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The Aryl Hydrocarbon Receptor (AhR):  
An Introduction to Xenobiotic Detection  
and Metabolism
Xenobiotic metabolism
Xenobiotics are foreign molecules that can exert biological 
activities on organisms and subsequently that can lead to 
adverse outcomes. Invertebrates and vertebrates have devel­
oped strategies along evolution that allow them to detect and 
eliminate these molecules, mostly through metabolization. 
Before the Anthropocene reign, the xenobiotics were for exam­
ple bacterial toxins, which could be considered as environmen­
tal contaminants for higher organisms, likely to impact some of 
their physiological functions.1 Since the industrial revolution, 
the formation and production of chemicals by human activities, 
lead to a diversification of xenobiotics (number, chemical  
families). More than 100 000 chemical substances are now con­
sidered to belong to this category.2 Compared to the number  
of genes in humans (~22 000), it might be difficult to imagine 
how organisms specifically detect all these molecules. Never­
theless, the evolution led to the development of a few detection 
systems with low specificity which handle the processes of 
detoxification of many contaminants.

Three receptors (AhR, PXR, and CAR) were historically 
considered as xenobiotic receptors as they were characterized 

in a research context that involved the use of a variety of pollut­
ants binding them.3,4 One key element was to provide a link 
between the detection of these xenobiotics and their metaboli­
zation. Indeed, the very first enzymes involved in the xenobi­
otic metabolism were characterized and named cytochromes 
P450 (CYP450), in the early 1960s; the abbreviation, CYP450, 
comes from spectrophotometry experiments: when these 
enzymes are in the reduced state and complexed with carbon 
monoxide (CO), the absorbance peak is at a wavelength of 
450 nm.5 They were first characterized as enzymes involved in 
the oxidation of exogenous compounds.

A general presentation of xenobiotic metabolism6 is pro­
posed in Figure 1.

The AhR signaling pathway

Among xenobiotic receptors, the existence of the aryl hydro­
carbon receptor (AhR) was characterized in 1976 by Poland 
and authors, who described an adaptative response linking the 
detection of pollutants to their detoxication. Later in the 19s 
and early 20s, both PXR (Pregnane X Receptor) and CAR 
(Constitutive Androstrane Receptor), 2 nuclear receptors (not 
belonging to the same protein family), were identified.3,4

Each of these receptors, functions in a similar manner: in  
an inactive state, they are localized in the cytoplasm, complexed 
to heat shock proteins (chaperones) that protect them from 
degradation, also prevent them from entering the nucleus and 
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configure them in a state that allows their binding to ligands, 
including pollutants. After ligand binding, a conformational 
change of the receptor (AhR, PXR, CAR) leads to the detach­
ment of certain heat shock proteins. As a result, the receptor 
enters the nucleus and complexes with a protein partner to form 
a transcription factor. PXR and CAR complex with another 
nuclear receptor called RXR (Retinoid X Receptor) while AhR, 
which belongs to the bHLH/PAS (Basic Helix Loop Helix/
Period ARNT Single-minded) family, binds to a protein of the 
same family named ARNT (for AhR Nuclear Translocator).

The cytoplasmic AhR complex contains c-Src (a tyrosine 
kinase which could also trigger, upon release, phosphorylations 
of multiple targets), 2 heat-shock proteins (Hsp90), the XAP2/
AIP/ARA9, and finally, p23, a co-chaperon (which means that 
it only interacts with one Hsp90 and not with the AhR). Upon 
binding of a ligand, the AhR translocates into the nucleus, and 
dimerizes with AhR Nuclear Translocator (ARNT), another 
member of the bHLH/PAS family. Therefore, the heterodimer 
binds to Xenobiotic Responsive Elements (XRE, consensus 
sequence 5′-TNGCGTG-3′), which are in the promoters of 
targets genes (including xenobiotic metabolizing enzymes and 
transporters). Consequently, AhR ligands are metabolized and 
eliminated from the body (Figure 2).4,7

A diversity of AhR target genes

Among the first genes discovered as AhR targets, several xeno­
biotic enzymes/transporters metabolize and participate to the 

elimination of AhR ligands. Thus, the receptor regulates the 
expression of several family 1 cytochromes P450 (CYP1A1, 
1A2, and 1B1) and increases their levels following exposure to 
PAHs and dioxins.8 Several phase II enzymes are also over­
expressed and the balance between the 2 phases ensures the 
production of metabolites that are not reactive (due to their 
conjugation).9 Conversely, an over-representation of phase I 
(CYP1) can lead to the production of DNA-reactive mole­
cules.10 This is classically described for benzo(a)pyrene, a 
polycyclic aromatic hydrocarbon (PAH).

This signaling pathway is also subject to regulatory feed­
backs through the increased expression of a particular target 
gene, the AhR Repressor (AhRR), which compete with ARNT. 
Its increased expression following AhR activation thus 
decreases the activity of the pathway and constitutes a negative 
feedback.11

Since the discovery of the first genes directly targeted by the 
AhR, omics techniques have allowed the identification of new 
target genes (inflammation molecules, cytokines, enzymes of 
the tryptophan pathway, poly-ADP ribosyl transferases. .  .) 
which bring a new dimension to the receptor through the regu­
lation of multiple cellular functions (immunity, inter-organ 
communications. .  .).11,12

The AhR ligands

Historically, the first suspected ligands of the AhR were xeno­
biotics such as Polycyclic Aromatic Hydrocarbons (PAH for 

Figure 1.  A general presentation of xenobiotic metabolism. Three phases are considered as essential, the first 2 steps corresponding to the activation 

and conjugation of xenobiotics leading to the production of metabolites, which are generally more hydrophilic. Therefore, a necessary third step involving 

membrane transporters leads to the elimination of the metabolites from the cell and subsequently, from the body (urines, sweat. . .).
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example benzo(a)pyrene), or furans and dioxins which are 
Halogenated Aromatic Hydrocarbons (HAH).13,14 These mol­
ecules have given their name to the receptor. Some of these 
ligands are metabolized like the PAHs; their metabolism can 
lead to the production of toxic intermediary metabolites, nota­
bly mutagenic and associated with certain cancers (like benzo(a)
pyrene and lung cancer).15 A balance between phase I and 
phase II enzymes is thus necessary to produce safe conjugated 
metabolites which can be easily eliminated. Some of these 
ligands are detected by the AhR but unfortunately, they are not 
metabolized by cytochromes P450 which results in the mainte­
nance of their lipophilic property and potentially chronical 
activation of the AhR pathway.16 For example, dioxins and 
furans are difficult to eliminate from the body: they are there­
fore persistent organic pollutants (POPs) which accumulate in 
the adipose tissue, the liver, or the brain (all considered as fatty 
organs). The Seveso dioxin, or 2,3,7,8-TetraChloroDibenzo-p-
Dioxin (TCDD), causes numerous alterations in organisms 
such as thyroid disruption, immunosuppressive effects, and 
developmental abnormalities.16-18

The AhR has long been considered a xenobiotic receptor, 
but AhR knockouts in mice, demonstrated that the receptor 
also displays physiological regulatory functions.19-21 In addi­
tion, components of our diet have gradually been included in 
the growing list of AhR ligands.

For example, polyphenols such as quercetin (present in 
onions) or resveratrol (present in large quantities in the skin of 
red grapes) activate the AhR pathway in a manner equivalent 
to that of PAH or dioxins.22 However, one of the consequences 
of this activation is their rapid metabolism by xenobiotic 
metabolism enzymes. More recently, components present in 
large quantities in crucifers, indoles such as indole-3-carbinol 
or 3,3′-diindoylmethane have also been identified and charac­
terized as AhR ligands.23 Finally, among the new identified 
endogenous ligands, molecules derived from the tryptophan 
metabolism including kynurenine, have clearly been identified 
as key regulators of the AhR functions.

The Multiples Functions of the Tryptophan  
Catabolic Pathways
Tryptophan (Trp) is an essential amino acid (not produced by 
our body and whose unique source is our food) which is used 
for protein synthesis but also constitutes a biosynthetic precur­
sor to numerous active metabolites, including serotonin and 
melatonin.24 The main catabolic pathway of Trp, called the 
kynurenine pathway, is important for cell energy production 
and limiting cellular aging as it degrades about 95% of trypto­
phan from the diet into the essential co-factor, nicotinamide 
adenine dinucleotide or NAD+.25 Prior to the production of 
NAD+, various intermediate compounds are synthesized and 

Figure 2.  A general presentation of the AhR signaling pathway. The AhR belongs to a cytoplasmic complex which detects pollutants and therefore 

translocates into the nucleus forming a transcription factor with ARNT. The heterodimer binds to xenobiotic responsive elements (XRE) in the promoters 

of target genes including xenobiotic-metabolizing enzymes which detoxifies the AhR ligands.
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exhibit remarkable activities toward various receptors involved 
in the regulatory functions of the CNS and the immune 
system.26-29

The kynurenine (Kyn) metabolites can also participate in 
the incidence of numerous neurodegenerative disorders 
(Alzheimer disease, amyotrophic lateral sclerosis, Huntington 
disease, and Parkinson disease) or other inflammatory diseases 
such as cancer or cardiovascular pathologies.26,30-33

Overall presentation of the Trp catabolic pathways 
including IDO/TDO

The first step of kynurenine pathway is the conversion of Trp 
to N-formyl-L-kynurenine (Figure 3). This conversion process 

is enabled by 2 rate-limiting enzymes: tryptophan 2,3-dioxy­
genases (TDO) and indoleamine 2,3-dioxygenases (IDO). 
Interestingly, both IDO and TDO are positively regulated  
by cortisol and proinflammatory cytokines (IL-1, IL-6, and 
TNF).34,35 N-formyl-L-kynurenine is then converted into Kyn 
by formidase. However, IDO and TDO are considered as the 
rate-limiting enzymes for Kyn production; indeed, the conver­
sion of Trp to Kyn through IDO and formidase represents the 
first steps of the major pathway of Trp degradation (95%), 
underscoring the importance of IDO, besides Kyn production, 
in regulating the other pathways of Trp metabolism (indole 
and/or serotonin pathways). Therefore, the Kyn pathway and 
IDO have been implicated in issues with serotonergic homeo­
stasis and subsequently, with psychiatric health issues.36

Figure 3.  A general and simplified overview of tryptophan metabolism.
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Kyn is a molecule at the crossroads of several reactions. The 
next steps could be (1) the metabolization of Kyn by the Kyn 
aminotransferases producing Kynurenic acid (KA) or (2) the 
formation of anthranilic acid by kynureninase or, (3) the con­
version of Kyn into 3-hydroxy-kynurenine (3-OH-Kyn) by 
Kyn monooxygenases (also named hydroxylases, as they attach 
a hydroxyl group to the C3 of Kyn).37

3-OH-Kyn can be metabolized by kynureninase and  
transformed into 3-OH anthranilic acid (OH-AA).38 OH-AA 
is metabolized by the enzyme 3-hydroxyanthranilic acid 
3,4-dioxygenase to form 2-Amino-3-carboxymuconate semi­
aldehyde, a metabolite which can be further broken down into 
the picolinic acid (PA) and quinolinic acid (QA). QA may 
serve as a precursor for the synthesis of NAD+.25

The gut microbiota participates in the direct transformation 
of Trp (5%) into indole metabolites (Figure 3), such as indole, 
indole-3-aldehyde, indole-3-acetic acid (IAA), and indole 
3-propionate (IPA), which maintain intestinal barrier integrity 
and immune cell homeostasis through, at least partly, activation 
of the AhR, Treg formation, subsequent interleukin IL-22 
production and immunotolerance.39-41

Finally, the production of serotonin represents only 1% to 
2% of the Trp metabolism.

Functions of the Trp catabolites including KYN and 
other AhR ligands

The cellular levels of Kyn and its downstream metabolites play 
crucial roles in regulating the immune system, vascular biology, 
and neurological functions.26-29 The first function of this meta­
bolic pathway is the control of Trp availability, regulated mainly 
by TDO and IDO. Controlling the expression of these 
enzymes, especially in the brain, can strongly while indirectly, 
influence serotonin synthesis.

At the end of the 1970s, the discovery of the neuroactive 
properties of certain metabolites produced by the Kyn pathway 
has led to considerable renewed interest for its study. Among 
the metabolites derived from this pathway, 3 of them are  
particularly neuroactive, via their action on the glutamatergic 
system or their involvement in oxidative processes: KA, 
3-OH-Kyn, and QA.

One of the main characteristics of KA is that it is a com­
petitive antagonist of glutamate receptors, inhibiting the 3 
ionotropic receptors of this excitatory amino acid: N-methyl-
D-aspartate (NMDA) receptors, kainic acid receptors, and 
AMPA receptors.26,42,43 By its antagonistic properties, KA is 
considered as a neuroprotective metabolite capable to counter­
act the excitotoxicity induced by glutamate (and QA, see 
below).44 Even modest increases in KA levels lead to rapid 
reduction in glutamate levels especially in anterior brain regions 
of rodents.45,46 KA also acts on the α7 nicotinic acetylcholine 
receptor (α7nACh) as an antagonist.47-49 These nicotinic 

receptors (activated by acetylcholine and nicotine, which are 
the best-known agonists) play a key role in the central cholin­
ergic anti-inflammatory response.50 More recently, KA has also 
been identified as an agonist of the G protein-coupled receptor 
35 (GPR35), hitherto considered as an “orphan” receptor,51 as 
well as the AhR.52 However, the expression of these receptors 
in the brain is relatively low,53 as they exert their main effects in 
the periphery. In humans, GPR35 is mainly expressed in the 
intestinal tract (stomach, intestine), in the spleen and in lym­
phocytes. The functions of this receptor are to date little known, 
however considering its expression, it is likely that it has a regu­
latory role in the digestive system and a pathophysiological 
implication in chronic inflammatory bowel diseases. Regardless 
of its actions on these receptors, KA also exhibits antioxidant 
properties linked to its ability to scavenge hydroxyl radicals, 
superoxide anion, and other free radicals.54,55

QA is long known to produce an increase in neuronal firing 
rate in the cerebral cortex.56,57 Neuronal excitation due to QA, 
is blocked by 2-amino-5-phosphonopentanoic acid (AP5), a 
compound reported earlier to block NMDA receptors.43,58 
Thus, QA was identified as an endogenous, selective agonist  
of NMDA receptors.57 As mentioned before, KA blocks 
NMDA receptors and therefore could compete with QA.59 
Furthermore, beside its action on neurons, QA is also capable 
of causing gliotoxicity of human astrocytes which also express 
NMDA receptors.60-62

Finally, 3-OH-Kyn also display neurotoxic properties, as it 
can induce oxidative stress and consequently neuron death by 
apoptosis. A part of this neurotoxicity also comes from one of 
its metabolites, OH-AA. Both are capable of auto-oxidizing 
and producing following significant amounts of reactive  
oxygen species (ROS), the accumulation of which within the 
CNS being highly toxic and associated with neurodegenerative 
diseases.63-65 In the context of Huntington’s disease, increased 
levels of QA in the brain are accompanied by quantitatively 
similar increases in brain levels of 3-OH-Kyn.66,67 The synthe­
sis of 3-OH-Kyn is particularly sensitive to inflammatory 
mediators, in particular IFN-γ. Under physiological conditions, 
the concentrations of 3-OH-Kyn are relatively low. In contrast, 
concentrations of 3-OH-Kyn and QA increase markedly in 
response to activation of the immune system or administration 
of IFN-γ.68,69

Several studies have suggested a link between the physio­
logical effects of Kyn and its metabolites, and the AhR.70-72 
Indeed, Kyn, KA and 6-formylindolo[3,2-b]carbazole (FICZ, a 
product of Trp after exposure to UV radiation in the skin) are 
considered AhR ligands.73-75 In support of this relationship are 
the numerous observations that Kyn levels influence a variety 
of immune responses in an AhR-dependent manner.72,76-78 
Therefore, disorders of the Kyn metabolism are associated with 
a variety of human health issues including cancer, hypertension, 
chronic inflammation, and neurodegenerative disorders.26,30,33
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Trace-extended aromatic condensation products of 
tryptophan metabolites
The Kyn-related underlying mechanistic roles of the AhR are 
currently uncertain. Knowledge of the AhR pharmacology has 
arisen from studying xenobiotic agonists like the halogenated 
dibenzo-p-dioxins and polycyclic aromatic hydrocarbons.79-82 
Thousands of xenobiotic compounds and endogenous metabo­
lites with diverse shape and chemical properties have been 
reported to bind to the AhR.83,84 These studies demonstrate 
that the AhR prefers compounds with elongated planar confor­
mations with large lateral extensions while Kyn is a much 
smaller, polar, and irregularly shaped ligand. Thus, although it 
has been shown that Kyn is a receptor activator, the structure of 
this ligand does not conform to many of the rules that correlate 
with high affinity binding to the AhR.79-82 Seok et al showed 
that the activity of kynurenine toward the AhR is increased  
by 100 to 1000-fold after incubation or long-term storage of 
Kyn’s solution: in fact, this is linked to the formation of Kyn 
condensates that interact with the hydrophobic ligand-binding 
pocket of AhR. These authors have purified products of the 
trace-active derivatives of Kyn and identified 2 new compounds 
named trace-extended aromatic condensation products 
(TEACOPs), that are active at very low concentrations (pico­
molar levels). The synthesized compound for one of the pre­
dicted structures, matched the purified compound in both 
chemical structure and AhR pharmacology. This study provides 
evidence that Kyn acts as an AhR pro-ligand, which requires 
chemical conversions to produce efficient receptor agonists.85

These results suggest that Kyn undergoes chemical modifi­
cations into derivatives, which activates the AhR. This hypoth­
esis is quite plausible as this phenomenon has already been 
observed for indole-3-carbinole,83 a compound which, like 
Kyn, does not have the characteristics expected for a good 
interaction with residues of the ligand-binding cavity of AhR: 
indeed, in acidic conditions, it can form various condensation 
products including indolocarbazole (ICZ), which has a much 
better affinity for AhR (KD of 1.9 × 10−10 M for ICZ against 
2.7 × 10−5 M for I3C). This is also the case for another metab­
olite of tryptophan, tryptamine, which, under the action of a 
monoamine oxidase, can form indole-3-acetaldehyde, a precur­
sor of FICZ, a high-affinity AhR ligand.86

The Interplay Between the AhR Pathway and  
Trp Metabolism in the Occurrence of 
Pathophysiological Processes and Diseases  
Related to Metabolism and Cancer
The Kyn-AhR pathway has been implicated in pathophysio­
logical processes such as tumor immunotolerance. Metabolic 
deregulations play a key role in cancer processes (eg, Warburg 
effect). In this section, we have identified processes that may be 
common to both the Kyn and AhR pathways and potentially 
involved in inflammation and metabolic processes (potentially 
related to cancer evolution) and we will discuss them in an 
integrated way:

Inflammation can be triggered by cytokines such as IL-6, 
TNF-α, and IFN-γ, which activate transcriptional factors (eg, 
NF-κB and STAT3). These cytokines also activate IDO for 
example during infection, restricting their access to Trp of 
pathogens and therefore their growth. However, IDO activa­
tion in chronic inflammation can also induce immunotolerance 
and potentially immune suppression.87-92 The role of Kyn 
which is produced by the IDO pathway in cancer has been sug­
gested by several studies; for example, Kyn levels in normal 
serum is comprised between 1 and 3 µM, while it is much 
higher in the tumor microenvironment (up to 37 µM).88 As 
mentioned previously, the presence of Kyn in the micro­
environment, can lead to the activation of the AhR and there­
fore to tumor proliferation and escape from the immune 
system. A recent study showed that IL4I1 activates the AHR 
pathway through the production of kynurenic acid and indole 
metabolites also leading to immunosuppression.93 Considering 
such results, IDO1 inhibition has been suggested as a potential 
cancer therapy; however, this approach is not completely suc­
cessful in clinical trials and this might be partly related to its 
impact on NAD+ metabolism.94 Indeed, IDO1 inhibition leads 
surprisingly to the overproduction of NAD+; the inhibition of 
IDO1 is not sufficient to leads to compensatory production  
of NAD+ and its metabolites which favor tumor promotion 
through multiple mechanisms. NAD+ deprivation, as a treat­
ment approach in cancer is considered; the blockage of NAD+ 
de novo synthesis by FK866 (a nicotinamide phosphoribosyl 
transferase) sensitizes cancer cells for apoptosis.95 We can 
hypothesize that due to the high similarity between the cancer 
phenotype that occur with high levels of NAD+ and Kyn 
(immunosuppression and tumor aggressiveness), that the AhR 
pathway might also be involved in those process. Targeting 
simultaneously NAD+ metabolism, IDO1 activity and the 
AhR pathway might be an interesting approach for cancer 
therapy.

Another cause of inflammation is the occurrence of an  
oxidative stress: Sahm et al showed that QPRT expression in 
glioma cells is increased by oxidative stress, a process that can 
decrease the availability of QA (an AhR ligand and substrate of 
QPRT) while increasing NAD+ levels. The elevation in QPRT 
levels decreased the susceptibility of cancer cells to radio-
chemotherapy leading to poor prognosis.95 The involvement of 
the QA-AhR pathway is unknown in this process but several 
studies raised the hypothesis that the AhR plays a key role in 
chemoresistance for example through the up-regulation of 
ABCG2, a drug transporter.96

Several metabolic disorders are related to Trp metabolism 
and/or the activity of the AhR pathway: insulin resistance (IR) 
induces hyperglycemia due to the inability by various cells such 
as adipocytes and cardiomyocytes, to import glucose.97,98 This 
condition is observed in type 2 diabetes (T2D), obesity, and 
hypertension. Trp metabolism appears to be dysregulated in 
obese and insulin-resistant (IR) patients. Kyn serum levels sig­
nificantly increased in obese adults, probably due to an increased 
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IDO activity (this activity being already upregulated in pre-
diabetic subjects while normoglycemic). Interestingly, met­
formin which is used to treat T2D, also normalizes the Kyn 
levels in these patients.99 Other IR or T2D cases displays 
increased Trp and Kyn serum levels.50,100,101 These observa­
tional results do not allow to draw a causal link between Kyn 
and dysregulated metabolism, but on the contrary, KA displays 
a rather beneficial impact in terms of IR due to its antagonism 
toward the NMDA receptor, triggering of the Gpr35/AMPK 
axis and SIRT6, and regulation of long-term thermogene­
sis.102,103 The AhR might also be implicated: Rojas et  al104 
demonstrated that Kyn activates the AhR, a process linked 
with weight gain (only when associated with an high-fat diet) 
and hyperglycemia due to decreased plasma insulin levels. Such 
results linking the AhR to the modulation of insulin responses 
are not surprising: indeed; the AhR modulates this response 
according to the nature of its ligands103,105: active ingredients of 
Indigo naturalis (AhR agonists) alleviate high fat diet-induced 
IR via an increased secretion of IL-10 and IL-22.102 On the 
contrary, a xenobiotic AhR ligand, benzo(a)pyrene increases 
the levels of inflammatory markers such as TNF-α, NF-κB, 
and MCP-1 increased due to AhR activation in C57BL/ 
6 mice.106 Altered production and secretion of adipokines are also 
associated with the Kyn pathway through the modulation of 
NMDA receptors.107 While none of the Trp metabolites has 
been described to modulate adipokines secretion through AhR 
modulation, we hypothesize that the Kyn pathway may influ­
ence adipokines secretion by the AT through modulation of 
the AhR and that this process might contribute to the occur­
rence of metabolic diseases. Moreover, the metabolism of fatty 
acids (FA) is modulated by the IDO-Kyn-AhR pathway as it 
has been shown in human coronary artery endothelial cells 
(HCAECs): IFN-γ activates IDO1 therefore the production 
of Kyn and then the activation of the AhR leading to reduced 
intracellular levels of NAD+ and increased FA oxidation.108 
The nature of FA (ω3 vs ω6) may determine if the AhR ligands 
and the AhR pathway favors or suppress cancer progression: 
indeed, in mice fed with a ω3-rich diet, TCDD decreased the 
growth rates of transplanted tumors and their metastasis to the 
liver and/or lung, while in ω6-fed mice, TCDD enhanced can­
cer metastasis.109

Another type of metabolic disorders related to Trp metabo­
lism, the AhR pathway and potentially cancer, is a gut micro­
biota imbalance, or “dysbiosis.”110,111 Decreases in Trp serum 
concentrations are correlated with several diseases including 
inflammatory bowel disease.112 Alteration in microbiota com­
position changes Trp availability with subsequent consequences 
on the Kyn pathway therefore on the AhR activity. The activity 
of colon cancer cells also modulates this availability: c-MYC 
upregulates Trp transporters (SLC7A5 and SLC1A5) and 
arylformamidase, and increases the Trp uptake in the tumor 
cells and its conversion in Kyn. When the enzymes of the Kyn 
pathway are blocked, this leads to preferential death of colon 

cancer cells compared to normal colon cells. Similarly, an AhR 
antagonist reduces the proliferation of these cells by blocking 
the AhR-Kyn interaction.113 Similarly, an increase in cytoplas­
mic levels of IDO1, arylformamidase, and Kyn, leads to AhR-
mediated T cell inactivation and colon cancer progression. Trp 
availability and metabolism is also altered in the microbiome of 
colon cancer patients compared to healthy volunteers.113,114 
Interestingly, 2 ligands of the AhR, indole propionic acid (IPA) 
and indoxyl-sulfate (IS) which are bacterial metabolites of Trp, 
hampered cancer cells migration, proliferation, and metastasis, 
blocking epithelial-mesenchymal transition (EMT) or ROS/
RNS generation, and competing with metabolites of the Kyn 
pathway.115,116 In summary, the gut, and the microbiota influ­
ence significantly the availability of Trp, producing AhR 
ligands which compete with metabolites of the Kyn pathway.

Finally, alteration of amino acid levels including Trp has 
been associated with disruptions in the circadian rhythm and 
sleep alterations making subjects more susceptible to the devel­
opment of various diseases, including cancer and metabolic 
disorders.117-119 First, Vallianatou et  al120 demonstrated that 
Trp-containing dipeptides were upregulated in the brain dur­
ing sleep. Huang et al121 conducted a study with females shift 
workers (who are more susceptible to weight gain and obesity 
than day workers) and characterized an increase in Trp levels. 
No connection so far has been identified between the AhR and 
the Kyn pathway in this context, but it would be relevant to 
study if the disruption of circadian rhythms (associated with 
obesity or cancer) might influence this connection and the role 
of both pathways in the appearance of the disease.

The induction of the Kyn pathway prevents Trp from being 
metabolized not only to serotonin, but also suppresses the 
availability of serotonin as a necessary precursor for the mela­
tonergic pathway. Serotonin, in the presence of 14-3-3 stabi­
lized AANAT with acetyl-CoA as a cosubstrate, leads to the 
production of N-acetylserotonin (NAS), with NAS being 
converted by acetylserotonin methyltransferase (ASMT) to 
melatonin. The activation of the AhR induces CYP1A2 and 
CYP1B1, which can O-demethylate melatonin to NAS, 
thereby increasing the NAS/melatonin ratio.122 This is likely to 
be of some importance in cancer, given that NAS is a brain-
derived neurotrophic factor (BDNF) mimic via its activation of 
the BDNF receptor, tyrosine receptor kinase B (TrkB).123 TrkB 
activation significantly increases the survival and proliferation 
of cancer stem-like cells, indicating that AhR/CYP1A2/
CYP1B1 can increase NAS,124 which if released by cells in the 
tumor microenvironment will increase the proliferation and 
survival of metastasis-inducing cancer stem-like cells.125 Data 
indicates that tumor IDO leads to the release of Kyn that  
activates the AhR in other tumor microenvironment cells, 
including CD8+ T cells126 where AhR contributes to CD8+  
T cell “exhaustion.”127 Consequently, the AhR is a significant 
contributor to alterations in intercellular signaling among the 
cells of the tumor microenvironment.
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It may also be important to note that the AhR is present on 
the mitochondria membrane, where it can act to regulate Ca2+, 
voltage dependent anion channel (VDAC)1 activity and mito­
chondrial metabolism.128 The role of the AhR at mitochondria, 
including factors that act to chaperone the AhR to mitochon­
dria will be important to determine, given the crucial role of 
mitochondria in the pathophysiology of cancer and metabolic 
conditions, such as obesity.

Conclusions and Implications
The AhR was historically identified as a xenobiotic receptor 
but since the beginning of the 20th century, many new ligands 
have been identified including components produced by the 
microbiota, compounds from the diet and endogenous ligands 
including tryptophan derivatives. Among these, the kynure­
nine pathway leads to the production of a variety of tryptophan 
metabolites, some of which have rather deleterious properties, 
others being more protective. In this respect, TEACOPS 
occupy a place that should be clarified. Consequently, many 
pathophysiological processes associate the AhR pathway and 
kynurenine metabolism, including inflammation and insulin 
resistance. Other processes remain more hypothetical. The 
persistence of AhR signaling maintained by persistent ligands 
(such as dioxin or kynurenine, possibly lipophilic TEACOPs) 
could explain some deleterious effects. The complexity of the 
signaling is explained by this diversity of ligands that each 
individually could lead to different transcriptional responses. 
Within the same cell, it is conceivable that different AhRs are 
activated by different molecules. This characterization will 
be a challenge in the coming years to link AhR signaling to 
complex public health events.
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