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Abstract. Lung adenocarcinoma (LUAD) has a high morbidity
and mortality rate worldwide, and its growth and metastasis
require angiogenesis. The density of microvessels in LUAD
is positively correlated with metastasis and recurrence. Von
Willebrand factor (VWF) is a multifunctional glycoprotein
in blood plasma. Recent evidence shows that VWF inhibits
angiogenesis through regulation of angiopoietin-2 (Ang-2)
and integrin avp3. LUAD patients exhibit an increase in the
plasma VWF/ADAMTS-13 ratio. Gene expression profiles of
LUAD tissues indicate that VWF is differentially expressed
in LUAD tissues compared to normal tissues. GATA
binding protein 3 (GATA3) transcription factor may mediate
VWEF expression in LUAD. In this review, we summarize the
role of VWF in LUAD and its regulatory mechanisms. We
also discuss the potential of VWF as a diagnostic indicator and
therapeutic target of LUAD.
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1. Introduction

Lung adenocarcinoma (LUAD) is the most common subtype
of non-small cell lung cancer (NSCLC), which accounts for
approximately 40% of all lung cancer (1). The two most common
NSCLC histologic types are LUAD and lung squamous cell
carcinoma (LUSC) (2). LUAD cells develop from small airway
epithelial cells and the most distal epithelial cells of the lung (3).
From adenocarcinoma in situ to minimally invasive adenocar-
cinoma to overt invasive adenocarcinoma, LUAD progresses in
stages (4). In addition, LUAD cells may easily invade the walls
of blood vessels and lymphatic vessels and thus metastasize,
resulting in poor patient prognosis (5). Although surgical resec-
tion, radiation therapy and immunotherapy have made great
progress in recent years, the 5-year relative overall survival rate
of LUAD patients is approximately 18% (6).

Angiogenesis occurs mainly at the expanding borders of
tumor cells in primary LUAD in a hypoxic environment (7).
In hypoxic conditions, tumor cells produce and secrete
pro-angiogenic cytokines, such as vascular endothelial growth
factor (VEGF), which activate endothelial cells (ECs) (8).
Coincidentally, proliferative ECs have been observed near
the alveolar microvasculature. Furthermore, both ECs and
tumor cells secrete matrix metalloproteinases (MMPs),
which degrade the extracellular matrix (ECM) and basement
membranes. Primary sprouts form tubes and then capillary
loops, which are followed by pericyte recruitment, synthesis
of a new basement membrane, and vessel maturation (9).
Low dose of cadmium (Cd) may promote angiogenesis
through upregulation of VEGF expression and secretion and
promote the development of LUAD (10). In addition, reducing
VEGEF signaling may effectively inhibit the development of
LUAD (11).

Anti-angiogenic drugs that inhibit VEGF signaling path-
ways, such as ramucirumab and bevacizumab, have been
considered a promising option for patients with advanced
NSCLC (including LUAD) (12). However, some side
effects such as proteinuria, hypertension, and hand and foot
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syndrome often accompany the treatment with angiogenesis
inhibitors that include sorafenib, bevacizumab, and ramuci-
rumab (13,14).

Recently, Starke et al (15) demonstrated that von
Willebrand factor (VWF) regulates angiogenesis. The VWF
is a component of hemostasis, promoting the binding of
platelets and ECs at the site of vascular injury. VWF recruits
and tethers platelets at sites of vascular injury, facilitating
platelet aggregation (16). In addition, VWF acts as a protec-
tive carrier molecule for procoagulant factor VIII (FVIII).
Thrombotic thrombocytopenic purpura (TTP), a deadly
disease characterized by widespread deposition of VWF and
platelet-rich thrombi in the microvasculature (17), is caused
by a lack of VWF-specific metalloprotease ADAMTS-13 [a
disintegrin and metalloproteinase with a thrombospondin
type 1 motif, member 13; also known as VWF-cleaving
protease (VWFCP)] (18). von Willebrand disease (VWD) is
caused by lack of VWF. Knockdown of VWF expression in
ECs leads to increased migration and proliferation in response
to VEGF (15). This may be consistent with the clinical
observation that vascular malformations can cause angiodys-
plasia in certain patients with VWD. VWF may reduce the
migration and proliferation of VEGFR-2-dependent ECs by
inhibiting angiopoietin-2 (Ang-2) release and increasing inte-
grin avp3 (15).

2.VWF

Structure of VWF. The domains of VWF are ordered
symmetrically as follows: D1-D2-D'D3-A1-A2-A3-D4-CI1-C
2-C3-C4-C5-C6-CK (19) (Fig. 1). The D regions are divided
into smaller lobes or modules: the D3, D2, and D1 domains
are divided into E, TIL, C8, and VWD modules, respec-
tively (19). D', on the other hand, only has the subdomains
TIL and E (19).

Function of VWF. By tethering platelets to areas of
endothelial injury and acting as a carrier for coagulation
factor VIII, VWF promotes hemostasis. In addition, other
functions of VWF have been identified, including immune
response (20), tumor metastasis (21), and leukocyte
recruitment (22). Recent evidence suggests the potential
clinical detection value and potential prognostic value of
plasma VWF in patients with acute myocardial infarc-
tion (23,24), type 2 diabetes mellitus with cardiovascular
complications (25) and coronary artery disease with major
adverse cardiovascular events (26). In addition, the results
of in vivo and in vitro research suggest that VWF controls
angiogenesis and that deficiency of VWF leads to increased
angiogenesis (27).

Plasma VWEF levels are higher in patients presenting with
several types of cancer (28,29). Elevated VWF remains an
independent predictor of venous thrombosis in cancer patients
after adjusting for patient-related factors (30,31). Higher
VWF levels in cancer patients are associated with cancer
progression and metastasis (21). Endothelial secretion of
VWEF contributes to the adhesion and transendothelial migra-
tion of breast cancer cells (32). Furthermore, new evidence
reveals that VWF regulates tumor cell proliferation and
apoptosis (32).

3. Expression of VWF in LUAD

Plasma VWF and VWF/ADAMTS-13 ratios were found
to be significantly increased in patients with advanced
NSCLC (including LUAD and LUSC), while the levels of
ADAMTS-13 were decreased (28). ADAMTS-13 cleaves
VWF in blood in the A2 domain. Furthermore, a marked
increase in the VWF/ADAMTS-13 ratio is associated with
fibrinogen, D-dimers and coagulation factor VIII (28). ECs
of certain microvessels and small vessels in the lung express
abundant VWF mRNA. The alveolar-capillary ECs do not
express VWF (33). Conversely, other vessels, including the
larger vessels, arterioles and bronchial capillaries in the lung,
consistently express VWF (33). Xu et al (34) discovered that
VWF was overexpressed in tumor vessels of LUAD compared
to vessels of adjacent tissues. Consistently, VWF expres-
sion was found to be elevated in ECs of transplanted mouse
LUAD tissues and fresh human LUAD tissues (34). Similarly,
Jin et al (33) discovered that VWF expression is elevated in
normal alveolar-capillary ECs near areas of EC germination
and tumor invasion. Meanwhile, the cytoplasm of capillary ECs
was enlarged and had increased Weibel-Palade bodies (WPBs),
which contain VWF, Ang-2, and other angiogenesis media-
tors (33). However, alveolar-capillary ECs in LUAD developed
new reactivity to VWF (35). The Cancer Genome Atlas (TCGA)
and The Gene Expression Omnibus (GEO) dataset GSE43458
were used to explore differentially co-expressed genes between
LUAD and normal tissues (36). The VWF expression was down-
regulated in LUAD compared to normal tissue (36).

4. Transcription factors regulate gene expression of VWF

VWF expression is restricted to ECs and macrophages. The
VWEF gene sits on the short arm of chromosome 12, spanning
~178 kb. The transcription factors GATA3,ERG,and YY1 have
been shown to act as regulators of VWF transcription (37,38)
(Fig. 2).

ETS-related gene. The ETS-related gene (ERG) is an ETS
family transcription factor specifically expressed in ECs (39),
and regulates a series of EC-specific genes (40). By binding
with the -56 ETS motif of the VWF promoter, ERG maintains
basal expression of VWF (37). In addition, ERG mediates
cadmium (Cd)-mediated VWF expression, suggesting that
ERG is involved in the transcriptional control of VWF in
pathological situations (41). However, the protein and mRNA
levels of ERG were unchanged with A549-derived conditioned
medium (CM) (34).

GATA3. GATA protein 3 (GATA3) is a transcription factor
that belongs to the zinc finger protein family and can recog-
nize (A/T)GATA(A/G) and related sequences. In vivo research
has shown that loss of GATA-1 expression in megakaryocytes
causes decreased levels of VIWF mRNA (42). A GATA-binding
motif can be found in the VWF promoter at position +220 (38).
Furthermore, GATA3 expression was found to be increased
in A549-CM co-cultured human umbilical vein ECs by
binding GATA3 to the +220 GATA binding motif in the
VWEF promoter (34). Therefore, GATA3 may upregulate VWF
expression in LUAD (34).



ONCOLOGY LETTERS 23: 198, 2022 3

Secretion

Weibel-Palade
bodies (WPBs)

&

Packing and storage

Pro-VWF multimers

Golgi apparatu
©@
Endoplasmlc C:"ﬁ o

reticulum

Nucleus

Endothelial cell

D1D2| D'D3 A1-A3 D4 C1-Cé CK
D1D2| D'D3 A1-A3 D4 C1-C6 CK
T Pro-VWF dimer
Sp D1D2 D’D3-A1-A2-A3-A4-A5-D4-C1-6-CK

Pro-VWF

Figure 1. Schematic diagram of VWF synthesis and secretion by ECs and its structure. Alignment of VWF structural domains: D1-D2-D'D3-A1-A2-A3-
D4-C1-C2-C3-C4-C5-C6-CK. In the endoplasmic reticulum, VWF is a dimer through disulfide bonds. Thereafter, this dimer is transported to the Golgi,
where multimerization occurs. Subsequently, VWF multimers form tubules and are stored in the WPBs. WPB exocytosis underlies hormone-evoked VWF
secretion from ECs. VWF, von Willebrand factor; ECs, endothelial cells; WPBs, Weibel-Palade bodies.
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Figure 2. Regulatory elements on the VWF gene. ERG sustains VWF basal expression by binding to the -56 ETS region of the VWF promoter. Furthermore,
the +220 GATA binding motif in the VWF promoter is where GATA3 binds. A region of intron 51 of the VWF gene interacts with a specific complex
containing YY1. Furthermore, the NF-kB binding site on the VWF promoter at position-1793 suppresses VWEF transcription. In vivo regulation of the VWF
promoter sequence-487/+247 by OCT, NFI, and NFY occurs. In addition, histone H1-like proteins repress VWEF transcription by binding to the VWF promoter
sequence +55/+247. VWF, von Willebrand factor; ERG, ETS-related gene; GATA3, GATA binding protein 3; YY1, Yin Yang 1; OCT, octamer-binding protein;

NFI, nuclear factor-I; NF-kB, nuclear factor-xB; NFY, nuclear factor Y.

Yin Yang 1. Yin Yang 1 (YY1) is a ubiquitous transcription
factor that has both activating and repressive effects. The
AATGG sequence is shown to the core consensus binding
site of transcription factor YY1 (43). A region in intron 51 of
the VWF gene is DNase I hypersensitive (HSS)-specific in
non-endothelial cells and interacts with a specific complex
of endothelial and non-endothelial cells containing YY1 (43).

In addition, the HSS sequence of intron 51 of the VWF gene
contains a cis-acting element that is required for VWF gene
transcription in a subpopulation of lung ECs (43).

In addition, other transcription factors regulate
VWF promoter activity (Fig. 2). Octamer-binding protein
(OCT) and nuclear factor-I (NFI) inhibits VWF promoter
activity, whereas histone Hl1-like protein increases promoter
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activity (44). The nuclear factor (NF)-xB binding site located
at -1793 of the VWF promoter inhibits VWF transcription (45).
In addition, frans-acting factor nuclear factor Y (NFY) has
been confirmed to be both a repressor and an activator of the
VWF promoter (44).

5. Synthesis and secretion of VWF

The biosynthesis of VWF includes several posttranslational
modifications in ECs and megakaryocytes (46). The polypep-
tide of VWF contains 741 characteristic amino acid residues,
22 amino acid long signal peptides, and 2,050 amino acid
residue long mature polypeptides (46). In the endoplasmic
reticulum, VWF is a dimer (called pro-VWF) through disul-
fide bonds. Thereafter, this dimer is transported to the Golgi,
and it is multimerized through a disulfide bond between the
D'D3 structural domains. Subsequently, VWF multimers form
tubules and are stored in Weibel-Palade bodies (WPBs) (47).

VWEF is secreted through two main pathways. One
is regulatory and responds to secretion, and the other is
continuous and does not require cellular stimulation (46).
Secretion of VWF from specialized storage granules, called
WPBs, is triggered by several substances (48). When WPBs
are stimulated by a variety of substances such as histamine,
thrombin, and phorbol myristate acetate, they release amounts
of ultra-large VWF. Once released, they are cleaved in the A2
domain by ADAMTS-13. Thus, VWF circulates in plasma
in the form of a series of multimers ranging in size from
500 to 20,000 kDa (42). Plasma VWF is almost exclusively
derived from endothelial secretion, and VWF secreted into the
subendothelium has a role in EC adhesion and extracellular
matrix binding (49).

6. VWF regulates angiogenesis of LUAD

Inhibition of VWF expression in ECs with short inter-
fering RNA leads to increased angiogenesis in vitro,
increased VEGFR-2-dependent migration and prolif-
eration, along with increased Ang-2 release and decreased
integrin avp3 levels (15). VWF may negatively regulate
VEGF-dependent angiogenesis through pathways involving
Ang-2 and integrin avp3 (50).

Integrin avf3. The VWF may regulate angiogenesis and
vascular homeostasis by binding integrin avf3 (51). Under
certain conditions, integrin avf3 can inhibit VEGFR-2
activity and downstream signaling to suppress angiogen-
esis (52). The absence of VWF in ECs leads to integrin avf3
expression decrease, which may cause VEGFR-2 signaling
increase (53). Interestingly, VWF also interacts with integrin
avfp3 on vascular smooth muscle cells via the Notch signaling
pathway (54). However, pharmacological inhibition of inte-
grin avp3 inhibits blood vessel generation in experimental
models (55). Thus, integrin avp3 may have a bimodal effect
in regards to angiogenesis, which acts as an activator or an
inhibitor depending on the stage of angiogenesis and the
different extracellular matrix ligands.

Weibel-Palade body proteins: Angiopoietin-2. VWF may
promote the formation of WPBs, which contain angiopoietin-2

(Ang-2) and VWF (56). Reduced or dysfunctional VWF leads
to a reduction in WPBs, resulting in the component release of
WPB components such as Ang-2 (56). Barton et al found an
increase in Ang-2 in VWF-deficient ECs in vitro (57). This
has now been confirmed in vivo, with a significant increase
in Ang-2 levels in the brains of Vwf " mice (58). In addition,
the binding of Ang-2 to its receptor Tie-2 can act synergisti-
cally with VEGFR-2 signaling to promote angiogenesis (59).
Excessive and dysregulated VEGF signaling can lead to the
formation of fragile and leaky blood vessels (60). For example,
patients with VWD show a high prevalence of gastrointestinal
vascular malformations.

In addition to integrin avp3 and Ang-2, VWF also
interacts with galectin-3 (61), galectin-1, and insulin-like
growth factor binding protein-7 (62). Meanwhile, the inter-
action of VWF with GPIba has been reported to affect cell
migration.

The angiogenic factors VEGF and fibroblast growth
factor-2 (FGF-2), which are abundant in the tumor microen-
vironment, have been shown to upregulate VWF expression.
Treatment with bevacizumab, an anti-VEGF, has been
demonstrated to lower VWF levels in the blood (63). In vitro,
VWF binds to VEGF-A through the heparin-binding domain
(HBD) within the VWF Al domain (64). Incorporation of
the A1-HBD domain of VWF protein into fibrin matrices
enables sequestration and slows release of incorporated
VEGF-A (64).

7. Discussion

Plasma VWF and the VWF/ADAMTS-13 ratio have been found
to be substantially increased, whereas ADAMTS-13 levels were
found to be decreased in patients with advanced NSCLC (28).
Tumor cells directly induce activation of ECs, leading to
WPB extravasation and release of ultra-large VWF multi-
mers (65). Ultra-large VWF multimers are discharged
into the plasma, where the plasma VWF-cleaving protease
ADAMTS-13 rapidly degrades them into smaller VWF multi-
mers (66). Smaller VWF multimers are more rapidly cleared
from the circulation than ultra-large VWF (67). Increased
ultra-large VWF in plasma disrupts the balance between
VWF and ADAMTS-13 levels, resulting in an increased
VWF/ADAMTS-13 ratio (68). The VWF/ADAMTS-13 ratio
has been used to diagnose hypercoagulability caused by an
imbalance in VWF secretion and ADAMTS-13 in patients
with organ failure (69). In patients with advanced NSCLC, a
marked increase in the VWF/ADAMTS-13 ratio was found to
be positively correlated with D-dimers, fibrinogen and coagu-
lation factor VIII (28). Therefore, elevated VWFADAMTS-13
levels implicate a highly thrombotic state, resulting in throm-
bosis in cancer patients. VWF/ADAMTS-13 in plasma has the
potential to be used as a marker of prognosis in patients with
LUAD.

VWF was found to be preferentially overexpressed in
tumor vessels of LUAD compared to vessels of adjacent
tissues (34). Consistently, overexpression of VWF was found
in ECs of transplanted mouse LUAD tissues and fresh human
LUAD tissues (34). However, VWF was recently found to
be expressed in normal lung tissue, but low or undetectable
levels were found in LUAD tissue (36). Furthermore, survival
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analysis showed that LUAD patients with low VWF expres-
sion in tissues had a poorer prognosis (70). Thus, VWF may
be differentially expressed in different stages of LUAD. The
association between VWF levels and LUAD staging may be
explored and potentially used for prognosis.

The mechanism of VWF regulation of tumor angiogen-
esis in LUAD has not been elucidated. VWF may act as a
negative regulator of VEGF-dependent angiogenesis through
pathways involving integrin avf33 and Ang-2 (50). In addition
to integrin avp3 and Ang-2, VWF interacts with galectin-3
and galectin-1, which are involved in the control of angiogen-
esis. Supplementation with VWF analogs may inhibit tumor
angiogenesis in LUAD. There are several medications available
to elevate VWF with no significant side effects. Desmopressin
(dDAVP) is a treatment for patients with VWD and stimulates
the release of endogenous VWF into the plasma (71). MINIRIN®
(dDAVP) is supplied by Ferring/Valeas (71). The recommended
dosage is 0.3 ug/kg by slow i.v. infusion or fixed doses of 150 ug
in children and 300 ug in adults by intranasal spray (71). A
human recombinant VWF (tVWF), vonicog alfa, was found to
increase VWF levels in VWD patients, making treatment inde-
pendent of plasma supply (72). 'VWF is a purified glycoprotein
synthesized in a genetically engineered CHO cell line (72).
The doses of 50 and 80 U/kg VWF have been used for evalua-
tion (72). These drugs may treat LUAD by increasing VWF in
the blood to inhibit tumor angiogenesis. Paradoxically, VWF
has the potential to promote tumor metastasis (21). Tumor cells
of nonendothelial origin may acquire de novo VWF expres-
sion and show enhanced EC adhesion and extravasation (21).
In addition, tumor cells directly induce EC activation
resulting in WPB exocytosis and the release of ultra-large
VWEF strings (21). VWF binds to platelets via GPIba and
GPIIb/I1Ia receptors and to tumor cells via GPIIb/I11a recep-
tors or their semi-homologous twin integrin avf33 (65), and,
therefore, may tether platelets and tumor cells along the
endothelium (21). This interaction may increase tumor cell
adhesion to the vascular endothelium and promote extravasa-
tion (21). The balance of the potential benefits and risks of
VWF treatment on LUAD should be carefully considered.
Given that VWF inhibits angiogenesis and thus LUAD
growth, VWF supplementation may achieve therapeutic
effects in LUAD. However, VWF may also promote tumor
metastasis. VWF supplementation is not recommended for
patients with early-stage LUAD to avoid the risk of tumor
metastasis. Anti-angiogenesis therapy is essential for patients
with advanced LUAD, thus VWF supplementation may be
attempted together with conventional chemotherapy.
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