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Objective Proteins involving absorption, distribution,
metabolism, and excretion (ADME) play a critical role in
drug pharmacokinetics. The type and frequency of genetic
variation in the ADME genes differ among populations. The
aim of this study was to systematically investigate common
and rare ADME coding variation in diverse ethnic
populations by exome sequencing.

Materials and methods Data derived from commercial
exome capture arrays and next-generation sequencing were
used to characterize coding variation in 298 ADME genes in
251 Northeast Asians and 1181 individuals from the 1000
Genomes Project.

Results Approximately 75% of the ADME coding sequence
was captured at high quality across the joint samples
harboring more than 8000 variants, with 49% of individuals
carrying at least one ‘knockout’ allele. ADME genes carried
50% more nonsynonymous variation than non-ADME genes
(P= 8.2× 10–13) and showed significantly greater levels of
population differentiation (P= 7.6× 10–11). Out of the 2135
variants identified that were predicted to be deleterious, 633
were not on commercially available ADME or general-
purpose genotyping arrays. Forty deleterious variants within
important ADME genes, with frequencies of at least 2% in at
least one population, were identified as candidates for
future pharmacogenetic studies.

Conclusion Exome sequencing was effective in accurately
genotyping most ADME variants important for
pharmacogenetic research, in addition to identifying rare or
potentially de novo coding variants that may be clinically
meaningful. Furthermore, as a class, ADME genes are more
variable and less sensitive to purifying selection than
non-ADME genes. Pharmacogenetics and Genomics
27:89–100 Copyright © 2017 The Author(s). Published by
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Introduction
The selection of a therapeutically effective and safe dose

is crucial for drug development and requires assessment

of intrinsic and extrinsic factors that influence drug

pharmacokinetics (concentration and duration of drug

exposure). Proteins involving absorption, distribution,

metabolism, and excretion (ADME) play an important

role in determining the pharmacokinetic profile of a drug.

There is considerable genetic variation in genes encoding

ADME proteins, both within and between populations,

which can affect drug pharmacokinetics [1,2]. For

example, the product labels for over 20 psychotropic

medicines have been updated with ADME genetic var-

iation that contributes toward interindividual pharmaco-

kinetic variability [3]. Interpopulation differences can

also be very important. For example, at the same dose,

two-fold higher rosuvastatin concentrations are observed

in individuals of East Asian than European ancestry and

as a consequence the recommended initial rosuvastatin

daily dose in East Asians (5 mg) is half that in other

populations (10 mg) [4]. This interethnic difference in

pharmacokinetics has been related, in part, to interethnic

differences in the frequencies of genetic variants of
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functional consequence in the genes encoding drug

transporters, namely, BCRP (ABCG2) and OATP1B1

(SLCO1B1), which are important determinants of rosu-

vastatin pharmacokinetics [5–7]. Given the importance of

developing medicines for patients worldwide, and the

increasing globalization of clinical drug development,

identifying and quantifying all ADME genetic variations

that contribute to interethnic differences in drug phar-

macokinetics, efficacy, and safety is of extreme interest

[8,9].

Ultimately, an understanding of variations in ADME

genes across global populations may direct strategies for

preclinical and clinical development, and aid in inter-

preting pharmacokinetic data from multiregional clinical

studies. Despite this, there have been few systematic

efforts to comprehensively identify and characterize all

common and low-frequency variants in ADME genes

across diverse populations. Some studies have explored

the impact of population-specific variation of known

ADME gene variants for specific genes and/or popula-

tions [10–13]. Li et al. [14] used publicly available Human

Genome Diversity Project [15] and phase III HapMap

data [16] to explore patterns of selection in ADME genes

across global populations, reporting greater than expected

diversity in ADME genes. Ramos et al. [17] observed

wide population differentiation in variants assayed on the

Affymetrix DMET Plus Array (Affymetrix, Santa Clara,

California, USA) in 1478 samples from 19 populations.

However, the variants investigated in most studies suffer

from ascertainment bias, in that most single nucleotide

variants (SNVs) were discovered in populations of

European ancestry or in small numbers of patients with

aberrant drug pharmacokinetics. Rare variation is abun-

dant in protein-coding regions [18,19], and there is a need

to identify the low frequency and rare ADME coding

variants that may be important for studies of drug phar-

macokinetics and provide insights into the selective for-

ces that shaped the patterns of variation in these genes.

Despite the recent availability of samples with exome

and whole-genome sequence data, no studies to date

have leveraged the power of next-generation sequencing

(NGS) to more comprehensively investigate the ADME

coding variation in samples collected from diverse ethnic

populations.

We therefore sought to use data derived from commercial

exome-sequencing capture arrays to systematically

investigate SNVs, insertions, and deletions (indels) and

copy number variants (CNVs) in samples from diverse

ethnic populations with the purpose of identifying coding

variants that may influence ADME protein function and

could be incorporated into drug disposition studies.

Using an industry-standard list of ADME genes as a

starting point [14,20], we evaluated the capability of

exome sequencing to capture ADME coding variation

across 298 ADME genes (38 core and 260 extended),

highlighting the discovery of novel and uncharacterized

ADME coding variation. We compiled a list of 1062

SNVs from the literature known to be important for drug

ADME, and report allele frequencies from the 21 dif-

ferent populations in this study for polymorphic coding

variants on this list. For this analysis and interpretation,

we paid special attention to Northeast Asian populations

as this region is now home to more than 22% of the global

population and is contributing an increasing proportion of

patients to global clinical trials. Furthermore, Northeast

Asian regulatory authorities consider the relevance of

foreign clinical data to their local populations.

Consequently, it is important to understand the profile of

ADME gene variants of functional significance in

Northeast Asian populations.

In addition, population genetic parameters (e.g. variation

per kilobase, FST values) providing insight into the

population history of these genes as well as evolutionary

forces are summarized, and the rates of variation in

ADME genes are compared with rates of variation found

elsewhere in the genome. Finally, the strengths and

limitations of using exome sequencing as an approach to

carrying out ADME genetic studies are explored.

Materials and methods
Samples and data
The Northeast Asian Variation Analysis (NEAVA) sam-

ples included 251 healthy individuals recruited from

Kyushu, Japan (N= 125), and Seoul, South Korea

(N= 126). All participants provided written informed

consent for this genetic research, which was reviewed

and approved by institutional review boards and inde-

pendent ethics committees according to local guidelines.

Genomic DNA extracted from blood was used for exome

sequencing using the Agilent SureSelect Human All

Exon 50Mb Kit (Agilent, Santa Clara, California, USA) as

exome captures and the HiSeq 2000 (Illumina, San

Diego, California, USA) as pair-end 150 bp reads.

Targeted exome sequencing was carried out to an aver-

age depth of 60× exome-wide on all participants.

Exome sequence data of 1181 samples from 19 popula-

tions from the 1000 Genomes Project (1000G) [21] were

combined with the NEAVA data for this analysis (Table

S1, Supplemental digital content 1, http://links.lww.com/
FPC/B140). Three different exome capture and

sequencing protocols (NimbleGen SeqCap EX Exome

v2, NimbleGen v1 2.1M Human Exome, and Agilent

SureSelect All Exon v2) were used for 1000G samples

[21,22], whereas a fourth protocol (the Agilent SureSelect

Human All Exon kit) was used for the NEAVA samples.

Therefore, a set of regions captured at high depth across

all 1432 samples were identified for most downstream

analyses and capture depth was calculated across all

regions in the intersection of 1000G capture protocol

targets as well as across the full set of Agilent SureSelect

Human All Exon capture regions (Fig. S1, Supplemental

digital content 1, http://links.lww.com/FPC/B140).
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Bioinformatics analyses
Approximately 526 Kbp of coding sequence for 38 core

and 260 extended ADME genes as defined in a study by

Pharm-ADME [20], with minor modifications, were

identified on the basis of the UCSC knownGene table

[23] (Supplemental digital content 2, http://links.lww.com/
FPC/B141). Sequencing reads were mapped and aligned

to the reference human genome (GRCh37) and decoy

sequences used in the 1000G [24] by BWA software v6.1

[25]. Base qualities were calibrated using GATK v1.6-13

TableRecalibration tool [26] after removing duplicate

reads using Picard’s MarkDuplicates tool v1.73 (https://
broadinstitute.github.io/picard/). Unique reads with Phred-

scaled quality of at least 20 were retained for variant

calling.

SNV detections and calls were carried out across ± 50 bp
of the Agilent’s targeted regions using the gotCloud

variant calling pipeline [27]. The quality of the variant

calls was evaluated by comparing the sequencing-based

genotypes with publicly available array-based genotypes

for six 1000G samples (Table S4, Supplemental digital

content 1, http://links.lww.com/FPC/B140). Indel sites

were discovered from the NEAVA samples (N= 251)

using both Dindel [28] and the GATK v2.1-12

UnifiedGenotyper tool [26], and then, genotypes were

called for the 1432 joint samples using the

UnifiedGenotyper tool at the indel sites identified from

the NEAVA samples. CNVs were detected using

XHMM [29] and compared with getDeletions (Adrian

Tan, unpublished data) as a sanity check.

Variants were annotated using TabAnno software [30].

Predicted deleteriousness for SNVs was based on the

Condel score [22] by Ensembl’s Variant Effect Predictor

tool [31]. The variants were defined as deleterious if the

Condel score of 0.50 or more; novel if not reported in

both dbSNP137 and the 1000G phase I; or uncharacter-

ized if not reported in dbSNP129, but in dbSNP137 and/

or the 1000G phase I. A list of characterized ADME

variants was compiled on the basis of publically acces-

sible ADME variation databases and publications by

September 2013 (Supplemental digital content 3, http://
links.lww.com/FPC/B142).

Statistical analyses
Principal components analysis (PCA) was carried out on

the SNVs with minor allele frequency (MAF) of more

than 5% by PLINK v1.07 [32]. Plots (Figs S3A and S3B,

Supplemental digital content 1, http://links.lww.com/FPC/
B140) show samples cluster well at both the continental

and the population level.

All Weir and Cockerham FST statistics reported were

calculated using VCFtools [33,34]. Per-gene FST statis-

tics were calculated across the full joint sample for all

ADME and non-ADME genes. Between-population FST

statistics were calculated for all two-way population

comparisons across the 21 joint sample populations

(Tables S5A–S5D, Supplemental digital content 1, http://
links.lww.com/FPC/B140). The Mann–Whitney test was

used to determine differences in variation between

ADME and non-ADME genes. Variant discovery curves

were used to compare the rate at which variations were

discovered in population samples of different sizes,

which were plotted by number of variants per kilobase

(VPK) coding sequence versus number of sampled

haplotypes.

Data validation, variant call quality control, and ADME
variation imputability
To evaluate NEAVA data quality, validation using dif-

ferent genotyping platforms, Sanger sequencing and

Axiom BioBank Genotyping Array, was performed by

DNA Link Inc. (Seoul, South Korea). A total 155 variants

were selected for validation by Sanger sequencing,

including 55 novel nonsynonymous sites (52 SNV and

three Indel) in core ADME genes, 50 random singletons,

and 50 random nonsingletons (Supplemental digital

content 4, http://links.lww.com/FPC/B143). Overall, 96

NEAVA patients (48 Japanese and 48 Korean) were

randomly selected and genotyped by Axiom Biobank

Genotyping Array according to the manufacturer’s

instruction (Affymetrix).

The quality of the sequencing-based variant calls was

first evaluated by comparing called genotypes to publicly

available array-based genotypes. Using Affymetrix

DMET Plus Array data (Affymetrix) for six of the inte-

grated 1000G samples (Table S4, Supplemental digital

content 1, http://links.lww.com/FPC/B140), genotype con-

cordance rates for the sequencing-based variant calls

(using genotypes from 422 sites on the DMET chip

called variants in the present sample) were ~ 99.5%, after

applying appropriate genotype depth and quality filters

(minGD= 10). When comparing variant calls in the pre-

sent study with published Illumina OMNI array geno-

types at 47 067 overlapping sites, genotype concordance

rates for these six 1000G patients were ~ 99.7%.

Genotype concordance rates for sites in both DMET and

OMNI were more than 99.9%.

A subset of the NEAVA samples (N= 96; 48 Japanese, 48

Korean) were also randomly selected for genotyping by

the Axiom Biobank Genotyping Array (Affymetrix).

Nonreference genotype concordance between Exome-

sequencing and Axiom array genotypes was high, with

more than 99% nonreference genotype concordance at

the 89 958 variant sites in the consensus coding regions

also present and called polymorphic on the Axiom array.

Sanger sequencing of a subset of ADME variation yiel-

ded a false-positive rate estimate of 0.7%.

The existing data from European ancestry (N= 5399)

were used for the assessment of imputability for the

ADME variation (8161 SNVs identified in this study).
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The imputation was performed using a cosmopolitan

haplotype reference panel from the 1000 Genomes

Project phase 3 on the basis of genotyping by Axiom

Biobank Genotyping Array (Affymetrix) and using

Hidden Markov Model methods as implemented in

MaCH and minimac [35,36].

Results
Capture of ADME variation with exome-sequencing
Two sets of exome sequence data, NEAVA (N= 251) and

1000G (N= 1181), were integrated to jointly identify and

call SNVs, short indels, and CNVs for 1432 individuals

(Table S1, Supplemental digital content 1, http://links.
lww.com/FPC/B140). The 298 ADME genes selected for

analysis were divided into 38 core genes known to

influence drug biotransformation and/or disposition, and

260 extended genes with less direct evidence

(Supplemental digital content 2, http://links.lww.com/FPC/
B141; Supplemental digital content 5, http://links.lww.com/
FPC/B144). Different exome-sequencing protocols were

used across the NEAVA and 1000G studies; therefore,

most downstream analyses focused primarily on a set of

‘consensus’ coding regions (ADME: 386 Kbp; non-

ADME: 20.5Mbp) captured at high average depth

(≥20× ) in both studies (Fig. S1, Supplemental digital

content 1, http://links.lww.com/FPC/B140).

This exome-sequencing approach captured the majority

of core and extended ADME gene coding sequences at a

depth of at least 20× across the joint sample (Fig. S2,

Supplemental digital content 1, http://links.lww.com/FPC/
B140; Supplemental digital content 2, http://links.lww.com/
FPC/B141). Coverage was considerably higher for

ADME than non-ADME genes (Table S2, Supplemental

digital content 1, http://links.lww.com/FPC/B140). Of 38

core ADME genes, three (8%; GSTP1, GSTT1, and

NAT2) had less than 50% of the coding bases captured in

the consensus regions. There were 53 of 260 extended

ADME genes (20%) with less than 50% of the coding

sequence captured (Supplemental digital content 2,

http://links.lww.com/FPC/B141). In total, 87% of the core

and 72% of the extended ADME, and 59.3% of non-

ADME coding bases were captured in the consensus

regions. Thus, despite poor coverage for some genes,

most ADME coding bases were captured well across all

exome-sequencing protocols used, particularly for the

core genes.

High-quality SNVs and indels were generated, and

CNVs detection was explored in this study (Table 1,

Supplemental digital content 6, http://links.lww.com/FPC/
B145). The quality of variant identification and calls was

assessed with both Sanger sequencing and genome-wide

SNP arrays. In all, 155 variants, containing singletons,

nonsingletons, and novel nonsynonymous (NS) SNVs

and indels, were selected randomly to confirm hetero-

zygous calls by Sanger sequencing on NEAVA samples.

Of 144 successfully sequenced sites (11 failed probe

design, Supplemental digital content 4, http://links.lww.
com/FPC/B143), 143 variants were validated, yielding a

heterozygous false call rate of 0.7% (exact 95% con-

fidence interval= 0.02–3.8%). Of the 155 variants

attempted to validate by Sanger, 27 variants locate at

CYP2As, CYP2Cs, CYP2Ds, CYP3As, and UGT1As, which
are known as highly homologous regions. Of these, 21

variants (including 11 novel SNVs) were validated by

Sanger sequencing. Six variants did not fulfill the probe

design criteria; for these, no wet-lab was performed.

Genotype concordance for 96 NEAVA patients with

Axiom BioBank array genotypes and six 1000G patients

with the publically available array data was high, with at

least 99.3% at the variant sites in the consensus genome-

wide coding regions (Table 4S, Supplemental digital

content 1, http://links.lww.com/FPC/B140). The expected

clustering of samples at the continental and individual

population level from PCA on genotypes in the con-

sensus genome-wide regions also indicated the high

overall data quality (Fig. S3A and S3B, Supplemental

digital content 1, http://links.lww.com/FPC/B140).

A majority of coding variants identified in this study were

nonsynonymous and much of this variation is currently

unreported in the ADME databases [38,46,47]. Of the

8161 ADME coding variants identified in the consensus

regions, 62% were nonsynonymous and 43% of these NS

variants were predicted to be functionally deleterious by

Condel [24]; 21% were novel (not in dbSNP137), of

which 70% were nonsynonymous and 48% were pre-

dicted to be deleterious, and 55% of all ADME NS var-

iants were added to dbSNP since 2008 (in dbSNP137,

but not in dbSNP129), which were predominantly low

frequency compared with ADME coding variants present

in dbSNP129, median MAF= 0.0045 (dbSNP129) versus

0.0003 (dbSNP137, but not dbSNP129), P= 2.2× 10–16.

Furthermore, a minority of the ADME variants observed

in this study are currently captured by standard geno-

typing arrays (Table S3, Supplemental digital content 1,

http://links.lww.com/FPC/B140), including less than 20% of

the NS variants in core ADME genes included on the

Affymetrix DMET Plus Array or Illumina VeraCode

ADME Core Panel. This study successfully rediscovered

97.3% of the variants in the ‘consensus’ ADME regions,

with MAF of more than 0.2%, from the NHLBI Exome

Sequencing Project [48] that have been included in the

commercialized genotyping arrays; however, more than

55% of the ADME NS variants identified in this study

are absent from existing arrays, of which, 633 variants

were predicted to be deleterious. These results highlight

a key advantage of exome sequencing over genotyping

arrays in characterizing putatively functional variation

across ADME genes in populations of interest.

In addition, imputability for ADME variation was asses-

sed using the existing data from European ancestry
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(N= 5399). Out of the 8161 ADME SNVs identified from

this study, 4454 SNVs (54.5%) were imputed, of which,

2214 SNVs (27.1%) attained the imputation score of 0.3

or more as the conventional cut-off for analyses. The

imputability distribution on the basis of the MAF is

summarized (Table S7, Supplemental digital content 1,

http://links.lww.com/FPC/B140). As expected, at least 94%

of the ADME SNVs with MAF of at least 5% can be

imputed at the imputation score of 0.3 or more threshold.

In consensus ADME regions, this analysis rediscovered

99% of the variants described in the original 1000G

analysis. For the rest, 96% of variants were detected, for

example, the CYP2D6*4 (rs3892097) and CYP3A5*3

Table 1 Summary of single nucleotide variation, insertion/deletion, and copy number calls in ADME coding sequence

All coding ADME coding Core genes Extended genes

Single nucleotide variant callsa

Variants
Nonsynonymous 219 400 5043 896 4147
Nonsynonymous (deleterious)b 35 281 2156 404 1752
Nonsense 5287 169 35 134
Synonymous 147 596 2949 450 2499
All SNVs 372 500 8161 1381 6780

Variants per individual
Nonsynonymous 5613 145 26.6 116.4
Nonsynonymous (deleterious)b 304 24.7 4.6 20.0
Nonsense 61 <1 <1 <1
Synonymous 6706 150 26.8 121.3
All SNVs 12 380 295 53.5 237.8

Short insertions/deletionsc

Variants
Insertions 481 8 2 6
Deletions 209 11 1 10
All insertions/deletions 690 19 3 16

Variants per individual
Insertions 52 1.97 0.11 1.04
Deletions 55 0.51 0.94 0.40
All insertions/deletions 107 2.48 1.05 1.44

Common name
Deletion/
duplication Callede OnAffyDMET inDGV References

Copy number variationd

Genes
CES1 – Deletion Y N Y Ulloa et al. [37]

– Duplication Y N Y
CYP2A6 CYP2A6*4 Deletion Y Y Y The Human Cytochrome P450 (CYP) Allele Nomenclature

Database [38]
Martis et al. [39]

CYP2A6*1×2 Duplication Y Y Y
CYP2B6 CYP2B6*29 or *30 Deletion Y N Y
CYP2D6 CYP2D6*5_gene deletion Deletion Y Y Y The Human Cytochrome P450 (CYP) Allele Nomenclature

Database [38]
Gaedigk et al. [40]

CYP2D6*X×2 Duplication Y Y Y
CYP2E1 CYP2E1*1C×2 Duplication Y N Y Martis et al. [39]
CYP21A2 CYP21A2*7 Duplication Y N Y The Human Cytochrome P450 (CYP) Allele Nomenclature

Database [38]
CYP4A11 – Deletion Y N Y

– Duplication Y N Y
DHRSX – Deletion Y N Y

– Duplication Y N Y
GSTM1 GSTM1*0 Null_gene deletion Deletion Y Y Y Marenne et al. [41]

Xu et al. [42]
McLellan et al. [43]

GSTM1*X2_gene duplication Duplication Y N Y
SULT1A1 SULT1A1 CNV Duplication Y N Gaedigk et al. [40]

Hebbring et al. [44]
UGT2B17 UGT2B17*2_deletion of gene Deletion Y Y Y Gaedigk et al. [40]

Ménard et al. [45]

CNV, copy number variant; N, no, Y, yes.
aTotals include all high-quality variants falling in consensus capture regions (see Materials and Methods section).
bDeleterious defined as Condel score ≥0.47.
cIncludes all high-quality coding insertion/deletion variants (<50 bp) in consensus capture regions (see Materials and Methods section).
dGATK UnifiedGenotyper ‘Best Practices’ filters applied (see Materials and Methods section).
eAll ADME CNVs present in the relaxed-threshold CNV callset.
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(rs776746) variants were observed in many patients with

less than 20× average depth, but most fell outside of

consensus regions.

Patterns of ADME variation
We observed considerable heterogeneity in the total

abundance of variation across the studied populations,

and in ADME genes, these differences primarily appear

to be driven by NS variation. To control for different

sample sizes between populations, we compared the rate

of variants among populations with variant discovery

curves (Fig. 1; Fig. S4, Supplemental digital content 1,

http://links.lww.com/FPC/B140) [49]. With respect to the

abundance of variants for ADME and non-ADME genes,

the order for populations was broadly in line with

expectations on the basis of their demographic histories.

The African populations showed the highest levels of

variation, followed by Americans, Asians, and Europeans.

For six selected populations (YRI, CHB, CEU, JPT,

NKOR, and NJPN), the nonsynonymous and synon-

ymous variation in ADME and non-ADME genes

showed similar trends (Fig. S5, Supplemental digital

content 1, http://links.lww.com/FPC/B140). Among Northeast

Asian populations, the patterns of predicted variation

were consistent with ancestral bottleneck events in

migration to these isolated territories. Across the global

populations, the rates of variation in the ADME genes

were predicted to be 25% higher than that in non-ADME

genes, after adjusting for differences in sequencing cov-

erage. These differences were driven by the rates of NS

variants, where we observed 50% more VPK in ADME

compared with non-ADME genes, Mann–Whitney

P= 8.2× 10–13, (Fig. 2; Fig. S5, Supplemental digital

content 1, http://links.lww.com/FPC/B140).

The per individual carriage rates of ADME NS variants

varied considerably among populations (Fig. S6,

Supplemental digital content 1, http://links.lww.com/FPC/
B140). Overall, Northeast Asian individuals carried fewer

ADME NS variants (~139 NS SNVs per person) than

other populations (European=~ 144; American=~ 145;

South Asian=~ 145; African= ~ 176). On average, each

Northeast Asian individual carried ~ 10 NS ADME var-

iants currently unreported in the ADME variation data-

bases (Supplemental digital content 3, http://links.lww.
com/FPC/B142), of which 25% are predicted to be dele-

terious. Quantities of uncharacterized (not in dbSNP129)

deleterious ADME variants were similar in Northeast

Asian, American, and European populations (2.7, 2.8, and

2.3 per individual, respectively), but higher for the

African patients (6.0/person). Overall, Northeast Asian

patients carried on average two frameshift indels in

ADME coding regions, slightly greater than the

European or African patients (1.6 and 1.7, respectively).

Knockout (nonsense or essential splice site variant)

alleles leading to truncated or nonfunctional proteins are

particularly important for drug ADME. In this study,

~ 49% of patients carried at least one putative ‘knockout’

variant, with 3% of all samples carrying at least one

uncharacterized knockout allele. The carriage of one or

more knockout alleles was the highest in the African

population at 73% and the lowest in Northeast Asians at

Fig. 1
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40% (Fig. S6C, Supplemental digital content 1, http://
links.lww.com/FPC/B140). Although a greater proportion

of European samples (56%) carried one or more knockout

alleles than Northeast Asians, 3.6% of Northeast Asians

carry at least one uncharacterized ‘knockout’ variant,

compared with less than 1% of Europeans, reflecting the

population bias in the databases of known variation.

A majority of the ADME NS variants identified appeared

to be private to a single population or continent. In this

analysis, 54% of the ADME NS variants were singletons.

In total, over 60% of the NS variants observed were

private to a single population, with 33% absent in

dbSNP137 (Fig. S7, Supplemental digital content 1,

http://links.lww.com/FPC/B140). Of the private ADME NS

variants, 79% were rare (< 1% MAF) and 46% were

predicted to be deleterious.

As expected, ADME variation across populations was

shared on the basis of geographic location. Using joint

site frequency spectrum analyses that included all two-

way population combinations [47], it appeared that more

variants were shared between the geographically closer

populations than distant ones, especially for variants with

low MAF (Fig. S8, Supplemental digital content 1, http://
links.lww.com/FPC/B140). The Northeast Asian popula-

tions have low allele sharing with individuals of African

(1000G YRI) and European (1000G CEU) ancestry, but

comparatively little differentiation among Northeast

Asian populations.

Although previous array-based ADME research has sug-

gested that ADME genes may show nominally higher

amounts of genetic differentiation across populations

than non-ADME genes [14], this sequence-based

approach enabled us to examine this hypothesis more

completely. Gene-level Fst analyses were carried out to

quantify genetic differentiation across the 21 populations

in this study (Table S5, Supplemental digital content 1,

http://links.lww.com/FPC/B140). We observed statistically

significantly higher FST values in ADME compared with

non-ADME genes using NS variation (Mann–Whitney

P-value= 7.6× 10–11), but no significant difference using

synonymous variation (Fig. 3), supporting the inference

that selection of functional ADME alleles has influenced

the population differentiation.

Quantification of genetic variation in core ADME genes
Core ADME genes [20] are commonly involved in drug

ADME, and genetic variants in these genes could be

relevant to many pharmaceutical clinical studies.

(Supplemental digital content 7, http://links.lww.com/FPC/
B147). We observed significantly higher variant density

in core than extended ADME genes (Mann–Whitney

P= 5.0× 10–5, Fig. 2). There was considerable hetero-

geneity in sequence variation among core ADME genes,

with densities of variation in consensus sequence ranging

from five to 47 VPK across the 36 genes analyzed (Fig. 4).

The distributions of NS variants on the basis of the

continental populations were summarized for the core
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ADME genes (Table S6, Supplemental digital content 1,

http://links.lww.com/FPC/B140).

While assessing whether all functionally relevant var-

iants, common in geographically and ethnically diverse

clinical studies, were captured by current genotyping

arrays, we identified 40 variants in core ADME genes

that fulfilled the criteria of (i) relatively common (≥2%
MAF) in at least one of the 21 populations analyzed, (ii)

predicted to be functionally deleterious (Condel score

≥ 0.47, stop gain, or start loss), and (iii) not included on

the Affymetrix DMET Plus Array that is commonly used

for ADME PGx studies (Supplemental digital content 8,

http://links.lww.com/FPC/B146). Of the 40 variants, 13

were known ADME variants and the functional impact of

10 of the 13 variants was confirmed in vitro or in vivo.
Nineteen of the 40 variants are shown in Fig. 5. The

functional effects of these variants deserve further

investigation and consideration for inclusion in ADME

genotyping arrays and relevant pharmacokinetic studies.

Discussion
Previous analyses of ADME genetic variation have been

limited to variants identified mostly from patients of

northern European ancestry. The falling cost of NGS

sequencing and the availability of exome-sequencing
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Fig. 5
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data from reference samples from diverse ethnic popu-

lations provide an opportunity to expand our under-

standing of population-specific ADME variation. In this

study, we analyzed ADME genetic variation in 21 global

populations using commoditized exome capture of

ADME genes in 1432 samples from Northeast Asians and

1000G Project, enriched for individuals of East Asian

ancestry (N= 631).

We evaluated the quality of ADME SNVs and indels and

the possibility of CNV detection for ADME genes using

exome sequencing data, and compared these variants

with a compiled list of characterized ADME variants and

variants contained on current ADME genotyping arrays.

Our analyses characterized the allele frequency and

predicted functionality of ADME variation in 21 popu-

lations; many variants were novel or uncharacterized, and

therefore of potential interest to researchers carrying out

clinical studies of ADME genes. We investigated pat-

terns of variation in global populations and contrasted the

variation in ADME and non-ADME genes. Our com-

prehensive characterization of ADME coding variation

provides insight into potential evolutionary forces acting

on these genes, and details the ADME variation of

potential clinical relevance across a diverse range of

populations.

We showed that the exome sequencing of ADME genes

was modestly better than the exome as a whole by using

commoditized NGS tools. The high quality of variant

calls was confirmed by alternative genotyping/sequen-

cing methods, PCA, and variant rediscovery. The exome-

sequencing captured well and produced high quality

variant calls for most ADME genes, and coverage for

poorly captured genes should improve as capture tech-

nology evolves.

The comparison of variants between the current ADME

genotyping panels and this study indicates the European

sample bias present in the panels and highlights impor-

tant candidates for future ADME genotyping panels and

further functional exploration. Particularly, we identified

40 potentially functional variants (MAF ≥ 2%) in core

ADME genes common in at least one of the populations

analyzed that, to the best of our knowledge, are not

included in pharmacogenetic studies profiling those core

ADME genes. In addition, we show that many novel and

uncharacterized population-specific ADME variants are

likely deleterious. With 25% more variants per kilobase

in ADME genes compared with non-ADME for the

populations studied, it appears that ADME genes are

under less selection than the rest of the genome, which is

consistent with the results reported by Li et al. [14]. Our

results indicate that this differentiation is driven by NS

variation between ADME and non-ADME genes.

Possible explanations for the higher rates of NS variation

in ADME genes include weaker negative (purifying)

selection, stronger or more frequent positive balancing

selection, or differences in population-specific selection

pressures. Although Li et al. highlighted greater than

expected diversity in ADME genes across populations,

we further illustrated the differences in population-

specific variation observed across ADME genes. FST

analyses in consensus regions show diversity between

populations across both ADME and all exonic sequences.

Analyses of variation within each ADME gene suggest

that some of the genes may be under different selection

pressures than others.

The SNV calling methods used in this study have been

shown to result in low false-positive and false-negative

rates. In contrast, the indel and CNV calling algorithms

are less optimal for NGS short-read data, likely resulting

in lower quality calls, an important consideration, given

the known effects for ADME CNVs ranging from loss of

function (e.g. CYP2D6*5) to increased activity (e.g.

CYP2D6*1 or *2xN). Furthermore, given our initial focus

on variation in Northeast Asians, the indel calling was

performed at sites discovered using only NEAVA indi-

viduals, which might have resulted in an undercalling of

non-Northeast Asian indels overall. Consequently, it

would be desirable to improve the NGS-based CNV and

indel calling algorithms to effectively and comprehen-

sively study ADME variations and accurately report allele

frequency for the variants located in the ADME genes

with CNVs that occurred by a single platform.

In general, African populations showed the highest levels

of genetic variation in both ADME and non-ADME genes,

followed by Americans, Europeans, South Asians, and East

Asians. Among East Asian populations, the patterns of

predicted variation were consistent with ancestral bottle-

neck events in migration to these isolated territories.

Although we observed more NS variants within ADME

genes and greater differentiation in those variants among

populations compared with non-ADME genes, these dif-

ferences were modest. Populations in relatively close geo-

graphic proximity generally shared most ADME variants at

similar frequencies. The analyses presented further sup-

port the extrapolation of results from pharmacokinetic

studies carried out among historically and culturally related

populations. In particular, our results suggest that ADME-

related findings in any East Asian population may be of

relevance to other East Asian populations. We therefore

believe that data from this study may be useful in future

pharmacokinetic studies for evaluating the potential impact

of frequency differences of putatively functional ADME

variants among populations.

In summary, this sequence-based analysis systematically

and comprehensively characterized ADME coding var-

iation in multiple populations, showed the potential uti-

lity and value of NGS for studying ADME variations,

assessed the completeness of current ADME genotyping

panels, and indicated that ADME genes have sig-

nificantly more variants and are more variable among
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populations than non-ADME genes. Our comprehensive

summary of ADME variation in diverse populations

provides insights relevant for interpretation and gen-

eralization of association results found in these genes.

Furthermore, as a high-throughput platform to study

the ADME genes comprehensively, NGS showed an

incontestable advantage for rare and/or novel variants

identification, which may be useful for studying phar-

macokinetic outliers or supporting safety-related case

studies during drug development.
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