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Abstract

Motivation: With the recent surge of large-cohort scale single cell research, it is of critical importance that analytical
methods can fully utilize the comprehensive characterization of cellular systems that single cell technologies pro-
duce to provide insights into samples from individuals. Currently, there is little consensus on the best ways to com-
press information from the complex data structures of these technologies to summary statistics that represent each
sample (e.g. individuals).

Results: Here, we present scFeatures, an approach that creates interpretable cellular and molecular representations
of single-cell and spatial data at the sample level. We demonstrate that summarizing a broad collection of features at
the sample level is both important for understanding underlying disease mechanisms in different experimental stud-
ies and for accurately classifying disease status of individuals.

Availability and implementation: scFeatures is publicly available as an R package at https://github.com/
SydneyBioX/scFeatures. All data used in this study are publicly available with accession ID reported in the Section 2.

Contact: jean.yang@sydney.edu.au or pengyi.yang@sydney.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent single-cell or near single-cell resolution omics technologies
such as spatial transcriptomics enable the discovery of cell- and cell
type specific knowledge and have transformed our understanding of
biological systems, including diseases (Longo et al., 2021). Key to
the exploration of such data are the ability to untangle and extract
useful information from their high feature dimensions (Yang et al.,
2021) and uncover hidden insights. A plethora of computational
methods has been developed on this front, with the main focus on
individual cell analysis (Stegle et al., 2015), such as cell type identity
(Abdelaal et al., 2019; Kim et al., 2021) and pseudotime ordering
within a lineage (Saelens et al., 2019). While these tools enable char-
acterization of individual cells, there is a lack of tools that allow for
the representation of individual samples based on their cellular char-
acteristics and the investigation of how these cellular properties are
driving disease outcomes. With the recent surge of multi-condition
and multi-sample single-cell studies on large sample cohort (Lin
et al., 2020), the next frontier of research is on representing and
characterizing cellular properties at the sample (e.g. individual pa-
tient) level for linking such information with the disease outcome.

Creating a representation of each sample from the collection of
sequenced cells is a crucial step for subsequent analysis as successful
modelling and interpretation of disease outcomes requires biologic-
ally relevant learning features from the data. While using the origin-
al expression matrix as the input to various models could inform the
change in transcriptomics level across disease conditions, the ability
to represent the data with other layers of information is critical for
uncovering additional insights given the complex and non-linear
relationships among the feature dimensions (e.g. interaction of
genes, gene networks and pathways). The single-cell field has a
wealth of tools for data exploration (Wu and Zhang, 2020) which
enables the exploration of biology underlying the individuals. Most
current tools are not specifically designed to derive a set of features
that can be used to represent an individual. Yet, with careful adapta-
tion, a number of approaches can be used to construct novel molecu-
lar representations of individual samples. Cell-cell interactions tools
(Armingol et al., 2021; Jin and Ramos, 2022) for example, calculate
cell type specific signalling scores between pairs of ligand and recep-
tor molecules. The interaction scores can be used to represent the
intercellular communications of cells and cell types in a sample.
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Another example is gene set enrichment analysis (Maleki et al.,
2020) which infers the pathway enrichment score of individual cells.
By summarizing the scores across cell types, a cell type specific rep-
resentation of the pathway enrichment of each sample can be
constructed.

To this end, we develop scFeatures, a tool that generates a large
collection of interpretable molecular representations for individual
samples in single-cell omics data, which can be readily used by any
machine learning algorithms to perform disease outcome prediction
and drive biological discovery. Together, scFeatures generates fea-
tures across six categories representing different molecular views of
cellular characteristics. These include (i) cell type proportions, (ii)
cell type specific gene expressions, (iii) cell type specific pathway
expressions, (iv) cell type specific cell-cell interaction (CCI) scores,
(v) overall aggregated gene expressions and (vi) spatial metrics. The
different types of features constructed thereby enable a more com-
prehensive multi-view representation of the expression data. Based
on the generated features, scFeatures produces an HTML report
containing visual summaries of features most associated with condi-
tions. In a collection of 17 published single-cell RNA-seq, single-cell
spatial proteomics and spatial transcriptomics datasets, scFeatures
reveal different feature types are useful for predicting the disease
outcomes in different datasets. Furthermore, through examining the
selected features in two case studies, scFeatures uncovers cell types
important to ulcerative colitis and stratified individuals with distinct
survival outcomes in a triple negative breast cancer dataset.
Together, these results demonstrate that scFeatures enables data-
driven feature generation (or feature engineering) and facilitates un-
biased identification of feature types most perturbed by the disease
conditions.

2 Materials and methods

2.1. Data collection and processing
2.1.1 scRNA-seq

To demonstrate scFeatures on scRNA-seq data, we collected data
from four published studies and curated a total of 15 datasets from
the studies. The data are described in detail below:

Six Ulcerative Colitis datasets: The UC data (Smillie et al., 2019)
sequenced healthy control, inflamed and non-inflamed colon biop-
sies from multiple individuals. The data was retrieved from Single
Cell Portal with accession ID SCP259. We subset the data into epi-
thelial, stromal cells and immune subsets according to the original
publication, resulting in the following six datasets:

• UC healthy versus non-inflamed (Epi)
• UC healthy versus non-inflamed (Fib)
• UC healthy versus non-inflamed (Imm)
• UC inflamed versus non-inflamed (Epi)
• UC inflamed versus non-inflamed (Fib)
• UC inflamed versus non-inflamed (Imm)

where Epi stands for epithelial, Fib stands for stromal and Imm
stands for immune subsets. Inflamed, non-inflamed and healthy are
conditions of interest.

Six lung datasets: The lung data (Adams et al., 2020) sequenced
healthy control, idiopathic pulmonary fibrosis (IPF) and chronic ob-
structive pulmonary disease (COPD) biopsies from multiple individ-
uals. The data was retrieved from Gene Expression Omnibus (GEO)
with accession ID GSE136831. We subset the data into epithelial,
stromal cells and immune subsets according to the original publica-
tion, resulting in the following datasets:

• Lung healthy versus IPF (Epi)
• Lung healthy versus IPF (Fib)
• Lung healthy versus IPF (Imm)
• Lung healthy versus COPD (Epi)
• Lung healthy versus COPD (Fib)

• Lung healthy versus COPD (Imm)

where healthy, IPF and COPD are conditions of interest.
Two melanoma data (Sade-Feldman et al., 2019) sequenced im-

mune cells from tumour biopsies of melanoma patients before and
after treatment with immune checkpoint therapy. The data was
retrieved from GEO with accession ID GSE120575. We subset the
data into pre-treatment and post-treatment datasets. The conditions
of interest in both datasets are non-responding and responding.

The COVID dataset (Schulte-Schrepping et al., 2020) sequenced
peripheral blood mononuclear cells (PBMC) from COVID-19 indi-
viduals. The data was retrieved from European Genome-phenome
Archive (EGA) with accession ID EGAS00001004571. We subset
the original data into mild and severe individuals and consider the
mild and severe disease stage as the conditions of interest.

2.1.2 Spatial proteomics

The triple negative breast cancer dataset (Keren et al., 2019) meas-
ured the patient’s protein expression using MIBI-TOF (multiplexed
ion beam imaging by time of flight) technology. Data was obtained
from https://mibi-share.ionpath.com.

2.1.3 Spatial transcriptomics

The amyotrophic lateral sclerosis dataset (Maniatis et al., 2019)
sequenced lumbar spinal cord tissue of ALS and control mice at
varying time points using the spatial transcriptomics technology.
The data was retrieved from GEO with accession ID GSE120374.
We used the subset of data sequenced at the disease onset time
point.

2.2 Implementation of feature types
We generated 17 feature types that can be broadly categorized into
six categories: (i) cell type proportions, (ii) cell type specific gene
expressions, (iii) cell type specific pathway expressions, (iv) cell type
specific CCI scores, (v) overall aggregated gene expressions and (vi)
spatial metrics. All feature types except for the overall aggregated
gene expressions category have different implementations for
scRNA-seq and spatial data to better leverage the characteristics of
different data types and the implementation details are described in
Supplementary Table S2.

For spot-based spatial transcriptomics, we performed the follow-
ing additional processing to allow certain feature types to be applic-
able. First, since the cell type specific feature categories require cell
type information while the spot in spot-based data contains a mixed
population of multiple cells, we used Seurat’s TransferData function
to predict the cell type probability of each spot. A published scRNA-
seq data on mouse spinal cord with cell type labels was used as the
reference (Sathyamurthy et al., 2018). Then, given that each spot
contains an unknown number of cells that varies between spots, we
weighted the contribution of each spot to the generated features by
the relative number of cells it contains. We used library size as an es-
timate of the relative number of cells, motivated by a study that
found a high correlation between the number of cells and library
size of spots (Saiselet et al., 2020). To calculate the relative number
of cells, we binned the log2 transformed total library size of cells
into 100 bins and assigned each spot a relative number of cells rang-
ing between 1 and 100 according to its bin. The cell type probability
of each spot together with the relative number of cells were used in
the implementation of feature types for spatial transcriptomics.

2.3 Correlation between features and feature types
Given scFeatures constructs a standard matrix of samples by fea-
tures, we can readily compute the Pearson’s correlation between in-
dividual features as shown in Supplementary Figure S2. We
subsampled 100 features from feature types that have more than
100 features to avoid the correlation plot being dominated by fea-
ture types with greater number of features.
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To summarize the correlation between pairs of feature types as
shown in Figure 2b, the following approach was taken. First, we cal-
culated the Pearson’s correlation between all features from a pair of
feature types, such as proportion raw and gene mean celltype. This
is repeated for each pairwise combination of feature types for each
dataset. Then we subsampled 1000 values from the correlation
values to reduce the computational burden of plotting. For ease of
visual interpretation, the absolute values of the correlation values
were taken.

These correlation values were further summarized in Figure 2c
by taking the average correlation values, followed by hierarchical
clustering to cluster the feature types.

2.4 Classification and survival analysis using generated

features
In scFeatures, we provide functionality to perform classification and
survival analysis for the convenience of users. The classification
function builds upon the functions in the classification package
classifyR (Strbenac et al., 2015) that was published by our group
earlier. We used the random forest model, set the number of folds to
three, performed 50 cross-validation and calculated F1 score.
classifyR has an in-built feature selection function. We used the de-
fault setting that uses the feature selected from the random forest
model built on the training set to evaluate on the test set. These were
also the settings used to report the classification performance in this
study and can be specified by the user. The only exception is that
100 repeats of cross-validation were performed instead of 50 to
obtain a more stable feature importance score for the case study on
the ‘UC healthy versus non-inflamed (Fib)’ dataset.

For survival analysis, we used a Cox proportional-hazards model
provided in the rms R package. By default, we set the number of
folds to three, performed 50 cross-validation and calculated
C-index. Note that as the Cox model is not designed to take in a
large number of features at once, unlike a typical classification
model, we input one feature from the generated feature type at a
time for building the Cox model. The best C-index was reported as
the performance for the feature type.

2.5 Complementarity of the generated features
To explore the complementarity of the generated features, we com-
pared the classification accuracy of using features from individual
feature types with using the combination of features from all feature
types. In detail, we used the classification model described above,
which is trained on all feature space to derive the feature import-
ance. We then identified the top eight features from each feature
type and combined them into the ‘combined feature set’. This set
contains 96 features (8 features � 12 feature types) for the ALS data-
set and 104 features (8 features � 13 feature types) for the other 15
datasets. The triple negative breast cancer dataset was excluded
from this analysis as Cox proportional-hazards model is not
designed to take in a large number of features at once. For fair com-
parison with the individual feature type, we used the top 100 fea-
tures from each individual feature type. For feature types with less
than 100 features, i.e. ‘proportion raw’ and ‘proportion logit’, we
used all features. We used the random forest model, set the number
of folds to three, performed 50 cross-validation and recorded the F1
score.

2.6 Feature importance score
The runTests function in ClassifyR outputs the features selected by
the classification model. Since repeated cross-validation was
performed, this generated one set of included features for each
cross-validation process. Based on all the derived sets, the frequency
of inclusion was considered as the ‘feature importance score’ of each
feature.

For the cell type specific feature category, given that each feature
is associated with a cell type, it is also of interest to aggregate the
feature importance score associated with each cell type. We
approached this by summing the feature importance score of all

features associated with a cell type, then dividing by the number of
features constructed for that particular cell type to adjust for the
difference in the number of features per cell type. The final score
was considered the feature importance score of each cell type.

2.7 Speed and memory usage
To benchmark the scalability of the 17 feature types, we used the
UC inflamed versus non-inflamed (Imm) dataset and took random
samples to construct datasets with 1000, 2000, 3000, 5000, 10 000,
20 000, 30 000, 50 000, 70 000 and 100 000 cells. Each dataset
contains the same 15 individuals and the same 15 cell types.

For the purpose of evaluating the feature types designed for spot-
based data which require each spot to be associated with a cell type
probability vector, we treated each cell as a ‘spot’ and randomly cre-
ated a cell type probability vector for each cell. Similarly, for the
purpose of evaluating the feature types under the category of spatial
metrics which require spatial coordinates of each cell, we randomly
assigned a pair of x and y-coordinates to each cell. In addition, the
cell type probability and number of cells in each spot were randomly
generated to represent such data.

Runtime was measured using the built-in Sys.time function in R.
Memory was measured by recording the peak resident set size,
which measures the peak amount of memory that a process con-
sumes across all cores. All code was run in parallel using 8 cores
three times and the average measurements were taken. All processes
were carried out using a research server with dual Intel(R) Xeon(R)
Gold 6148 Processor with 40 cores and 768 GB of memory.

3 Results

3.1 scFeatures performs multi-view feature engineering

for single-cell and spatial data
We propose scFeatures, a new multi-view feature engineering frame-
work that creates an interpretable representation of cellular level
features for each individual sample from a given single-cell or spot-
based expression dataset (Fig. 1a). To capture the wide range of cel-
lular information for sample classification (e.g. diseased versus
healthy individuals) using single-cell data, we implemented an exten-
sive collection of algorithms to extract over 50 000 interpretable fea-
tures from a given dataset. These features, spanning a total of 17
types, are motivated by established analytical approaches in a broad
range of single-cell literature and can be broadly grouped into six
distinct categories including (i) cell type proportions, (ii) cell type
specific gene expressions, (iii) cell type specific pathway expressions,
(iv) cell type specific CCI scores, (v) overall aggregated gene expres-
sions and (vi) spatial metrics (Fig. 1b). These collections of con-
structed features can then be used for various downstream analyses
such as disease outcome prediction, biomarker selection, survival
analysis and enable the identification of interpretable features and
feature types associated with disease conditions.

The six feature categories represent different ‘views’ of the
single-cell information. Specifically, category I captures cell type
proportion information in which the proportion of cell types for
each sample and the ratio of proportions between two cell types are
measured. Category II represents cell type specific gene expression
and examines the expression of sets of genes or proteins in each cell
type. We implemented different approaches for representing this in-
formation, including average expression, proportion of expression
and correlation of expressions. In category III, which calculates cell
type specific pathway scores, by default the 50 hallmark pathways
in the Molecular Signatures Database (MSigDB) (Liberzon et al.,
2015; Subramanian et al., 2005) were used to generate various fea-
tures such as the average expression of each pathway in each cell
type. Category IV contains the CCI scores, which measure the prob-
ability of ligand-receptor interaction based on the expression values.
Category V is designed to recreate the bulk expression by aggregat-
ing the expression across cells. Category VI is designed specifically
for spatial data type and includes classical metrics for identifying
spatial patterns. For all feature categories except category V, the val-
ues are summarized at per cell type level, for example, feature x cell
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Fig. 1. Overview of scFeatures. (a) The input for scFeatures is an omics dataset containing multiple samples such as individuals and cell type labels. scFeatures extracts different

views of the data, thereby transforming the gene by cell matrix into a vector of features for each sample. (b) scFeatures constructs 17 feature types that can be broadly classified

into six categories. Each feature type consists of multiple individual features. For example, for ‘gene mean celltype’, 100 features are generated by default per cell type (nct) per

sample (ns) (see Section 2). Examples of feature names from each feature type are given to illustrate the data format

Fig. 2. Characteristics of the features generated by scFeatures. (a) Compositional barchart showing the number of features generated by scFeatures for each dataset. Datasets

are first ordered by data types, and then by the number of cell types. (b) Correlation plot showing Pearson’s correlation of features on the ‘Lung healthy versus IPF (Epi)’ data-

set as a representative example. The features are colour labelled by feature types for ease of interpretation. (c) Boxplots summarizing the correlation between pairs of features

across all datasets (see Section 2). Texts highlight the 10 most and 10 least correlated feature types pairs, coloured according to their feature category. (d) Hierarchical cluster-

ing of the average correlation between feature types. Heatmap is colour labelled by feature category for ease of interpretation
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type a and feature y cell type b, which then forms the vector of
molecular representation containing over 50 000 features for each
sample. The implementation details can be found in Supplementary
Table S2.

scFeatures extracts interpretable features from data generated by
scRNA-seq, spatial proteomics and spatial transcriptomics
(Table 1). In particular, spatial transcriptomics data, a spot-based
technique in which the expression value of each spot is based on a
small population of cells, often contains cells from multiple cell
types in each spot. We developed several novel ways to adapt the 13
feature types to spot-based data whenever possible; this collection of
spatial metrics considers the properties of spot-based technology
and reveals cell type specific features in spot-based data. For ex-
ample, spot-based data precludes direct application of cell type pro-
portion computation since each spot includes an unknown number
of cells, while cell type percentage estimation requires individual cell
counts for each cell type. To overcome this issue, we estimated the
number of cells in each spot using the library size of that location
based on the association between the two values. Supplementary
Table S2 provides more documentation on the implementation
details on the adaptation of feature types from single-cell RNA-
sequencing to spot-based technologies.

3.2 scFeatures generates a large collection of diverse

features and is scalable to large datasets
To demonstrate the characteristics of the feature representation, we
applied scFeatures to 17 datasets measured using scRNA-seq, spatial
proteomics and spatial transcriptomics data (Supplementary Table
S1). For typical scRNA-seq data, scFeatures generated over 50 000
features (Fig. 2a). As expected, the number of features generated
was mostly associated with the number of cell types in the dataset
and not with other data characteristics, including the number of
genes and number of cells (Supplementary Fig. S1).

To explore the diversity of the features generated from
scFeatures, we first examined the correlation between the features
across 17 datasets (Fig. 2a, Supplementary Fig. S2). By summarizing
the correlation values between every pairwise combination of fea-
ture types (Supplementary Fig. S3), we observed that overall the fea-
ture types were poorly correlated, with the median correlation
ranging from 0.1 to 0.3 (Fig. 2b). Hierarchical clustering of the cor-
relations revealed that the higher correlation was observed between
certain feature types from the same feature category (Fig. 2c and d).
For example, the ‘gene mean aggregated’ and ‘gene proportion
aggregated’ from the aggregated gene expression category had high
correlation within each of the feature types and between the feature
types pair. This is consistent with our expectation of some degree of
co-expression linked with disease conditions.

To further examine the complementarity of the feature types, we
compared the performance of individual feature types with the com-
bination of features across feature types (Supplementary Fig. S4).
The ability to accurately classify disease outcomes was used as the
evaluation metric (see Section 2). We found the combination of fea-
tures in general performed better than most of the individual feature
types and achieved the best classification performance in 11 out of
the 16 datasets, suggesting the complementarity of the feature types.

We next benchmarked the runtime and memory requirements of
the feature types on single-cell scRNA-seq (Supplementary Fig. S5a),
spatial proteomics (Supplementary Fig. S5b), as well as spot-based
spatial transcriptomics datasets (Supplementary Fig. S5c) for evalu-
ating both the single-cell RNA-sequencing implementation and the
spot-based implementation. All datasets contain 1000 to 100 000
cells. On the largest datasets with 100 000 cells, the majority of fea-
ture types took less than a minute to compute when executed on
eight cores, demonstrating that scFeatures is highly scalable to large
datasets. As expected, there was some trade-off between processing
time and memory. As a result of parallel computation over eight
cores, some feature types required more than 10GB of RAM in total;
however, users can run on a single core to reduce the memory
requirement. T
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3.3 The most informative feature types differ between

different datasets
We hypothesized that distinct feature types would be informative
for different datasets since each dataset comprises samples with
varying characteristics and disease outcomes. Several datasets were
used where each feature type was evaluated on its ability to predict
disease outcome and the observations were in alignment with our
hypothesis. First, we used a lung disease dataset collection
(Supplementary Table S1) where the cells were split into the epithe-
lial, immune and fibroblast subsets and the outcome of interest was
to classify the individuals into healthy or idiopathic pulmonary fi-
brosis (IPF). In Figure 3a, we visualized the classification perform-
ance of the feature types on the three subsets and ordered the feature
types according to their performance in the epithelial subsets. This
reveals that feature types related to cell type proportions (i.e. ‘pro-
portion ratio’, ‘proportion logit’ and ‘proportion raw’) achieved the
highest accuracy in the epithelial subset (Fig. 3a). In contrast, the
performance of feature types on the immune and fibroblast subsets
did not follow the same trend as on the epithelial subset, demon-
strating that different feature types are useful for the three datasets.

Similar observations were also found in the melanoma pre-
treatment dataset and melanoma post-treatment dataset
(Supplementary Table S1) where the question of interest was classi-
fying non-responders and responders. This revealed that proportion
features (i.e. ‘proportion raw’ and ‘proportion logit’) more accurate-
ly classified individuals in the post-treatment dataset than in the pre-
treatment dataset, while pathway features (i.e. ‘pathway gsva’ and
‘pathway proportion’) provided higher classification accuracy for
pre-treated individuals (Fig. 3).

We then examined 17 datasets (Supplementary Fig. S6) and high-
lighted the five informative feature types for each dataset (Fig. 3c)
for a more comprehensive assessment of the performance of the fea-
ture types. Across the 17 datasets tested, ‘gene mean celltype’, which
examines expression in cell type specific manner, occurred in 10
datasets as the top five informative feature types. This is perhaps not
surprising, as it elucidates the power of single-cell technology to pro-
file the cell type specific expression to uncover changes in response
to diseases. Across the spatial datasets, we saw feature types in the
spatial feature category appeared as the top five informative feature
types, indicating the effectiveness of this category to capture spatial
information and the potential of spatial data modality to offer com-
plementary information. Altogether, these findings highlight that
different feature types are useful for exploring disease mechanisms
in different datasets and even in different subsets of the same data-
set, as seen by the pre- and post-treatment melanoma datasets and

the lung disease dataset subset by cell types, and argue for the need
for a diverse compendium of feature types for such analyses.

3.4 scFeatures provides interpretable insight into

disease outcomes from scRNA-seq data
To illustrate that scFeatures provides interpretable features for the
understanding of diseases, we applied scFeatures to the ‘UC healthy
versus non-inflamed (Fib)’ dataset (Smillie et al., 2019). This
scRNA-seq dataset compares fibroblast cells of non-inflamed biop-
sies from ulcerative colitis (UC) individuals with biopsies from
healthy individuals. We focused on the two top performing feature
types of ‘gene mean celltype’ and ‘proportion raw’ based on the clas-
sification model performance from the previous section (Fig. 3c) and
discovered different sets of cell types were important to the two
feature types. In particular, for the feature type based on cell type
specific gene expression (denoted by ‘gene mean celltype’), the
fourth-ranked cell type according to feature importance score (see
Section 2) was WNT5Bþ 2 (Fig. 4a). This cell type was ranked as
the 11th cell type in terms of the differences in cell type proportion
(denoted by ‘proportion raw’) (Supplementary Fig. S7), indicating
that while the gene expression was different between disease

Fig. 3. Performance of feature types on patient outcomes. (a) The epithelial, fibroblast and immune subsets of healthy and IPF individuals, where the outcome of interest is clas-

sifying healthy and IPF status. The feature types are ordered by their F1 scores on the epithelial subset. (b) Pre-treatment and post-treatment melanoma patients, where the out-

come of interest is classifying therapy responders and non-responders. The feature types are ordered by the difference of the F1 scores between the two datasets. (c) For each of

the 17 datasets, the squares denote the top five feature types with the highest F1 scores

Fig. 4. Selected features generated on the ‘UC healthy versus non-inflamed (Fib)’

dataset and the ‘triple negative breast cancer’ datasets. (a) Scatterplot of cell type

rank for the feature type ‘cell type proportion’ and ‘gene mean celltype’. (b)

Heatmap showing the clustering result using the nearest neighbour correlation. (c)

Kaplan–Meier plot of individuals stratified by the clustering output (top) and strati-

fied by patient groups defined in the original study (bottom)
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outcomes, the proportion of cell types was similar. In contrast, glia
was ranked first in terms of gene expression and second in terms of
cell type proportion. These two feature types offer different perspec-
tives from the same data and reveal distinct collections of cell types
where one group is more concerned with changes in expression and
the other collection is more concerned with changes in proportion.
It would have been challenging or impossible to accurately disentan-
gle the contributions of cell type percentage and cell specific gene ex-
pression in classical bulk gene expression data. These observations
not only highlight the necessity of single-cell research, but also em-
phasize the importance of evaluating various feature types, as gener-
ated by scFeatures.

3.5 scFeatures uncovers data features associated with

survival outcomes from spatial proteomics
To demonstrate the utility of scFeatures at extracting spatial infor-
mation, we applied scFeatures to a spatial proteomics dataset of
tumours from triple negative breast cancer individuals
(Supplementary Table S1). The question of interest is classifying
tumours based on cellular organization into distinct types that are
associated with patient survival. The original study defined three tu-
mour groups based on mixing scores, where a ‘cold group’ is identi-
fied by low immune infiltrate, a ‘compartmentalised group’ is
identified by compartments formed by almost entirely of either tu-
mour or immune cells, and a ‘mixed group’ is when there is no clear
boundary separating the tumour and immune cells.

The nearest neighbour correlation is a feature type in scFeatures
that was created primarily to capture spatial co-expression patterns.
It computes the correlation of a cell’s protein expression with that of
its nearest neighbour. Therefore, spatial organization of cells, such
as whether tumour cells are next to immune cells would affect the
correlation of protein expression of cells with neighbouring cells. To
construct this feature type, we used scFeatures on selected ‘triple
negative breast cancer’ samples from the dataset and clustered the
resulting features (Fig. 4b). Survival analysis using the Kaplan–
Meier Curve revealed differences between survival outcomes of indi-
viduals from the two clusters (P-value of 0.07, Fig. 4c), compared to
the patient group defined in the original study with P-value of 0.22.
This suggests that the new patient subgroup found by scFeatures has
greater association with the survival outcomes and demonstrates the
ability of the spatial feature category to represent spatial organiza-
tions and uncover novel patterns in the data.

3.6 scFeatures automatically generates an HTML file

that reports features most associated with conditions to

facilitate interpretable discoveries
One of the most commonly investigated questions by researchers is
what features are most associated with disease conditions. We
implemented a function within scFeatures that takes generated fea-
tures as input and automatically performs a series of association
studies for each feature type, producing an HTML report as the out-
put. An example of a comprehensive HTML report can be found on
our Github (https://github.com/SydneyBioX/scFeatures). The
HTML report includes a variety of visual summaries to aid the
downstream interpretation of features. Here, we used the ‘COVID’
dataset to identify features associated with disease severity and illus-
trate a selected panel of visual summaries (Fig. 5). The composition
plot visualized the features from ‘cell type proportion raw’ (Fig. 5a)
and revealed that many cell types underwent drastic change between
mild and severe conditions. The pathway enrichment plots (Fig. 5b)
summarized that, in the rare cell type plasmablasts, genes associated
with severe condition were enriched in immune pathways. Heatmap
is used to visualize the difference between conditions that can be
expressed numerically. The heatmap on feature type ‘CCI’ revealed
that the cell-cell interactions in most pairs of cell types increased in
severe patients compared to mild patients (Fig. 5c). Overall, the

association study and visual summaries provided by the HTML fa-
cilitate a more focused exploration of features for further analysis.

4 Discussion and conclusion

In summary, scFeatures creates a multi-view molecular representa-
tion of individuals by generating tens of thousands of interpretable
features based on single-cell and spot-based spatial data. The innov-
ation and motivation of scFeatures lie in the generation of various
literature motivated and biologically relevant feature vectors for
phenotype disease modelling and disease prediction. We have
designed 17 feature types across six categories based on a broad
range of analytical approaches in literature from cell type specific
gene expression to measures of cell-cell (ligand-receptor co-
expression) interaction and demonstrated that the feature types are
diverse with low correlation amongst them. We illustrated
scFeatures on scRNA-seq data from ulcerative colitis and discovered
a number of features linked with disease characteristics. scFeatures
is also able to extract spatial features from a triple negative breast
cancer proteomics data, resulting in the stratification of tumours
that are more strongly related to survival outcomes than the original
study’s subgroups. Through the automatic report generation that
highlights features most associated with disease, scFeatures supports
ease of feature exploration.

The features vector generated by scFeatures can be used for a
broader set of downstream applications and is not limited to the
ones illustrated in the case studies. For example, given the feature
vectors are generated at the sample level, this provides the opportun-
ity for the exploration of differential patient responses to diseases
due to heterogeneity between individuals. Even amongst those
recorded as responders to treatment, the extent of response and the
change at omics level vary between individuals. The feature vector
can be subjected to latent class analysis, which has typically been
applied on single-cell level to explore cellular diversity (Cheng et al.,
2019; Buettner et al., 2017) and to enable detection of sub-
populations in the cohort, as well as the biology driving patient het-
erogeneity. Given that scFeatures creates a representation for each
patient, this also enables the integrative analysis of patients across
multiple datasets to increase the power of analysis and to expand
the range of questions that can be asked. Batch correction methods,
such as scMerge (Lin et al., 2019) and Harmony (Korsunsky et al.,
2019), may be needed in this case to remove the unwanted technical
variation due to datasets.

The multiple feature types generated by scFeatures can be con-
sidered as multiple views of the data and as such, lead naturally to
multi-view learning. This is one of the many collections of methods
that perform integration across multiple feature classes to enhance
model performance. There exist many approaches for data integra-
tion (Li et al., 2018), from the simple concatenation of features from
all feature types into a single vector as the input, to incorporating
and optimizing the procedure within the model training process.
While current multi-view learning in bioinformatics typically refers
to the use of multiple omics obtained from the same sample
(Nguyen and Wang, 2020), we envisage the generation of multiple
feature types by scFeatures opens new opportunities for multi-view
learning for single omic type.scFeatures is currently designed to per-
form feature engineering for single-cell RNA-seq, spatial proteomics
and spatial transcriptomics data, but the framework is not limited to
these platforms. Taking chromatin accessibility as an example, a
commonly used analysis strategy is assigning genes based on nearby
peaks, thereby converting the peak matrix to a matrix of gene activ-
ity scores similar to gene expressions (Baek and Lee, 2020). Using
this approach, all feature types designed for scRNA-seq are then ap-
plicable to chromatin accessibility data. In future, we plan to extend
scFeatures to other single-cell omics such as single-cell DNA methy-
lation, single-cell chromatin accessibility and single-cell genomics,
leveraging the common analytical approach in these omics and
constructing specific feature types. For chromatin accessibility, the
co-accessibility between pairs of peaks, which is used to predict
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cis-regulatory interactions, can be constructed and stored as a vector
for each sample. The correlation values between transcription fac-
tors (TF) motifs can be readily constructed as another class of fea-
ture representation vector, and can be used to identify the modules
of TF motifs affected in disease state.

With the recent surge of cohort based single-cell studies and the
number of tools for characterizing individual cells, there is an
increased demand for defining samples in a study based on their cel-
lular characterization to guide better understanding of disease and
health. Here, we present scFeatures, a tool that provides a multi-
view extraction of molecular features from single-cell and
spot-based spatial data to characterize cellular features of each indi-
vidual. scFeatures efficiently extracts collections of interpretable fea-
tures from large-scale data and derives biological insights in both
scRNA-seq and spatial data. We envision that scFeatures, a public R
package available at https://github.com/SydneyBioX/scFeatures, will
facilitate better understanding of single-cell data from a sample (i.e.
patient) perspective and the signatures underlying disease conditions
from different angles.
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Fig. 5. Selected visualization summaries from the HTML report. The ‘COVID’ dataset containing mild and severe COVID-19 patients was used to show a subset of visualiza-

tion summaries from the association analysis report. (a) Composition plot of the ‘cell type proportion raw’ features in mild and severe patients. (b) Enriched pathways of the

top 200 features associated with the plasmoblasts of severe patients. Pathway enrichment in the left plot was calculated based on features from ‘cell type specific mean expres-

sion’. Pathway enrichment in the right plot was calculated based on features from ‘cell type specific mean proportion’. Similar pathway terms were grouped by hierarchical

clustering. (c) Heatmap shows the difference in the number of CCI features between mild and severe patients. Positive number indicates more interactions in the mild patients

and negative number indicates more interactions in the severe patients

4752 Y.Cao et al.

https://github.com/SydneyBioX/scFeatures


Code availability

scFeatures is publicly available as an R package at https://github.com/
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