
thumb’ [49]. The training process involves a stepwise cluster analysis with a fixed number of
clusters (2, 3, . . . 10), applying iterative selection of the optimal feature space of the model as
follows:

First iteration step:

� S1: Selection of one feature from the input feature space.

� S2: Clusterization with 10 replications of the initial cluster centroid positions. The best
replication is estimated by accuracy: [Se, Mean(Se,PPV)] for the training dataset.

� S3: All features are one-by-one subjected to S2 for final selection of the best-perform-
ing feature, providing maximum of Mean(Se,PPV). If several features have equal val-
ues of Mean(Se,PPV), the one with the highest Se is chosen.

- Next iteration steps:

� S4: Selection of a feature which is still not included in the model and adding it to the
feature space selected at the previous step. The new feature space is subjected to S2.

� S5: All relevant features are one-by-one subjected to S4 and the best performing solu-
tion at this iteration step is selected according to the criteria in S3.

- The optimal iteration step: it is defined when cluster analysis stops to improve perfor-
mance, e.g. any new feature in the feature space at any further step does not produce
increased values of Mean(Se,PPV) nor Se.

The training process of the stepwise cluster analysis is illustrated in Figs 4 and 5. Fig 4 is an
evidence that there could be clearly defined a minimal feature space when the cluster’s perfor-
mance reaches saturation, e.g. the optimal iteration step for 3 clusters involves 7 features, for 6
clusters– 6 features, for 9 clusters– 30 features. Fig 5 presents the cluster’s best performing solu-
tions which fluctuate within 5% when the number of clusters is set from 2 to 10 clusters. We
observe the worst performance (87.2%, 86.3%) for 4 clusters, and the best performance (90.9%,
91.4%) for 9 clusters, reported as (Mean(Se,PPV), Se). Therefore, we define the use of 9 clusters
(5 assigned to SVB-class, 4 assigned to VB-class) and 30 features as the best performing cluster
analysis solution in Stage 2.

Fuzzy analysis. The accuracy of the fuzzy analysis depends on the features involved in the
model, i.e. on their average confidence that a beat belongs to SVB or VB-class. The training
applies a stepwise fuzzy analysis with iterative selection of the optimal feature space, implying a
larger difference between both confidences. The training process follows the same iteration
steps (S1 to S5) as defined for the cluster analysis. The only difference is the model specific esti-
mations at step S2, where the fuzzy analysis calculates the average fuzzy distribution confidence
of the selected feature space. At the optimal iteration step, the fuzzy analysis stops to improve
performance, e.g. any new feature in the fuzzy model at any further step does not produce
increased values of neither Mean(Se,PPV), nor Se.
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Fig 4. Training process of the stepwise cluster analysis: influence of the number of features entered in the model. The trend of Se, PPV, Mean(Se,
PPV) is reported for 3, 6, 9 clusters. The optimal iteration step is defined for 7 features (3 clusters, ‘*’mark), 6 features (6 clusters, ‘□’mark) and 30 features (9
clusters, ‘�’mark).

doi:10.1371/journal.pone.0140123.g004

Fig 5. Training process of the stepwise cluster analysis: influence of the number of clusters. The
values of Se, PPV, Mean(Se,PPV) are reported at the optimal iteration step (3, 6, 9 clusters are assigned with
the same marks as in Fig 4). The best performing solution is defined for 9 clusters (Step 30). The continuous
performance graphs are depicted by spline interpolation between the solutions at integer number of clusters.

doi:10.1371/journal.pone.0140123.g005
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Fig 6 illustrates the training process of the fuzzy analysis, which presents an increase of
Mean(Se,PPV) by 7% (from 86.1 to 93.1%) and Se by 5.3% (from 90.4 to 95.7%) when a single
feature fuzzy model is extended to the optimal set of 72 features. Further addition of features is
deteriorating both Mean(Se,PPV) and Se.

Discriminant analysis. The LDA model implemented in this study has two settings which
affect the output–the prior probability for SVB vs. VB-class and the selected feature space.
Varying the prior probability of one class scales the constant of the discriminant function so
that the feature space is divided in advantage to this class. Different prior probabilities for SVB
vs. VB-class (i.e. from 70/30% to 10/90%) were tested during the training process, thus varying
the ratio between Se and PPV.

Stepwise LDA (SDA) is applied to combine features in order to obtain a linear discriminant
function, which best separates the feature space of SVB vs. VB-class. SDA is iteratively trained
as follows:

- First iteration step: All features are one-by-one involved in independent LDA functions
and the feature with the best discrimination ability (the highest Mean(Se,PPV)) over the
training database is selected.

- Next iteration steps:

� New feature is included in the discriminant function of the previous step. The new
feature is chosen among the set of all features, which are still not included in the
SDA model.

� If in a specific step, some entered feature is correlated to any of the features already
in the model, and produces badly scaled pooled covariance matrix, it is excluded
from the current and next iteration steps.

� The selection process iteratively makes assessment of the Mean(Se,PPV) for each
new feature in the model and finally selects the feature, which provides maximal
value of Mean(Se,PPV). If several features have equal values of Mean(Se,PPV), the
one with the highest Se is chosen.

Fig 6. Training process of stepwise fuzzy analysis: influence of the number of features entered in the
model on the trend of Se, PPV, Mean(Se,PPV). The optimal iteration step is defined for 72 features at
maximal Se during a plateau of Mean(Se,PPV)–see (‘�’mark).

doi:10.1371/journal.pone.0140123.g006
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- The optimal iteration step: it is defined when SDA stops to improve performance, e.g. any
new feature in the discriminant function at any further step does not produce increased
values of Mean(Se,PPV) nor Se. It is important to stop at the earliest step of best SDA per-
formance, thus providing the minimal complexity of SDA (i.e. minimal number of dis-
criminant function coefficients equal to the iteration step number).

Fig 7 illustrates the training process of SDA, when the performance is improved by each
new feature entered in the model. A single feature LDA model has Mean(Se,PPV) as low as 86–
88%, which is improved to 94% by the optimal feature set selected at 134 and 142 iteration
step, considering SVB/VB-class prior probabilities of 50%/50% and 30%/70%, respectively. Fig
8 presents the best SDA performance when varying the SVB/VB-class prior probability from
70%/30% to 10%/90%. It is evident that increasing the VB-class prior probability from 30% to
90% increases Se by 4.5% points (from 93% to 97.5%) but PPV is proportionally decreasing
(from 94.5% down to 89%). The optimal prior probability is considered the one with Se>PPV
but not deteriorated Mean(Se,PPV), that is seen for 30%/70% (Mean(Se,PPV) = 94%,
Se = 96.1%). Therefore, we define the discriminant function with 142 features achieved for
SVB/VB-class prior probability of 30%/70% as the best performing LDA classifier in Stage 2.

Classification Tree. In this study, the CT model is generated and pruned by means of the
statistical Matlab toolbox, using the following settings:

- Two categories of the classification variable according to the beat annotation: SVB or VB
class.

- Splitting criterion set to ‘maximum deviance reduction’, which is advantageous in our
case of large sample size. The splitting of the decision tree is a self-learning algorithm,
which analyzes the training set to develop the most successful strategy for growing a tree
structure with the highest performance. The growing of the tree is terminated when a stop
condition of minimum size of impure node to be split is reached (the setting is 10). The
maximum splitting level of the best performaning CT model in Fig 9 (right graph) con-
tains 221 decision nodes.

- Different prior probabilities of SVB vs. VB-class (i.e. 70%/30%, 60%/40%, 50%/50%, 40%/
60%, 30%/70%)–the prior probabilities affects the relative proportions of both classes

Fig 7. Training process of SDA: influence of the number of features entered in the model. The trend of Se, PPV, Mean(Se,PPV) is reported for different
settings of the prior probabilities of SVB vs. VB-class: 50%/50% and 70/30%. The optimal iteration step is defined for 134 features (50%/50%, ‘�’mark) and
142 features (30%/70%, ‘*’mark).

doi:10.1371/journal.pone.0140123.g007
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involved in the node impurity measurements during the splitting process, thus varying
the ratio between Se and PPV. The CT training process aims to define the optimal prior
probability setting, which attains the highest Se and Mean(Se,PPV), that is proved for
50%/50% in Fig 9 (left graph).

- Pruning criterion based on misclassification rate–A subsequent pruning of the best per-
forming CT model with 221 decision nodes is applied in order to simplify the decision
rules which overfit the data. The training process scans the whole range of pruning levels,
i.e. the CT model is backwards simplified from 221 to 2 decision nodes in order to

Fig 8. Training process of SDA: influence of the prior probability of SVB vs. VB-class. The values of
Se, PPV, MeanSePPV are reported at the optimal iteration step (50%/50% and 30%/70% are highlighted by
the same marks as in Fig 7). The best performing solution is defined for prior probability of 30%/70% (Step
142).

doi:10.1371/journal.pone.0140123.g008

Fig 9. Training process of CT. It shows the trend of performance: Se, PPV, Mean(Se,PPV) in respect of:—left graph: different prior probabilities of SVB vs.
VB-class. The optimal setting is defined for equal prior probabilities 50%/50% (‘o’mark at maximal Se over the Mean(Se,PPV) plateau).—right graph: the
number of final decision nodes after pruning of the tree. The solutions with 30, 72, 142 nodes are highlighted (Mean(Se,PPV) = 95.3%, 96.8%, 98.5%;
Se = 96.9%, 97.4%, 99%) as they correspond to the number of features in the best performing Cluster, Fuzzy, LDAmodels, respectively. The maximal CT
performance at the final splitting step is also marked–Mean(Se,PPV) = 99.4%, Se = 99.7%.

doi:10.1371/journal.pone.0140123.g009
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evaluate the relationship between the complexity of the tree vs. its sensitivity and positive
predictivity (Fig 9 –right graph) and additionally the complexity of the CT model itself as
a total number of nodes, number of features and error cost function (Fig 10). Considering
an acceptable pruning level with error cost<0.05, seen for more than 10 decision nodes
in our CT model (Fig 10 –right graph), the CT solutions which are selected for validation
in Stage 2 classifier include 30, 72, 142, 221 decision nodes, the first three corresponding
to the number of iteration steps used to build the best performing Cluster, Fuzzy and
LDAmodels–highlighted in Figs 9 and 10.

Stage 1 + Stage 2: Total performance evaluation
The performance of the combined classifier (Stage 1 + Stage 2) is evaluated by the statistical
indices Se, Sp, PPV when considering the following interpretation of TN, FP, TP, FN cases:

- For beats annotated in the databases as N and S (SVB-class):

� TN =Matched beats to predominant beat template (Stage 1) + Beats assigned to SVB
class (Stage 2)

� FP = Beats assigned to VB class (Stage 2)

- For beats annotated in the databases as V and F (VB-class):

� TP = Beats assigned to VB class (Stage 2)

� FN =Matched beats to predominant beat template (Stage 1) + Beats assigned to SVB
class (Stage 2)

Comparative study of the combined classifier when Stage 2 implements the best performing
solutions of 4 heartbeat classification methods is presented in Table 3, reporting the indepen-
dent test-validation on MIT-BIH database. The values of Se and PPV are calculated for the sub-
group of V-beats (part of VB-class annotated in the databases as V beats, excluding F beats)
seeking for comparison to the usual performance reports of other published heartbeat classifi-
ers (as shown in Discussion).

Evaluation of the Features
An overview of the 20 basic features and their potential for providing separable distributions
for SVB vs. VB-class is estimated for all beats in the training dataset, input to Stage 2 (see

Fig 10. Complexity of the CTmodel evaluated in Fig 9 (right graph). It shows the relationship between the number of the decision nodes vs. (i) the total
number of nodes, (ii) the number of features included in the model, (iii) the error cost function, all marked for the highlighted solutions with 30, 72, 142 and 221
decision nodes.

doi:10.1371/journal.pone.0140123.g010
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Table 4). Comparing SVB vs. VB-class, we can highlight specific continuous features among
the set from F6 to F20 in Table 4, giving the least overlapping distributions (mean±std) with
grounded physiological meaning:

- F6: the mean beat correlation to the reference template is about 30% points smaller in VB-
class;

- F11: the mean QRS duration (beat-to-template difference) is about 40 ms larger in VB-
class;

- F12, F14: the mean QRS activity (a measure of the QRS area) of the beat and the beat-to-
template difference are about 50% points larger in VB-class;

- F15, F17: the mean QRS mobility (a time-domain measure of higher/lower frequency con-
tent ratio) of the beat and the beat-to-template difference are about 30% points smaller in
VB-class;

- F18: the mean current RR-interval duration is about 30% points shortened in VB-class.

The most outstanding discrete features (F1 to F5) are F2 and F3: the frequency of observa-
tion for the template types matched by previous and next beats are 1.5 to 3 times different.

The extended set of 210 features is introduced to enhance the potential second-order inter-
actions between any two basic features. Although this is a redundant set, we provide all features
in parallel to the input of the Stage 2 classifier so that it is able to iteratively select the optimal
feature, which best improves its performance on a specific learning step. We give below the
top-10 ranked features’ second-order interactions, which are automatically selected by the spe-
cific Stage 2 classifier in its optimal feature space during the first 10 learning steps:

- Cluster: F6�F18, F8�F19, F15�F18, F15�F11, F15�F17, F18�F19, F6�F17, F10, F12�F20,
F20�F11;

- Fuzzy: F6�F18, F15�F18, F5�F11, F18, F4�F6, F5�F7, F6�F14, F5�F8, F1�F16, F13�F16;

- LDA: F6�F18, F7�F14, F1�F5, F15, F10�F16, F1�F2, F4�F12, F13�F18, F12�F15, F1�F4;

- CT: F6�F18, F9�F14, F7�F9, F1�F7, F1�F15, F15�F18, F5�F7, F15, F4�F6, F9�F18.

Table 3. Test performance of the combined beat classifier (Stage 1 + Stage 2) on MIT-BIH database.
Different Stage 2 classification methods are compared–The maximal performance of stepwise Cluster (step
30), Fuzzy (step 72), LDA (step 142) models with optimal number of steps vs. CT models with an equivalent
number of final nodes. The maximal accuracy of the CT final solution (221 nodes) is also reported. Sp is cal-
culated for SVB-class; Se, PPV are calculated for VB-class, as well as only for V-beats (part of VB-class), the
latter performance being usually reported in other published heartbeat classifiers.

SVB-class VB-class

(N+S beats) (V+F beats) (V beats)

Sp (%) Se (%) PPV (%) Se (%) PPV (%)

Cluster (step 30) 99.5 87.4 93.9 92.4 93.6

CT (nodes 30) 99.6 91.1 95.3 94.7 95.0

Fuzzy (step 72) 99.4 90.4 92.8 94.4 92.4

CT (nodes 72) 99.7 92.4 96.5 95.5 96.2

LDA (step 142) 99.5 90.6 93.4 94.2 93.0

CT (nodes 142) 99.8 93.4 98.1 96.3 97.9

CT (nodes 221 –Final solution) 99.9 94.1 99.3 96.7 99.2

doi:10.1371/journal.pone.0140123.t003
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Table 4. Statistical distribution of the basic features for SVB and VB-class evaluated for the beats in the training dataset that are supplied to the
input of Stage 2. The discrete features (F1-F5) are reported as frequency of observation; the continuous features (F6-F20) are represented as Mean±Std.
The top-10 ranked second-order feature interactions selected by Cluster, Fuzzy, LDA, CT models are denoted in the row of each involved feature, specifying
the index of the coupling feature in the interaction. If one feature is involved in several interactions, then the order of their selection in the model is used to list
the respective coupling features.

Contribution to the top 10-ranked second-
order interactions

Feat. Description SVB-class VB-class Cluster Fuzzy LDA CT

F1 Template matched by current beat - F16 F5 F7

- reference: 0% * 0% * F2 F15

- other: 68.6% 71.3% F4

- none: 31.4% 28.7%

F2 Template matched by prev. beat - - F1 -

- reference: 48.0% 82.3%

- other: 31.1% 10.9%

- none: 20.9% 6.8%

F3 Template matched by next beat - - - -

- reference: 48.9% 81.4%

- other: 31.1% 10.8%

- none: 20.0% 7.8%

F4 P-wave present in current beat 87.4% 62.0% - F6 F12 F6

F1

F5 P-wave present in ref. template 90.2% 94.9% - F11 F1 F7

F7

F8

F6 corr of current beat 89.4±12.0% 60.6±24.9% F18 F18 F18 F18

F17 F4 F4

F14

F7 corr of previous beat 91.6±12.5% 93.3±15.8% - F5 F14 F9

F1

F5

F8 corr of next beat 91.8±12.2% 93.5±14.5% F19 F5 - -

F9 QRSdur of current beat 138.6±50.0 ms 184.1±38.4 ms - - - F14

F7

F18

F10 QRSdur of reference template 122.7±32.2 ms 126.4±29.3 ms F10 - F16 -

F11 QRSdur beat-template difference 15.9±44.7 ms 57.7±39.4 ms F15 F5 - -

F20

F12 QRSact of current beat 124.8±35.9% 172.0±34.7% F20 - F4 -

F15

F13 QRSact of reference template 113.9±32.9% 109.9±29.2% - F16 F18 -

F14 QRSact beat-template difference 10.9±33.7% 62.1±38.4% - F6 F7 F9

F15 QRSmob of current beat 90.8±22.4% 60.0±19.0% F18 F18 F15 F1

F11 F12 F18

F17 F15

F16 QRSmob of reference template 93.4±19.6% 92.5±18.6% - F1 F10 -

F13

F17 QRSmob beat-template difference -2.6±18.4% -32.5±22.3% F15 - - -

F6

F18 curRR 100.1±12.8% 73.1±16.4% F6 F6 F6 F6

(Continued)
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The top-10 ranked features give an insight to the principal second-order interactions
(denoted in Table 4). We remark that all 4 models select at the first step the same feature inter-
action (F6�F18) that is a sign for a robust trend of low correlation of the current beat against
the reference template together with shortened current RR-interval duration for VB-class.
There is one more feature interaction (F15�F18), which is common for 3 of the classification
models (Cluster, Fuzzy, CT) that combines the estimation of slower edge/larger area QRS mor-
phologies with shortened current RR-interval duration for VB-class enhancement. We observe
that there are features which alone do not contribute robustly to the separation of SVB vs. VB
class, however, they are factors in several top-10 interaction effects, i.e: F1 (template type
matched by current beat), F4 and F5 (P-wave presence in current beat and reference template),
F7 (correlation of previous beat to reference template). Among all features, we can highlight
the three best scored ones with 11, 9 and 8 interactions selected in top-10 by all 4 classifiers:
F18 (current RR-interval duration), F15 (beat QRS mobility), F6 (beat correlation).

Discussion
Automatic detection and classification of heartbeats is an important computerized diagnostic
tool applied in real-time monitoring applications and for assisting cardiologists in the task of
long-term ECG inspection by marking the presence of sustained, transient or casual arrhyth-
mias, as well as for a reliable counting of ventricular extrasystoles in exercise testing. We imple-
ment a two-stage heartbeat classification platform with a simple first stage and a precise second
stage, particularly advantageous for real-time applications. About 92.8% (1069869/1152964) of
all beats in the training dataset are immediately assigned to SVB-class by computationally effi-
cient Stage 1, using a simple correlation threshold criterion for finding a close match with the
reference template of the patient’s predominant rhythm. The most resource-consuming task is
the measurement process of 20 basic features that is, however, simplified by calculations in the
time-domain for the few residual non-matched beats (7.2%, 83095/1152964 beats) which are
fed to Stage 2 for a subsequent refined classification in SVB or VB-class. Stage 2, however, takes
a delayed decision after the features of the next beat have been acquired.

The most important design considerations for Stage 1 as a PQRST waveform preprocessor
are:

- Template matching conditions–an adaptive correlation threshold, optimized to the cur-
rent noise conditions is preferred as a fast-computation estimator of the PQRST wave-
form similarity to the reference template. This relatively simple criterion achieves

Table 4. (Continued)

Contribution to the top 10-ranked second-
order interactions

Feat. Description SVB-class VB-class Cluster Fuzzy LDA CT

F15 F15 F13 F15

F19 F18 F9

F19 nextRR 100.0±12.0% 121.5±23.1% F8 - - -

F18

F20 relRRv 4.7±5.6% 5.7±7.7% F12 - - -

F11

Note:*All heartbeats that matched the reference template are assigned to SVB-class by Stage1.

doi:10.1371/journal.pone.0140123.t004
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detection at Sp = 95.3%, Se = 93.9% (training) and 91.2%, 94.4% (test-validation), how-
ever, at very low PPV = 36.3% (training) and 48.1% (test-validation)–see Table 2. This
indicates for a great inconformity between the numbers of FN and FP errors due to the
imbalanced number of SVB-class and VB-class beats in the learning dataset, and points to
the need for a subsequent heartbeat classification step dedicated to reduction of the FP
rate. Stage 1 has the disadvantage to limit the overall sensitivity of Stage 1 + Stage 2 since
about 6% of all VB-beats will be erroneously classified as SVB-beats by Stage 1 and will
not be analysed by Stage 2.

- Set of heartbeat features–a set of 20 basic features with a physiological meaning (morpho-
logical similarity with the predominant reference template, P wave existence, QRS com-
plex slope, area and width properties and relative beat timing) are extracted by Stage 1
following three main concepts: (i) morphological and RR-interval features are calculated
for the current PQRST waveform; (ii) morphological and RR-variability features are cal-
culated for the neighboring beats thus giving information about the ongoing patient’s
rhythm; (iii) noise robust morphological features are extracted from continuously aver-
aged reference beat templates. The feature space is extended to a 210-sized vector of the
basic 20 features to study their second-order interactions. It makes sense to provide them
in parallel and let the subsequent Stage 2 classification method do the optimal selection in
an automatic way.

Stage 2 is designed as a classification system with high reliability in categorizing SVB and
VB beats, embodying independent realizations of four classification methods: Cluster, Fuzzy,
LDA and CT models. The optimal setting of each classifier configuration is derived by super-
vised learning on a training dataset (AHA+SVDB+VDB) and a vector of 210 heartbeat fea-
tures. The training process iteratively enters new features in the model following the
optimization criterion for minimizing the number of errors–both FP and FN, considered at
equal weight that is particularly assessed by maximizing the mean value of Se and PPV. Since
PPV is sensitive to data distribution, its presence in the optimization criterion guarantees the
effective evaluation of the classification performance in our imbalanced learning scenario.

The training process of Cluster, Fuzzy and LDA models shows that their performance
improves until a specific number of features are entered in the model, and any further increase
of complexity leads to performance saturation (Cluster–Fig 4, LDA–Fig 7) or degradation
(Fuzzy–Fig 6). The best performance solutions for the three models are listed below in ascend-
ing order of their training performance [Mean(Se,PPV), Se]:

- Cluster analysis with 9 clusters in 30 dimensional feature space (Figs 4 and 5)–[90.9%,
91.4%];

- Fuzzy analysis with 72 features (Fig 6)–[93.1%, 95.7%];

- LDA function with 142 coefficients (Figs 7 and 8)–[94%, 96.1%];

The training process of CT stops at maximal splitting level, where the highest performance
of the model is reported. CT performance can be easily configured by setting different com-
plexity of the model (i.e. by pruning the tree to different levels). For the aims of the compara-
tive study according to cluster, fuzzy and LDA models complexity, CT is pruned to 30, 72, 142
decision nodes (Fig 9). The training performance [Mean(Se,PPV); Se] is as follows:

- CT with 30 decision nodes: [95.3, 96.9%]–better than Cluster analysis by [4.4%; 5.5%];

- CT with 72 decision nodes: [96.8, 97.4%]–better than Fuzzy analysis by [3.7%; 1.7%];

Beat Classifier by Cluster, Fuzzy, Discriminant, Decision Tree Models

PLOS ONE | DOI:10.1371/journal.pone.0140123 October 13, 2015 24 / 29



- CT with 142 decision nodes: [98.5, 99%]–better than LDA by [4.5%; 2.9%];

- CT with 221 decision nodes (no pruning): [99.4; 99.7%]–better than Cluster analysis by
[8.5; 8.3%], Fuzzy analysis by [6.3; 4%], LDA by [5.4; 3.6%]. Besides, when CT model
complexity is increased from 30 to 210 nodes, its performance improves by [2.8; 4.3%].

Comparison of the presented combined classifier (Stage 1+Stage 2) to other published
heartbeat classification methods based on cluster, fuzzy, LDA and CT models is shown in
Table 5, considering the test-validation performance on MIT-BIH database (usually applied
for testing), as well as reporting Sp over N+S beats (SVB-class), and Se, PPV only for V-beats
(part of VB-class) by excluding the beats annotated as F-beats from the analysis. The perfor-
mance on F-beats as part of VB-class is usually not reported in the literature, suggesting their
hybrid nature, which drops Se by 1% to 5% (as shown in Table 3, V-beats vs. V+F beats). Con-
sidering Sp values of other published studies (80% to 99.8%), our combined classifier has com-
parable or outperforming Sp (99.4% to 99.9%), which is an effect from the design optimization
criterion for minimizing the number of both FP and FN errors during training. This is also evi-
dent by the high PPV of this study (92.4% to 99.2%) compared to reported values (71.1% to
99.2%), where available. The negative effect is, however, the decreased Se due to the higher
number of FNs (comparable to the number of FPs which actually are small percentage from
the largest SVB-class). We rate Stage 2 classifiers in ascending order of their Se–cluster
(92.4%), LDA (94.2%), fuzzy (94.4%), CT (96.7%), considering that all fall within the wide
range of reported Se (77.7% to 100%) but we highlight CT, being in the top Se scores.

The comparison with other studies that apply the same classification methods gives us the
opportunity to weight the advantages/disadvantages of the selected feature set. Although the
notable disadvantage of larger feature set for LDA, Fuzzy and CT models than the compared
studies, it should be underlined that they are derivatives from 20 basic time-domain features so
that the feature extraction complexity is simple. Having a look at the feature space in the
works, reporting higher Sp, Se, PPV than our respective methods (Table 5), we can highlight
[3] with discriminant analysis over 48 morphology and RR-interval features and [11] with Knn
classifier over 64 time, frequency and time-frequency domain features. By means of feature
space similar to our study, the achieved better performance in [3] is valid when a local but not
a global learning strategy is applied. The insight over the heartbeats in 3 domains (3D) by com-
bining morphological features, energy spectral density by Fourier transform and higher order
statistics of wavelet decomposition coefficients in [11] seems to contribute for better V-beats
clusterization than a reduced set of only 28 time-frequency domain features reported by the
same authors in [26] and 30 time-domain features when using the Cluster analysis in this
study. The CT model with 203 time-domain features is, however, able to achieve competitive
performance to the Knn classifier with 3D feature set [11].

Although the use of standardized training and test databases allows comparison between
different studies (Table 5), a possible limitation is that they might not match the clinical setting.
It is expected lower occurrence of V-beats and this might lead to decrease in Sp and PPV, while
keeping Se.

Conclusions
This study shows successful strategies for building a computationally-efficient and reliable clas-
sifier of SVB and VB beats, with special considerations for real-time application:

1. Simple first stage classifier using only one feature–an adaptive correlation threshold, opti-
mized to the current noise conditions classifies about 93% of the beats in SVB-class whose

Beat Classifier by Cluster, Fuzzy, Discriminant, Decision Tree Models

PLOS ONE | DOI:10.1371/journal.pone.0140123 October 13, 2015 25 / 29



PQRST waveform is highly correlated with the reference template of the patient’s predomi-
nant rhythm;

2. Simplified feature extraction process, which is run on a reduced set of not matched beats
(only about 7% of all detected beats) and is required to calculate for them only 20 time-
domain features of the morphological and RR-variability behavior of the single beat and the
averaged noise robust reference template;

3. Second-stage classifier with embedded CT-model shows the top-ranked values of
Sp = 99.9%, Se = 96.7%, PPV = 99.2%, compared to other linear classifiers (fuzzy, cluster,
discriminant) and other published studies on MIT-BIH database. Indeed, we recommend
the decision tree as the ultimate prediction model that best fits the requirements in clinical

Table 5. Performance of the combined beat classifier vs. published studies, using the same linear-programming based classification methods as
those implemented in Stage 2. The values of Sp, Se, PPV are shown as reported by the authors, replaced by ‘-‘mark when not published.

Methods Feature set Nb
features

Sp
(%)

Se
(%)

PPV
(%)

Test database

Cluster analysis

Stage 1 + Stage 2 Morphology, RR intervals, template correlation 30 99.5 92.4 93.6 MIT-BIH

Christov et al. (2005) [9] Morphology 26 97.7 97.3 - MIT-BIH

Christov et al. (2006) [5] Morphology 26 99.1 96.3 89.9 MIT-BIH

Christov et al. (2006) [5] Matching Pursuits expanding coefficients 110 99.1 94.8 89.2 MIT-BIH

Rodriquez-Sotelo et al. (2012)
[10]

Morphology, RR intervals, DWT coefficients, Hermite
coefficients

100 95.8 96.1 - MIT-BIH

Kutlu and Kuntalp (2011) [11] Morphology, DFT coefficients, WPD coefficients 64 99.8 97.0 99.2 MIT-BIH

Kutlu and Kuntalp (2012) [26] WPD coefficients 28 96.8 87.6 88.1 MIT-BIH

Fuzzy analysis

Stage 1 + Stage 2 Morphology, RR intervals, template correlation 72 99.4 94.4 92.4 MIT-BIH

Wieben et al. (1999) [21] Filter bank features 9 - 81.3 80.6 MIT-BIH

Behadada and Chikh (2013)
[12]

Morphology, RR intervals 10 80.0 100 71.1 MIT-BIH

Krasteva and Jekova (2007)
[4]

Morphology, RR intervals, template correlation, filter banks
features

5 97.9 98.4 - MIT-BIH

Discriminant analysis

Stage 1 + Stage 2 Morphology, RR intervals, template correlation 142 99.5 94.2 93.0 MIT-BIH

de Chazal and Reilly (2006)
[3]

Morphology, RR intervals, global classifier 48 98.8 77.7 81.9 MIT-BIH

de Chazal and Reilly (2006)
[3]

Morphology, RR intervals, local classifier 48 99.7 94.3 96.2 MIT-BIH

Jekova et al. (2004) [13] Morphology 18 97.3 93.3 - MIT-BIH

García et al. (2011) [14] Morphology, RR intervals 12 97.2 97.7 - MIT-BIH SVDB

Llamedo and Martinez (2011)
[15]

DWT, Morphology, RR intervals 8 95.0 81.0 87.0 MIT-BIH
INCART

Classification tree

Stage 1 + Stage 2 (221
nodes)

Morphology, RR intervals, template correlation 203 99.9 96.7 99.2 MIT-BIH

Wieben et al. (1999) [21] Filter bank features 14 - 85.3 85.2 MIT-BIH

Lin and Yang (2007) [16] Morphology, RR intervals 29 93.0 100 - MIT-BIH

Mert et al. (2012) [17] Morphology, RR intervals, Single decision tree 6 98.4 96.1 95.6 MIT-BIH

Mert et al. (2012) [17] Morphology, RR intervals, Majority voting of 65 bootstrap
decision trees

6 99.5 96.7 98.3 MIT-BIH

doi:10.1371/journal.pone.0140123.t005
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practice–high performance, flexibility and easy adjustment of the error rates for different
beat classes (e.g. less false alarms).

While the final goal of a beat classification algorithm is to distinguish between (N,S,V,F)
beats, in this study we focus on the reduced binary class model (SVB and VB) as this is a clini-
cally relevant pre-step of the (N,S,V,F) classification problem that distinguishes between beats
of normal morphology (narrow supraventricular beats) and abnormal morphology (dangerous
wide ventricular beats).
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