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Abstract: Peripheral nerve stimulation (PNS) is an effective tool for the treatment of 
chronic pain, although its efficacy and utilization have previously been significantly limited 
by technology. In recent years, purpose-built percutaneous PNS devices have been developed 
to overcome the limitations of conventional permanently implanted neurostimulation 
devices. Recent clinical evidence suggests clinically significant and sustained reductions in 
pain can persist well beyond the PNS treatment period, outcomes that have not previously 
been observed with conventional permanently implanted neurostimulation devices. This 
narrative review summarizes mechanistic processes that contribute to chronic pain, and the 
potential mechanisms by which selective large diameter afferent fiber activation may reverse 
these changes to induce a prolonged reduction in pain. The interplay of these mechanisms, 
supported by data in chronic pain states that have been effectively treated with percutaneous 
PNS, will also be discussed in support of a new theory of pain management in neuromodula-
tion: Peripherally Induced Reconditioning of the Central Nervous System (CNS). 
Keywords: chronic pain, neuromodulation, peripheral nerve stimulation, cortical plasticity, 
peripherally induced reconditioning, mechanism of action

Introduction
Modern understanding of the relationship between electrical stimulation and pain 
dates back to 1965 with Melzack and Wall’s seminal paper outlining their theory of 
the “gate control” system of pain.1 It proposed that there is a gating mechanism in 
the spinal cord that relies on the relative firing of small (nociceptive) and large 
(sensory) diameter neurons. Increased firing of the large diameter neurons would 
“close” the gate, reducing transmission of painful stimuli to the brain, while firing 
of small diameter neurons would “open” it. Although the first therapeutic applica-
tion of this theory involved stimulation of peripheral nerves following neurosurgical 
lead implantation,2 the field was quickly dominated by widespread adoption of 
implanted leads delivering dorsal column or spinal cord stimulation (SCS) for the 
treatment of chronic pain.

SCS has been the leading force in the neuromodulation market for the last 50 
years, with many advances in device technology during that time.3–7 Due to the 
market dominance of SCS, the electrode technology available for researchers in 
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PNS has historically been limited to adaptation of SCS 
devices for use in the periphery.8–10 Nonetheless, contin-
ued research over the decades has shown that PNS can be 
successfully delivered by conventional (ie, permanently 
implanted) PNS systems with a variety of nerve targets, 
lead designs, waveforms, frequencies, and stimulation 
paradigms to treat a wide range of chronic pain conditions, 
such as intractable neuropathic pain, post-traumatic nerve 
pain, causalgia, chronic axial back pain, post-operative 
pain, joint pain, postherpetic neuralgia, chronic migraine, 
and orofacial pain (available PNS systems are not cur-
rently approved for use in the craniofacial region).11–32

Despite this efficacy, PNS has historically been con-
ceptualized as a treatment of last resort.33 One major 
limitation has been the lack of systems specifically 
designed for use in the periphery. Physicians often used 
devices designed for SCS, including percutaneous cylind-
rical leads or surgically placed paddle-type leads, both 
placed immediately adjacent to or in contact with the 
targeted nerve.8,9,13–17,19,34,35 However, the periphery 
induces greater mechanical stresses on the lead than 
those experienced in the epidural space,10 historically 
resulting in frequent lead migration (9–25% of PNS 
cases36), and limiting placement to locations that did not 
require the tunneled leads to cross joints with high degrees 
of flexion or extension that could cause stress-related lead 
migration or fracture.37

Recent years have seen the advancement of various 
PNS features and techniques intended to enable the devel-
opment and adoption of improved neurostimulation sys-
tems designed specifically for use in the periphery, 
including: 1) The development of methods for the mini-
mally invasive, percutaneous implantation of conventional 
PNS leads,35 eliminating the need for invasive techniques 
to expose the nerve; 2) Advancements in and growing 
prevalence of ultrasound imaging to guide lead 
placement,17,23 enabling visualization and targeting of an 
increasing number of peripheral nerves;38 3) Increases in 
the number and quality of interventionally trained pain 
physicians, especially with regard to ultrasound guided 
procedures; 4) Improvement in reimbursement for 
PNS; 5) Renewed focus on the development and imple-
mentation of non-opioid treatment alternatives for acute 
and chronic pain; 6) Improvement in long-term efficacy 
when a percutaneously implanted lead is employed with-
out an implanted pulse generator or receiver;39,40 7) The 
incorporation of open coil leads with axial flexibility 
designed to enable tissue ingrowth within the coils to 

secure the electrode in place with lower rates of infection, 
as seen throughout a long history of use in electrical 
stimulation applications.41–52

Recently, based on these advancements, percutaneous 
PNS with temporary (eg, up to 60 days) treatment through 
open coil leads has been used to treat a wide variety of pain 
conditions via two different implementations. The first 
method (Figure 1A) has demonstrated effectiveness in 
acute and chronic pain conditions such as neuropathic and 
non-neuropathic pain following amputation,39,53–56 post- 
surgical pain following total knee arthroplasty,57,58 and 
ambulatory foot, knee, and rotator cuff surgeries.59–61 This 
method targets mixed or sensory nerve(s) innervating the 
painful region with the goal of activating large diameter 
primary afferent sensory fibers at frequencies (eg, ~100 Hz) 
that induce comfortable sensations in the region of pain. In 
the second method (Figure 1B), efferent fibers are targeted 
at a lower frequency (eg, ~12 Hz) and an intensity that 
induces comfortable contractions in muscle(s) in the region 
of pain innervated by the targeted nerve, as demonstrated 
for chronic musculoskeletal pain including chronic shoulder 
pain,32,62–66 and axial low back pain.40,67,68 Recent studies 
using these two implementations reported that 77% (75/98) 
of subjects experienced substantial (≥50%) reductions in 
pain intensity and/or pain interference during treatment, 
with 90% (88/98) of patients experiencing clinically mean-
ingful (≥30%) reductions.32,53–55,57,62–69 Of note, many of 
those studies reported significant pain relief that may be 
maintained long after the end of the short-term PNS treat-
ment, with some reports of sustained pain relief through 
one year of follow-up.39,40

Conventional forms of neuromodulation for chronic 
pain, such as PNS, SCS, and dorsal root ganglion stimu-
lation (DRGS), have not typically provided prolonged 
pain relief after cessation of stimulation, with preclinical 
studies reporting a short-term carryover effect on the 
order of minutes to a few days and very little clinical 
data on the matter.2,70–74 Reports of sustained analgesia 
across multiple pain indications following a short-term 
PNS treatment are therefore a unique observation that 
merits further examination from a mechanistic perspec-
tive. While the clinical evidence for PNS has been 
reviewed elsewhere,75,76 the primary goal of this narra-
tive review is to explore potential theories and mechan-
isms by which percutaneous PNS may produce sustained 
pain relief. A secondary goal is to generate discussion in 
the clinical and scientific communities that may lead to 
studies that further explore the possibility of modulating 
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a centrally maintained pain state by providing peripheral 
input through PNS.

Chronic Pain is Associated with 
Peripheral and Central Sensitization
Under basal conditions, noxious thermal, chemical, and 
mechanical stimuli activate nociceptive receptors in the 
skin. These noxious signals are then carried to the spinal 
cord by small diameter first order afferents with slower 

conduction velocities, typically unmyelinated C or myeli-
nated Aδ fibers. The Aδ fibers are thought to carry the 
sharp, “first pain,” while C fibers carry “second pain” 
signals, characterized by more prolonged aching or 
burning.77 In the spinal cord, nociceptive fibers generally 
synapse in the dorsal horn with nociceptive-specific (NS) 
or wide dynamic range (WDR) second-order neurons 
(Figure 2A) that then project to the brainstem or 
thalamus.77 Within the brain, pain signals are processed 
in a number of different regions collectively referred to as 

Figure 1 Two percutaneous PNS approaches have demonstrated sustained relief of chronic pain. Stimulation is delivered from a system with open-coiled leads designed to 
be placed remote from the nerve to selectively activate Aα/β fibers while avoiding Aδ/C fiber activation (ie, remote selective targeting). The activation zones are shown for 
Aα/β fibers (blue) and Aδ/C fibers (orange). (A) Stimulation of mixed nerves at 100 Hz (1) can selectively activate the largest sensory afferents (many of which are larger 
than muscle efferents147). (2) Stimulation activates the large diameter muscle and tactile afferents while avoiding activation of muscle efferents and nociceptive afferents. (3) 
Directly induced large diameter afferent action potentials enter the spinal dorsal horn at the rate of the stimulation frequency (100 Hz) to engage the gating mechanism, 
typically producing comfortable sensations in the innervated region. (B) Stimulation of mixed nerves at 12 Hz (1) at a sufficient intensity can also activate muscle efferent 
fibers. (2) Stimulation activates large diameter fibers, including cutaneous afferents, muscle afferents, and muscle efferents while avoiding nociceptive afferents. (3) 
Orthodromic firing of muscle efferents causes muscle contraction, generating physiological activation of muscle afferent fibers. (4) Large diameter afferent action potentials 
(directly induced by stimulation and indirectly through muscle contraction) enter the spinal dorsal horn to collectively engage the gating mechanism.
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the “pain matrix,” including the thalamus, somatosensory 
cortex, insular cortex, anterior cingulate cortex (ACC), 
prefrontal cortex, amygdala, and hippocampus.77–79 In 
the case of chronic pain, persistent nociceptive input 
induces multilevel changes from the periphery to the 
brain that result in abnormal pain processing and hyper-
sensitivity, including hyperalgesia (increased sensitivity to 
noxious stimuli), secondary hyperalgesia (painful sensitiv-
ity at sites adjacent to or removed from the injured site), 
allodynia (painful sensitivity to non-noxious stimuli), and 
spontaneous pain.78,80

In the periphery, damage to nerves can induce periph-
eral sensitization. Peripheral sensitization is mediated by 
the release of a wide variety of pro-inflammatory cyto-
kines and neuropeptides whose net result is a drastic 
reduction in nociceptive thresholds that causes hyperexcit-
ability of nociceptive afferents, spontaneous discharge, 
and plays a crucial role in the onset and maintenance of 
hyperalgesia and spontaneous pain.81–84

Increased nociceptive activity due to injury and/or sen-
sitization in the periphery also triggers a complex series of 
changes in the central nervous system collectively referred 

to as central sensitization.85,86 Sustained firing of nocicep-
tive afferents leads to sensitization of NS and WDR neu-
rons in the dorsal horn.79,86 The influx of Ca2+ triggered by 
persistent nociceptive input causes phosphorylation of ion 
channels and receptors, trafficking of more excitatory 
channels to the surface, increases in dendritic spine den-
sity, and transcriptional changes, all of which promote and 
maintain a state of increased excitability and decreased 
inhibition in the dorsal horn (Figure 2B).79,80,86,87 

Neuronal hyperexcitability is further exacerbated by the 
activation of glial cells and their subsequent release of pro- 
inflammatory signaling molecules. The role of glial activa-
tion in chronic pain is reviewed elsewhere,79,80,88,89 and 
spinal glial involvement in neurostimulation-induced 
analgesia is only recently being explored.90,91

In addition to the increased excitability of nociceptive 
pathways in the spinal cord, nerve injury typically results 
in a reduction in inhibitory GABAergic and glycinergic 
drive in the spinal dorsal horn (Figure 2B).78–80,86,87,92 

This disinhibition further amplifies nociceptive signaling 
directly and also engages excitatory PKCγ interneurons 
that are driven by activity in large diameter Aβ fibers 

Figure 2 Pain circuitry in the spinal dorsal horn. Four primary sub-circuits are represented: (1) post-synaptic inhibition of nociceptive projection neurons, (2) pre-synaptic 
inhibition of nociceptive projection neurons, (3) basally inhibited PKCγ excitatory interneurons, and (4) polysynaptically excited nociceptive projection neurons. (A) In 
a healthy case there is a balance between nociceptive and non-nociceptive afferent input and dorsal horn circuit strengths, resulting in minimal activation of nociceptive 
projection neurons. (B) In the case of chronic pain, peripheral nerve damage/inflammation elevates firing of nociceptive afferent fibers. Additionally, GABAergic and 
glycinergic drive from inhibitory interneurons are reduced, resulting in: (1) reduction in post-synaptic inhibition, (2) reduction in pre-synaptic inhibition, (3) disinhibition of 
PKCγ interneurons, enabling allodynia-producing circuits, and (4) sensitization of nociceptive projection neurons, characterized by increased excitability and decreased 
inhibition. (C) Neurostimulation is believed to cause elevated firing of Aα/β afferent fibers, counteracting many of the circuit-level effects of chronic pain. Specifically, high 
rates of Aα/β firing induce: (1) elevated post-synaptic inhibition, (2) elevated pre-synaptic inhibition (3) return of inhibition to the PKCγ cells, reducing allodynia, and (4) 
elevated inhibition and reduction of nociceptive drive to the nociceptive projection neurons.
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and are typically held in check by glycinergic inhibition 
(Figure 2B).79,92 Loss of GABAergic and glycinergic inhi-
bition, therefore, perpetuates pain hypersensitivity and 
causes tactile sensations, which are not typically perceived 
as painful, to activate nociceptive pathways (one of the 
key mechanisms believed to contribute to allodynia).93–96

Supraspinal circuits also play a major role in the proces-
sing of pain and have been implicated in centrally mediated 
chronic pain, including changes in descending modulation 
from the periaqueductal gray (PAG) and rostral ventromedial 
medulla (RVM)78,97,98 and major structural and functional 
cortical changes such as alterations in cell spiking dynamics, 
microglia activation, brain connectivity, gray matter volume, 
and cortical representation (see87,99 for review). Specifically, 
in the somatosensory cortex, which encodes the sensory- 
discriminative aspects of pain,100 the nociceptive representa-
tional zones exhibit a sensitized state characterized by expan-
sion and/or shifting of pain representations, reduced 
GABAergic inhibition, and stronger response to activation, 
while non-nociceptive representational zones may diminish 
in size and response to activation.101–106 These maladaptive 
shifts in the balance of sensory processing are likely due to 
activity-dependent cortical remapping caused by the increase 
in nociceptive and relative decrease in non-nociceptive infor-
mation coming from the region of pain.104,107 Maladaptive 
cortical plasticity, coupled with spinal and peripheral sensi-
tization, presents a challenge to treatments’ intent on produ-
cing long-term pain relief. It is theorized, therefore, that 
sustained analgesia may be produced by neurostimulation 
that acts at multiple levels, beginning with spinal modulation 
of the nociceptive barrage from the periphery.

Activation of Large Diameter Fibers Has 
the Potential to Attenuate Nociceptive 
Signaling in the Spinal Dorsal Horn
Neurostimulation systems delivering stimulation at con-
ventional frequencies (eg, 5–150 Hz), including conven-
tional SCS, DRGS, PNS, and even peripheral nerve field 
stimulation (PNFS), have long been theorized to produce 
analgesia by modulating pain signals in the spinal dorsal 
horn via spinal segmental mechanisms that were first 
described in the well-known gate control theory.1 Spinal 
segmental mechanisms of analgesia, including the putative 
gating mechanism, rely on the activation of large diameter 
fibers, which are typically myelinated Aα and Aβ fibers 
(often either grouped together as Aα/β or simply referred 
to as Aβ due to their highly overlapping morphologies and 

fiber diameters).108–116 Since Aα/β fibers generally trans-
mit signals from low-threshold mechanoreceptors and pro-
prioceptors, successful activation often elicits non-painful 
sensations in the innervated region. The colocalization of 
these sensations with the region of pain can be used as 
a marker for focal (ie, specifically targeting the region of 
pain) activation of large diameter fibers.54,117 

Experimental studies have demonstrated the profound con-
trol that Aα/β fibers exert over the transmission of noci-
ceptive signals in the spinal dorsal horn (Figure 2C). 
Conventional PNS, DRGS, and dorsal column stimulation 
of large diameter fibers can inhibit the firing of WDR 
neurons in response to painful stimuli through the inhibi-
tion of long-term potentiation and induction of long-term 
depression of C fiber activity.70,118–123

These effects are mediated by a variety of post-synaptic 
and pre-synaptic circuits in the dorsal horn. Post- 
synaptically, Aα/β fibers play a primary role in the activa-
tion of GABA- and glycinergic inhibitory interneurons in 
the dorsal horn, which polysynaptically reduce the firing of 
both superficial and deep dorsal horn projection neurons, 
subsequently reducing the transmission of nociceptive sig-
nals through the spinal dorsal horn (Figure 2C).92,124,125 

Pre-synaptically, early recordings of extracellular potentials 
in the dorsal root (the dorsal root potential, DRP) found that 
activation of Aα/β fibers induces widespread subthreshold 
depolarization of primary afferents (primary afferent depo-
larization, PAD) in the dorsal root.126,127 This depolariza-
tion is mediated by GABAergic interneurons that synapse 
on the pre-synaptic terminals of primary afferents and can 
cause pre-synaptic inhibition.128 Although fibers most com-
monly inhibit others of the same type (eg, Aα/β fibers 
inhibit other Aα/β fibers),129 some studies have shown that 
activation of Aα/β fibers can cause pre-synaptic inhibition 
of nociceptive primary afferents,124,128,130,131 suggesting 
a pre-synaptic gating mechanism by Aα/β fiber activation 
(Figure 2C).

Although gate control has provided the long-standing 
framework for how many neurostimulation systems may 
modulate pain, the original 1965 theory has been critically 
reviewed and supplemented over time to better explain phe-
nomena observed experimentally.92,125 For example, addi-
tional proposed mechanisms of action for conventional 
stimulation include both peripheral (eg, altering nerve fiber 
excitability or conduction), and central factors (eg, inducing 
or depleting excitatory and/or inhibitory neurotransmitters, 
modulating expression of neuronal signaling proteins, altering 
activity in central pain matrix regions or descending inhibitory 
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pathways).9,132–134 These additional mechanisms highlight 
the overall complexity of the chronic pain state, though spinal 
segmental mechanisms remain the predominate mechanistic 
theory for pain relief with conventional neurostimulation.

Novel Approaches to Selective 
Activation of Large Diameter Fibers
Nerve fibers with larger diameters are activated by electrical 
stimulation at a lower intensity compared to smaller dia-
meter fibers,135,136 so the gating mechanism may be 
engaged by titrating stimulation intensities to maximally 
activate large diameter Aα/β fibers while avoiding activa-
tion of small diameter nociceptive fibers. Preclinical and 
clinical evoked compound action potential (eCAP) record-
ings and computational modeling indicate that conventional 
SCS at therapeutic intensities activates only a small propor-
tion of the Aα/β fibers in the dorsal columns (estimates 
range from 0.25% to 8.7% of targeted fibers137,138) before 
reaching discomfort thresholds, purportedly due to activa-
tion of the adjacent dorsal roots.137,139–141 Meanwhile, PNS 
and DRGS have the potential to activate Aα/β fibers in 
a more focal, targeted fashion by stimulating the specific 
nerve(s) or ganglia innervating the region of pain. However, 
conventional PNS and DRGS utilize small electrodes 
placed on or immediately adjacent to a nerve that are likely 
to produce intense electric fields that rapidly decay across 
short distances such that fibers nearer the electrode may be 
activated (including small diameter fibers) while fibers 
slightly more distant from the electrode (eg, deeper in or 

across the nerve) may experience little to no stimulation 
(Figure 3).

In contrast to conventional “intimate” electrode place-
ment, it has been hypothesized that percutaneous PNS 
systems designed to enable remote selective targeting 
may activate a greater proportion of large diameter fibers 
while avoiding the unwanted activation of nociceptive 
afferents (Figure 3).54 Remote selective targeting describes 
a PNS system and leads designed to optimize the relation-
ships between stimulation strength, electrode characteris-
tics, electrode-fiber distance, and fiber diameter to create 
a greater separation of activation thresholds between large 
and small diameter fibers and enable stimulation from 
electrodes placed up to several centimeters away (eg, 
0.5–3 cm) at therapeutic intensities more selective for 
large diameter fibers.54,135,136,142–144 Leads designed for 
remote selective targeting have multiple features that 
may enable activation of larger-diameter fibers and avoid-
ance of smaller-diameter fibers while delivering stimula-
tion from such distances. For example, these leads have 
large monopolar electrodes such that the generated electric 
fields, which decay exponentially across distance, are 
broad and relatively homogeneous at remote distances 
and have the potential to activate large diameter fibers 
throughout the entire cross-section of a nerve before reach-
ing activation thresholds of smaller fibers. Remote selec-
tive targeting may therefore enable more robust activation 
of large diameter fibers (ie, a larger proportion of targeted 
fibers) while avoiding unintended discomfort by optimiz-
ing the strength-distance and strength-diameter 

Figure 3 Remote selective targeting promotes activation of large diameter fibers while avoiding activation of small diameter fibers using PNS systems and open coil leads 
designed for placement distant to the nerve. Large diameter fibers have lower activation thresholds than smaller diameter fibers, and thresholds also increase with 
electrode-to-fiber distance. The activation zones are shown for Aα/β fibers (blue) and Aδ/C fibers (orange). (A) For a conventional PNS electrode placed intimate to the 
nerve, a limited number of Aα/β fibers may be activated. (B) Increasing the intensity to activate a larger proportion of Aα/β fibers begins to concurrently activate Aδ/C fibers 
or motor fibers, causing unintended discomfort. (C) A system using a percutaneous open-coil electrode placed remotely from the nerve (eg, 0.5–3 cm) is designed to 
selectively activate a larger proportion of Aα/β fibers without concomitant activation of Aδ/C fibers.
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relationships that govern the activation of nerve fibers by 
electrical stimulation (Figure 3).54,69,135,136,142

In addition to activation of Aα/β fibers, percutaneous 
PNS studies have demonstrated prolonged pain relief using 
stimulation parameters and electrode locations specifically 
targeting the activation of efferent fibers in mixed nerves 
that result in strong, physiological muscle contractions with-
out discomfort (Figure 1B).64,67,145 Remote selective target-
ing can enable a wider therapeutic window that aids in the 
activation of motor efferent fibers while avoiding activation 
of small nociceptive fibers (Figure 1B). Muscle afferents, 
including proprioceptive Aα/β fibers linked to muscle spin-
dles and Golgi tendon organs, have similar diameter, mor-
phology, and functional connections in the dorsal horn 
compared to tactile Aα/β fibers.129,146 Proprioceptive affer-
ents secondarily activated by physiological muscle contrac-
tions therefore likely contribute to the gate control 
mechanism of pain relief in the same way as tactile afferent 
fibers that innervate the skin.124 In addition to secondary 
activation of proprioceptive afferents, the stimulation 
approach that activates efferent fibers in mixed nerves also 
likely produces primary activation of Aα/β sensory afferents, 
which tend to be larger in diameter147 and are recruited at 
lower stimulation intensities than efferent fibers (Figure 
1B).142 Notably, this strategy contrasts with conventional 
stimulation therapies for the treatment of chronic pain, 
which have historically attempted to avoid efferent activa-
tion and consequent motor activity.14,140,148,149

Improving the selectivity and robustness of large dia-
meter afferent fiber activation may enhance the transient 
reduction in pain via spinal segmental mechanisms, such 
as the gating mechanism. However, these mechanisms rely 
on active stimulation and are likely insufficient to produce 
sustained analgesia following the end of treatment, as 
evidenced by the lack of significant sustained relief fol-
lowing the cessation of stimulation provided by conven-
tional approaches. As the next section will explore, 
sustained pain relief is theorized instead to be enabled by 
reconditioning of the central nervous system by robust 
activation of large diameter fibers in the periphery.

Stimulation of Afferents Can Result 
in Peripherally Induced Plasticity to 
Reverse Central Features of 
Chronic Pain
In addition to spinal segmental mechanisms of pain relief, 
stimulation of large diameter fibers is believed to induce 

supraspinal analgesic effects. On a macro scale, studies 
have identified changes in the magnitude and latency of 
cortical evoked potentials during PNS, which may relate to 
changes in the sensory and affective components of pain 
processing.150–152 Additionally, electroencephalography 
(EEG) and functional magnetic resonance imaging 
(fMRI) studies have revealed that dorsal column stimula-
tion induces changes in cortical activation throughout 
many of the regions making up the pain matrix, and is 
hypothesized to activate the descending pain inhibitory 
system through modulation of the pregenual ACC.153,154 

Given the significant role that cortical processes play in 
producing, and potentially reducing, chronic pain,87,99,155 

the new theory of Peripherally Induced Reconditioning of 
the Central Nervous System may help to explain sustained 
relief following PNS.

The somatotopic representation map in the primary 
somatosensory cortex (S1) is dynamic and can substan-
tially change as a result of shifts in afferent input, with 
expansion of regions that experience stronger and more 
frequent input than those around them and contraction of 
regions that have reduced inputs.156,157 In cases of chronic 
pain, sensory imbalance in the form of elevated nocicep-
tive input from the painful region and/or, importantly, 
decreased non-nociceptive input can result in drastic shifts 
in cortical organization and function. 
Magnetoencephalography (MEG) studies show 
a correlation between severity of pain and sensitization 
of the nociceptive region in S1, characterized by reduced 
intracortical inhibition, expansion and/or shifting of the 
representational zone, and stronger response to nociceptive 
stimuli.101–104 Expansion of the nociceptive response may 
be coupled with a decrease in the non-nociceptive repre-
sentational zone and an attenuated response to non- 
nociceptive stimuli.102,105,106,158–160 For some patients, 
blocking nociceptive afferent input is sufficient to transi-
ently alter the cortical reorganization and reduce chronic 
pain.103,161 However, for others, nerve block has no effect 
or only a transient effect,103 indicating that although some 
cases of cortical sensitization rely on continued peripheral 
input, others appear to be centrally maintained.

Robust non-nociceptive afferent input to the cortical 
areas representing the focal painful region may reduce the 
severity of pain by actively reconditioning the CNS from the 
periphery (Figure 4), as opposed to the passive deprivation 
of nociceptive input that may occur as the result of nerve 
blocks or ablation.104,107,162,163 This process has been 
termed “reconditioning” because it remains unclear whether 
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the cortex reverses or returns to its exact pre-injury archi-
tecture as opposed to achieving a new homeostatic state.

Activity-dependent cortical remapping requires that the 
peripheral conditioning input to the cortex be robust, since 
sufficient signal strength is needed to drive the plasticity, and 
focal from a specific region, since functional plasticity relies 
on low relative activity in surrounding cortical 
regions.107,156,157,162–165 Analysis of conventional stimula-
tion techniques suggests that they are unlikely to achieve 
these conditions, potentially informing why they can produce 
excellent pain relief but have not been reported to produce 
significant sustained outcomes without permanent 
implantation.2,70–74 For example, conventional SCS activates 
only a small proportion of Aα/β fibers before reaching dis-
comfort thresholds, likely spread non-focally across multiple 
dermatomes due to the lack of somatotopically targeted 
stimulation (Figure 4A).139–141 Paresthesia-based DRGS 
may act via similar mechanisms as other conventional stimu-
lation modalities (ie, activation of large diameter sensory 
afferents) by placing electrodes in the compact intraforaminal 
space in close proximity to the DRG to target large diameter 
axons in the ganglia (Figure 4B).166–168 Although more focal 
than SCS, recent computational modeling of DRGS suggests 
that the percentage of activated Aα/β fibers at clinically 

relevant stimulation amplitudes varies significantly with 
lead location, stimulation polarity, and stimulation para-
meters, indicating that electrode placement in close contact 
with the DRG may, much like conventional PNS, amplify the 
deleterious effects of lead migration and limit the scope of 
activation before discomfort thresholds are reached.167,169 

Lastly, conventional PNS can provide focal stimulation by 
targeting individual nerve(s) that innervate a region of pain, 
but a large proportion of Aα/β fibers in the nerve are not 
typically activated before discomfort thresholds are reached 
(Figure 4C).70,112

Percutaneous PNS with remote selective targeting is 
theorized to enable more selective activation of non- 
nociceptive, large diameter afferent fibers, generating per-
ipheral signals that are both focal and robust to optimally 
recondition the S1 cortex (Figure 4D). Unlike SCS, stimu-
lating individual nerves in a distribution-specific pattern to 
target a defined region of pain may provide a focal signal 
from the periphery that is well suited for cortical recondi-
tioning. And, in contrast to conventional DRGS and PNS, 
remote selective targeting is theorized to widen the gap in 
activation thresholds between Aα/β and small diameter 
pain fibers to permit more robust activation of the targeted 
fiber populations. Furthermore, cortical reorganization can 

Figure 4 Varying degrees of cortical activation using different stimulation methods. Optimal induction of cortical remapping requires selective activation of a large number 
of afferent fibers (ie, robust activation) that is generated focally (ie, from the region of pain). The activation zones are shown for Aα/β fibers (blue) and Aδ/C fibers (orange). 
(A) SCS activates a small number of fibers in the superficial dorsal column before reaching discomfort thresholds due to dorsal root activation, and the dorsal column fibers 
it does activate are commonly spread across multiple dermatomes. The afferent input to S1 is thus neither robust nor focal. Conventional DRGS (B) or PNS (C) can more 
focally target the dermatome and/or nerve innervating the specific region of pain, though DRGS often involves multi-level stimulation, but limitations with conventional 
systems and stimulation strategies curb the degree of large diameter fiber activation before reaching discomfort thresholds due to small diameter nociceptor activation. The 
afferent input to S1 is thus more focal than SCS but not robust. (D) Percutaneous PNS with remote selective targeting enables both focal and robust activation of the target 
nerves, potentially resulting in optimal cortical input to induce activity-dependent remapping and sustained analgesia, facilitating reconditioning of the CNS.

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                              

Journal of Pain Research 2021:14 728

Deer et al                                                                                                                                                             Dovepress

http://www.dovepress.com
http://www.dovepress.com


occur on the time course of weeks,157,170 suggesting that 
prolonged pain relief may be produced from short-term 
(weeks-long) treatments without requiring a permanent 
implant if the peripheral signals are sufficiently robust 
and focal to drive beneficial plastic changes.

Applications in Treating Chronic 
Pain
Percutaneous PNS with remote selective targeting has 
been successfully used to treat a variety of chronic pain 
conditions, including chronic pain following amputation, 
chronic shoulder pain, and axial low back pain. The fol-
lowing section will explore how the proposed mechanisms 
are theorized to occur in specific cases in which sustained 
pain relief has been reported following up to 60 days 
of PNS.

Post-Amputation Pain
Amputation of a limb is incredibly traumatic and induces 
chronic pain in the residual limb (RLP) and phantom limb 
(PLP) that can last for many years in up to 80% of 
patients.171,172 RLP and PLP have neuropathic features 
and are associated with peripheral and central sensitization, 
including functional reorganization of nociceptive pathways 
in the spinal cord and brain, sensory remapping, expansion 
of receptive fields, and altered cortical representation of the 
limb.172–175 Historically, conventional neurostimulation has 
been used to treat RLP and PLP with permanently 
implanted systems that require continuous treatment and 
tend to lose efficacy over time.12,176,177 A recent rando-
mized, double-blind, placebo-controlled study delivered 
percutaneous PNS to the femoral and sciatic nerves for up 
to 60 days in lower extremity amputees (n=28 total enroll-
ment, n=12 in treatment group). Despite attrition of 25% 
during follow-up in the treatment group, significant reduc-
tions in both RLP and PLP were maintained through 12 
months from the start of the 60-day treatment in a majority 
of subjects (67%, 6/9 at 12 months in treatment group, 70% 
average pain reduction in responders).39,55 Activation of 
large diameter sensory afferents at frequencies that evoke 
comfortable sensations in the region of pain (eg, 100 Hz) 
may activate spinal gating mechanisms during the 60-day 
treatment period to modulate peripheral nociceptive signals 
(eg, ectopic firing of nociceptive afferents from neuromas or 
dorsal root ganglia). This attenuated spinal transmission of 
nociceptive signals, coupled with the robust selective acti-
vation of tactile and proprioceptive afferents that innervate 

the painful region, may also help recondition the maladap-
tive cortical plasticity that occurs following amputation and 
restore balance between non-nociceptive and nociceptive 
representations in S1 to produce the observed sustained 
pain relief.

Chronic Shoulder Pain
Chronic shoulder pain is a common and complex compli-
cation following stroke, with recent studies reporting 
a prevalence ranging from 19% to 63% in stroke 
survivors.178 Shoulder pain may impede rehabilitation 
from stroke by interfering with self-care activities, redu-
cing ambulation, limiting ability and desire to participate 
socially, and leading to withdrawal from rehabilitation 
programs.179,180 Persistent shoulder pain has characteris-
tics of peripheral and central sensitization, such as allody-
nia, hyperalgesia, central hypersensitivity, and altered 
cortical somatosensory processing.181–185 Multiple rando-
mized controlled trials (RCTs) and case series 
(n=8–2832,63,64,66) using percutaneous PNS with remote 
selective targeting of the axillary nerve branches innervat-
ing the shoulder (Figure 1B) have shown effective long- 
term pain relief through 6 months in patients with chronic 
shoulder pain. Stimulation of the terminal branches of the 
axillary nerve with a lower frequency (eg, 12 Hz) pulse 
train likely has a dual effect, activating both sensory affer-
ents and muscle efferent fibers. Efferent fiber activation in 
the terminal branches of the nerve causes contraction of 
the middle and posterior deltoid muscles,63 producing 
proprioceptive signals in large diameter fibers that conver-
gently, along with directly activated sensory afferents, 
engage the gating mechanism in the spinal cord. 
Supraspinally, the non-noxious proprioceptive and cuta-
neous afferent barrage may facilitate cortical neuroplasti-
city and representational remapping, potentially reversing 
the cortical contribution to the chronic pain state and 
enabling patients to achieve sustained relief of their 
shoulder pain.

Chronic Low Back Pain
Chronic low back pain (LBP) is a leading cause of dis-
ability among adults and is both prevalent and challenging 
to treat.186,187 In many cases (up to 85%), chronic LBP 
may be nonspecific or have an unidentified cause.40 

A recent case series (n=9) suggested that low frequency 
(eg, 12 Hz) stimulation of efferent fibers in the lumbar 
region may produce sustained relief of chronic low back 
pain (67%, 6/9 with ≥50% pain relief at 12 months, 80% 
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average pain reduction in responders).40 Stimulation of the 
medial branch nerves of the dorsal ramus in the lumbar 
region may act by similar mechanisms as described above 
for chronic shoulder pain, specifically through lower- 
frequency pulse train activation of efferent fibers, produ-
cing secondary isolated contractions of the lumbar multi-
fidus (Figure 1B).67 A combination of proprioceptive 
signals from the multifidus and sensory input from direct 
activation of afferents in the targeted nerve may engage 
spinal segmental mechanisms of pain relief during stimu-
lation while also providing focal, robust physiological 
input to drive beneficial central plasticity and produce 
sustained relief.

Summary and Conclusions
Advancements in imaging and neurostimulation technol-
ogy have enabled a resurgence of PNS for pain relief in 
recent years. Studies of percutaneous PNS systems utiliz-
ing remote selective targeting have suggested the ability to 
produce clinically meaningful sustained reductions in pain 
following temporary (eg, up to 60 days) treatment periods 
across a variety of chronic pain conditions. 
Mechanistically, it is theorized that these results may be 
the result of a widened therapeutic window for stimulation 
that enables robust and selective activation of Aα/β fibers 
at frequencies (such as 5–150 Hz) that produce comforta-
ble sensations in the region of pain, leading to multiple 
analgesic mechanisms from the periphery to the dorsal 
horn and cortex. These diverse effects may be explained 
in a new theory of pain management, Peripherally Induced 
Reconditioning of the CNS, involving stimulation-evoked 
reversal of the central sensitized state that contributes to 
chronic pain.

The goal of this narrative review is to propose 
a mechanism of action theory based on observations in 
the clinical literature and novel technological advance-
ments in the field of PNS and to generate discussion in 
the clinical and scientific communicates that may encou-
rage future studies to further explore the observed clin-
ical phenomena. Although the purpose of the present 
review is not to systematically review the clinical evi-
dence, sustained relief following a short-term percuta-
neous PNS treatment has emerged in small studies 
across multiple pain indications, and additional studies 
that address the limitations of existing evidence would 
help support the proposed mechanistic theories, including 
independent investigations, larger cohorts, more active or 
sham controlled studies, and more consistent periods of 

long-term follow-up. Direct evidence supporting the 
mechanistic theory proposed here, such as the reversal 
of maladaptive cortical plasticity driven by robust and 
focal inputs from stimulation of peripheral nerves with 
remote selective targeting, is also needed to confirm the 
phenomena that may underlie the observed clinical evi-
dence. Future research efforts should therefore endeavor 
to continue to evaluate this proposed mechanistic theory 
and explore its clinical utility in a wide range of chronic 
pain conditions.

The development of neurostimulation systems specifi-
cally designed for use in the periphery and the growing 
volume of clinical data supporting the utilization of PNS 
across a wide range of pain indications is an encouraging 
development that offers interventionally trained physicians 
and neuromodulators new effective tools to treat chronic 
pain. The demonstrated ability to potentially provide sus-
tained relief from a temporary system that does not require 
a permanent implant may enable the further adoption of 
percutaneous PNS earlier in the treatment continuum and 
avoid the potential costs and/or risks of more invasive or 
neurodestructive procedures. Future research efforts 
should continue to evaluate the validity of the theories 
proposed in the present work, including the role of central 
plasticity in chronic pain conditions and the potential role 
for treatments that peripherally target and reverse centrally 
mediated pain.
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