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A B S T R A C T   

The Coronavirus Disease 2019 (COVID-19) still tends to propagate and increase the occurrence of COVID-19 
across the globe. The clinical and epidemiological analyses indicate the link between COVID-19 and Neuro-
logical Diseases (NDs) that drive the progression and severity of NDs. Elucidating why some patients with 
COVID-19 influence the progression of NDs and patients with NDs who are diagnosed with COVID-19 are 
becoming increasingly sick, although others are not is unclear. In this research, we investigated how COVID-19 
and ND interact and the impact of COVID-19 on the severity of NDs by performing transcriptomic analyses of 
COVID-19 and NDs samples by developing the pipeline of bioinformatics and network-based approaches. The 
transcriptomic study identified the contributing genes which are then filtered with cell signaling pathway, gene 
ontology, protein-protein interactions, transcription factor, and microRNA analysis. Identifying hub-proteins 
using protein-protein interactions leads to the identification of a therapeutic strategy. Additionally, the incor-
poration of comorbidity interactions score enhances the identification beyond simply detecting novel biological 
mechanisms involved in the pathophysiology of COVID-19 and its NDs comorbidities. By computing the semantic 
similarity between COVID-19 and each of the ND, we have found gene-based maximum semantic score between 
COVID-19 and Parkinson’s disease, the minimum semantic score between COVID-19 and Multiple sclerosis. 
Similarly, we have found gene ontology-based maximum semantic score between COVID-19 and Huntington 
disease, minimum semantic score between COVID-19 and Epilepsy disease. Finally, we validated our findings 
using gold-standard databases and literature searches to determine which genes and pathways had previously 
been associated with COVID-19 and NDs.   

1. Introduction 

Due to severe acute respiratory syndromes coronavirus 2 (SARS-CoV- 
2), coronavirus disease 2019 (COVID-19) has become the major health 
issue and the prevalence of COVID-19 is still quickly expanding across 
the globe [1]. By 21 August 2021, the worldwide World Health Orga-
nisation (WHO) has recorded a total of 211,855,573 incidents of 

laboratory-confirmed COVID-19 infection with 4,433,151 deaths [2]. 
Because of the rapid development of COVID-19 and the high death rate, 
it is completely becoming an important research issue to investigate 
potential risk factors influencing the development of COVID-19 and its 
comorbidities. COVID-19 may have moderate to extreme effects but 
SARS-CoV-2 compromised patients usually suffer from fever, dry cough, 
exhaustion, and lower dysfunctional respiratory systems, including 
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elevated rates of pneumonia and acute respiratory distress syndrome 
(ARDS) [3]. Besides this, a quickly accumulating series of clinical trials, 
however, reported common COVID-19 symptoms that include neuro-
logical indications, including headaches, anosmia, nausea, dysgeusia, 
respiratory center injury, and brain infarction [4]. Individuals of all ages 
are still at increased risk for serious illness whether they are suffering 
from underlying chronic medical problems or neurological comorbidity 
and immunodeficiency disorders [5]. Thus, comorbidity sufferers are 
more susceptible to the extreme type of high mortality. 

The literature review indicates that patients with neurological 
comorbidities are more likely than the general people to be affected by 
COVID-19 to cause substantial morbidity [5]. On the contrary, recent 
findings have highlighted that COVID-19 has played role in the devel-
opment of neurological diseases (NDs) [6] which encourages us to 
explore the associations between COVID-19 and central nervous system 
(CNS) disorders. Several recent studies show that COVID-19 and CNS 
disorders, commonly known as Neurological diseases (NDs) such as 
Alzheimer’s disease, Amyotrophic lateral sclerosis, Epilepsy disease, 
Huntington’s disease, Multiple sclerosis, and Parkinson’s disease are 
linked to each other [7]. 

Alzheimer’s disease (AD) is a progressive, irreversible brain disease 
that affects memory and thinking. AD is the most common type of de-
mentia in older people. The most prominent early sign of AD is memory 
decline [8]. With the development of the disease, symptoms can include 
verbal impairment, disorientation (including quick loss) mood swings, 
lack of confidence, unmanaged self-care, and behavioural difficulties 
[9]. Epilepsy disease (ED) is a chronic, non-communicable disease of the 
brain that impacts around 50 million people worldwide. ED is charac-
terized by regular and visible seizures involving part of the body, or 
whole-body, which are frequently accompanied by unconsciousness and 
loss of control of the bowels or bladder [10]. The disorder called 
Amyotrophic lateral sclerosis (ALS) is a progressive illness of the ner-
vous system that affects the brain and spinal cord which causes a loss of 
muscle control. ALS is also known as Lou Gehrig’s disease. ALS begins 
with tweaking muscles and weakness in the limb or with a slurred 
speech which influences the muscle’s function in walking, chatting, 
eating, and breathing [11]. Huntington’s disease (HD) is a rare disease 
that causes nerve cell degeneration in the brain. HD has dramatic con-
sequences on the mental capacity of the affected person, influencing 
speech, visual experience, and psychiatric symptoms. Symptoms of HD 
can develop at any age but can occur more at the age of 30–40. This 
disease is called juvenile HD if it happens up to the age of 20 [12]. 
Multiple sclerosis (MS) is a disorder that can damage the brain and 
spinal cord and which create a variety of possible symptoms including 
problems of vision, leg or arm coordination, sensations, and balance. 
Signs and indicators of MS are somewhat different and depend on the 
severity of nerve damage. Although certain people with MS discover 
opportunities to adjust their disability, some undergo extended stretches 
of rehabilitation without new symptoms [13]. Parkinson’s disease (PD) 
is a chronic disorder induced by the degeneration of nerve cells in the 
region of the brain called substantia nigra [14]. These nerve cells die or 
become damaged, thus losing their ability to produce a large chemical 
called dopamine. Studies have shown that individuals diagnosed with 
PD have 80% or more dopaminergic cell death in the substantia nigra 
[15]. 

Usually, the central nervous system is defended against viral inva-
sion by a very sophisticated brain barrier system. The blood-brain bar-
rier, the blood-cerebrospinal fluid barrier, and the brain cerebrospinal 
fluid barrier are the three components of the brain barrier. Evidence 
indicates that SARS-CoV-2 may impact not only the breathing system 
but also the central nervous system. There is little evidence of the po-
tential mechanisms by which SARS-CoV-2 invaded the central nervous 
system during COVID-19. (1) Infecting endothelial cells through 
angiotensin converting enzyme 2 (ACE2), SARS-CoV-2, therefore, pen-
etrates the blood-brain barrier directly. (2) The olfactory nerve allows 
SARS-CoV-2 to reach the central nervous system through synaptic links. 

(3) SARS-CoV-2 causes inflammation in the brain, allowing it to pene-
trate the central nervous system and damage the brain barrier system 
[16]. COVID-19 may accelerate the progression of neurodegenerative 
diseases, though the mechanisms remain unclear and may vary among 
different neurodegenerative diseases, the impact of COVID-19 on ND 
seems to be significant. Infection with SARS-CoV-2 causes neurode-
generative alterations in cells that include cell death, hyper-
phosphorylation, and displacement of the tau protein. These changes 
have been found in AD [17]. COVID-19 may accelerate the progression 
of neurodegenerative diseases, though the mechanisms remain unclear 
and may vary among different neurodegenerative diseases, the impact of 
COVID-19 on ALS patients seems to be significant. Clinically, ALS dis-
plays muscle weakness, spasm, respiratory failure, and communication 
disorders. Recently, results of an internet-based questionnaire including 
self-perceived anxiety, depression, motor worsening, and changes in 
clinical care indicate that COVID-19 exert a significant impact on ALS 
patients. So far, accurate data on SARS-CoV-2 infection in ALS patients 
are not available. Thereby, based on the impact of COVID-19 on clinical 
care, diagnosis and related experimental studies of ALS, the indirect 
impact of COVID-19 on ALS patients seems to be significant [18]. It is 
found that the neurological symptoms associated with COVID-19 
infection in ED are mostly caused by either the entrance of 
pro-inflammatory cytokines into the brain system or the generation of 
pro-inflammatory cytokines by microglia and astrocytes. 
Pro-inflammatory cytokines may damage the blood-brain barrier, raise 
glutamate and aspartate levels while decreasing GABA levels, decrease 
ion channel function, and ultimately, excessive cytokines can induce ED 
[19]. It has been suggested that patients with comorbidities are more 
likely to have complications. Due to difficulties of swallowing and 
emptying secretions from the lungs, people with HD may be at a greater 
risk of COVID-19 infection. Patients with HD who are symptomatic may 
also be at an increased risk of developing pneumonia as a consequence 
of being bedridden and undernourished [20,21]. B-cell depleting treat-
ments such as rituximab and ocrelizumab has been shown to be very 
effective in the treatment of MS. They, however, eliminate a significant 
proportion (or all) of circulating B cells, damage the humoral arm of the 
immune system, and raise the chance of infection. As a result, in-
dividuals with MS who are treated with B-cell depleting medications 
may be more susceptible to COVID-19. Indeed, respiratory tract in-
fections are more prevalent in people with MS, and their prevalence rises 
with age and male sex. Hospitalizations and mortality from influenza are 
also much greater in persons with MS [22]. The systemic inflammatory 
response caused by SARS-CoV-2 seems to be adequate to raise concerns 
about its possible link to neuroinflammation. The neuroinflammation 
associated with COVID-19 may play a role in the development of neu-
rodegeneration in the future. Taking all of this evidence into consider-
ation, we think that there is a possible link between SARS-CoV-2 and the 
development of PD. According to a new study, infections with viruses 
and bacteria may raise the chance of getting PD [23]. 

Although there is compelling evidence that there are pathological 
and clinically relevant associations between COVID-19 and a variety of 
NDs, but the association has not been extensively investigated. As a 
consequence, the nature of these connections is poorly understood. Due 
to the complexity of the etiology of COVID-19 and NDs, and the fact that 
their risk factors overlap considerably, their biological foundation, as 
well as the molecular processes that underpin this connection are still 
not fully understood. As a result, the actual effect of the COVID-19 on the 
progression of neurological comorbidities remains unclear. Addition-
ally, there is still a lack of bioinformatics studies to examine the 
connection between COVID-19 and NDs. So, the goal of this research 
was to develop a pipeline based on bioinformatics approaches for 
identifying possible connections between COVID-19 and NDs. Under-
standing the nature of these connections may provide significant in-
sights into the molecular mechanisms that underpin these diseases, and 
eventually lead to the identification of possible targets for therapeutic 
intervention that could lead to the development of disease-modifying 
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pharmaceuticals (drugs). We have made use of genomics, omics, mo-
lecular, miRNA data, and other public resources to grasp the patho-
physiological mechanics involved in the associations that render ND 
more severe. We explored the functional links between COVID-19 and its 
ND comorbidities by which they affect each other’s development and 
progression by influencing molecular biomarkers to facilitate the iden-
tification of therapeutic targets. Additionally, the incorporation of co-
morbidity interactions score will enhance the identification beyond 
simply identifying novel biological mechanisms involved in each dis-
ease. Finally, we verified the findings using gold-standard empirically 
validated databases, including dbGaP, OMIM, and OMIM Expanded, as 
well as the literature. 

2. Materials and methods 

We proposed the pipeline incorporating bioinformatics and the 
network-based approach. Using the R programming language, the pro-
posed integrated pipeline of bioinformatics approach is developed, and 
it may be found at the following link: https://github.com/Habib 
UCAS/COVID-93_NDs. In this study, following Bioconductor packages 
[24]; we used GEOquery for downloading GEO datasets and performing 
expression set class transformation [25]; limma was used for differen-
tially expressed gene identification from microarray data [26]; gene 
filter was used for filtering genes [27]; and topGO was used for creating 
a topology of DAG and finding the significant GO terms [28]. GOSemSim 
is used to measure the closeness between selected diseases [29]; and 
Enrichr is used to analyze the pathways that are Enriched [30]. The main 
steps of the proposed methodologies are described as shown in Fig. 1 and 
summarized in Algorithm. 

2.1. Data collection 

Following the comprehensive survey of epidemiological and clinical 
studies on the development of COVID-19 and its comorbidity, we 
observed that COVID-19 is related to different neurological disorders, 
from which we choose for our studies were AD, ALS, ED, HD, MS, and 
PD. In this study, we have used data from the public repositories [31, 
32]. RNA-seq and microarray datasets were collected depending on 
certain parameters for each disease. When the examined sample settings 
are too small, control and case samples are missing, datasets with 
samples repeated, unforeseen formatting and non-human-set data are 
rejected due to lack of statistical significance. The selected dataset de-
tails are shown in Table 1. 

2.2. Data preprocessing 

Gene expression analysis by microarray and RNA-seq is a responsive 
tool that can identify differentially expressed genes in human tissues 
influenced by disorders. The gene expression analysis based on Micro-
array and RNA-seq datasets is a sensitive method to investigate the 
global expression of genes and to identify potential molecular pathways 
triggered by disorders [57]. We investigated such data to identify bio-
markers relevant to the progression of COVID-19 and its ND comor-
bidity. All of these transcriptomic datasets were obtained from 
comparing the transcriptome profile of diseased tissues against controls. 
As the data produced are from various sources and types of cells, we 
have performed preprocessing our data via the transformation of the 
Z-score to avoid complications [58]. 

2.3. Gene set enrichment analysis 

The Gene Set Enrichment (GSE) test is a technique for interpreting 
gene expression datasets in order to classify a set of genes with altered 
expression levels. These genes may be related to the phenotypes of 
disease [59]. GSE test uses a group of genes that are linked to a certain 
pathway. It investigates the expression level of genes obtained by DNA 

microarray and next-generation sequencing of various environments or 
disease states. The collection of differentially expressed genes (DEGs) is 
considered as up-regulated and down-regulated with the phenotypical 
variations [60]. 

2.4. Pathway enrichment analysis 

The molecular pathway involves a series of actions within human 
cell molecules that trigger a certain product or cell modification. This 
mechanism, no matter how short, can cause the assembly of new mol-
ecules [61]. In addition, a pathway may also activate or disable genes. 
To obtain understanding of the molecular pathways of COVID-19 that 
correlate with neurological comorbidity, we used KEGG [62]; WiKi [63]; 
BioCarta [64] and Reactome [65] pathways databases to classify 
signaling pathways enriched by DEGs [66]. 

2.5. Ontology enrichment 

Gene ontology (GO) is a conceptual model that includes new 
knowledge on processes or mechanisms that affect disease in a mean-
ingful way. GO databases are an ongoing effort to provide ever more 
detailed and up-to-date standardized data on biological systems [67]. 
There are three fields for GO: cellular function, molecular function, and 
biological process (BP). We focus our research on the biological process 
area. 

2.6. Semantic similarity computation 

Gene Ontology utilizes directed acyclic graphs (DAGs) to determine 
what a gene product does. Any node in a directed acyclic graph (DAGs) 
represents one GO term, and two connected GO terms are linked by 
separate edge types suggesting different relationships. We have used the 
semantic similarity approach to determine genes and GO proximity of 
the selected diseases. Semantic similarity is a tool used in ontology to 
calculate correlation in order to approximate the proximity between 
terms of the selected diseases [68]. Semantic similarity computation is a 
graph-based method that uses directed acyclic graphs of terms (genes, 
GO). The semantics of these terms are determined by their position in 
the DAG, as well as the semantic contribution factor of all of their 
ancestor terms. 

A GO term T can formally be described as a graph DAGP = (T, CT, ET), 
where CT is the collection of all GO terms in DAGT as ancestral terms of T 
along with T in the GO graph itself, and ET is the subset of associated 
edges linking the GO terms in DAGT. The semantic meaning of the GO 
term T is numerically measured as, 
{

ST(T) = 1 t = T
ST(t) = ​ max{we ∗ ST(t

′

)|t
′

∈ children ​ of(t)} t ∕= T (1)  

where we is the semantic factor for edge e in (e ∈ CT) and generic term t 
with its child term t′. Depending on the form of relationship, the se-
mantic contribution is between 0 and 1. The overall semanticized 
meaning is measured numerically as 

SV(T) =
∑

tεCT

ST(t) (2) 

if the term M and N have the form DAGM = (M, CT, EM) and DAGN =

(N, CT, EN) respectively, then the semantic correspondence between M 
and N is 

sim(M,N) =

∑

t∈TM∩TN

(SM(t) + SN(t))

SV(M) + SV(N)
(3)  

If the first set of terms with length k is M1 = {t11, t12,…t1k} and the 
second set of terms with length n is N1 = {t21, t22,…t2n}. Then, we used 
the best matching average (BMA) for two sets of terms to measure the 
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Fig. 1. A flow diagram describing the pipeline of the methodologies utilized in this study.  
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semantic similarity [69] as follows. 

simBMA(M1,N1) =

∑k

i=1
max1≤j≤n

{
t1i, t2j

}
+
∑n

j=1
max1≤i≤k

{
t1i, t2j

}

k + n
⋯

(4)  

The indices are i and j on the terms set M and N respectively. 

2.7. Protein-protein interactions (PPIs) analysis and hub protein 
identification 

The common genes between COVID-19 and its several neurological 
comorbidities have been used for studying the strongest possible asso-
ciations among them in the form of a PPI network. DEG-encoded pro-
teins and their associations with other proteins are computed by 
Network Analyst [70] from the STRING database [71] and an overall 
score > 0.5 (corresponding to highest confidence) is used to establish the 
preferred threshold for PPI network construction. The topological 

analysis was conducted using the visualization program Cytoscape [72]; 
to detect hub proteins using degree matrices from PPI networks. Hub 
proteins play a significant role in signal transduction during the devel-
opment of COVID-19 and neurological disorders, and their identification 
may lead to new therapeutic targets. 

2.8. Transcription Factors-MicroRNA interactions analysis 

We also carried out an interaction study of DEGs-transcription Fac-
tors (TFs) and DEGs-microRNAs (miRNAs) to identify the controlling 
biomolecules (TFs and miRNAs) that regulate DEGs of interest. We also 
used the JASPAR database to examine the gene-to-transcription factor 
(TF) interactions [73]. The identity of microRNA (miRNAs) implicated 
in the development and progression of COVID-19 and its neurological 
comorbidities is little known. In this section, we also identified a set of 
miRNAs that are dysregulated in COVID-19, and are also significantly 
deregulated in its neurological comorbidities from TarBase database 
[74] and miRTarBase [75] database that may be used for diagnostic, 
prognostic, and therapeutic purposes. 

Table 1 
Statistical summary of the datasets utilized in this study.  

Dataset Tissue Case 
Samples 

Control 
Samples 

DEGs(Pval =
0.05) 

DEGs (Pval = 0.05logFC = abs 
(1)) 

Raw 
GSEA 

Fisher 
GSEA 

COVID-19 
[33] 

Peripheral blood mononuclear cells 3 3 4453 2657 3627 446 

GSE1297 [34] Hippocampal CA1 tissue 22 9 2313 238 6094 3998 
GSE12685 

[35] 
Frontal Cortex 6 8 3251 149 6094 3244 

GSE28146 
[35] 

Hippocampal CA1 tissue 22 8 3405 1107 6530 6206 

GSE53695 
[36] 

Human Brain 6 4 701 678 5956 950 

GSE53697 
[36] 

Human Brain 9 8 678 312 5269 794 

GSE833 [37] Spinal cord gray matter 7 4 733 489 4897 4895 
GSE4595 [38] Motor Cortex 11 9 632 431 6544 5855 
GSE19332 

[39] 
Cervical Spinal cord 3 7 4564 2644 6530 6528 

GSE52672 
[40] 

Spinal cord homogenate 10 10 163 80 4643 1464 

GSE68605 
[41] 

motor neurons 8 3 3171 1973 6530 6492 

GSE32534 
[42] 

Pertitumoral neocortex tissue 5 5 2048 451 6530 5174 

GSE64810 
[43] 

Post-mortem Brain 49 20 436 297 5230 748 

GSE77558 
[44] 

iPSCs derived GABA MS-like neurons 6 6 4155 293 6687 4170 

GSE79666 
[45] 

Motor cortex 7 7 1687 607 8568 1884 

GSE97100 
[46] 

iPSC-derived brain microvascular 
endothelial cells 

8 4 2137 757 9434 2204 

GSE32915 
[47] 

White matter brain tissue 12 4 517 202 6560 6497 

GSE38010 
[48] 

Brain Lesion 5 2 1996 1996 8381 1890 

GSE52139 
[49] 

Spinal Cord (periplaque regions) 8 8 2703 1501 6405 6327 

GSE7621 [50] Postmortem human brain 16 9 5949 885 6530 5712 
GSE19587 

[51] 
Post-mortem Brain 6 5 4150 2453 6094 6071 

GSE20141 
[52] 

laser-dissected SNpc neurons 10 8 7094 3614 6530 6530 

GSE20333 
[53] 

Post-mortem human brains 6 6 684 406 5570 5164 

GSE28894 
[54] 

Parkinson’s disease brain 55 59 3943 265 6510 4710 

GSE42966 
[55] 

post-mortem substantia nigra 9 6 950 512 6560 6323 

GSE68719 
[56] 

Post-mortem Brain 29 44 664 227 6140 1020  
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Algorithm. An algorithm written in pseudocode 3. Results 

3.1. Statistical summary and diseasome network 

Genetic links between COVID-19 and neurological disorders are 
revealed by gene expression profiles in RNA-seq and microarray data. 
For each dataset, we found the differentially expressed genes (DEGs) 
with the criterion of providing a p-value of less than 0.05 and an abso-
lute log fold value (logFC) of 1. For all selected studies, the statistical 
overview and dataset details are shown in Table 1.The p-value is a 
likelihood measure in Table 1 for choosing differentially expressed 
genes from a pre-specified degree of significance (cutoff threshold). So, 
taking a cut-off of 0.05 implies we have a 5% risk of making an incorrect 
decision. With a cutoff of 0.05, the numbers in the fifth column in 
Table 1 indicate how many differentially expressed genes there were. 
Log2 fold change (logFC) is a log-ratio between gene expression levels, 
which is used for calculating differences in expression levels in two 
distinct conditions such as control vs case. In the sixth column of Table 1, 
we documented which genes were differentially expressed at a p-value 
of less than 0.05 and an absolute log fold value (logFC) of 1. We carried 
out gene-GO maps using the biological process (BP) gene ontology fields 
for DEGs. For GO enrichment research, the first step of the GO enrich-
ment analysis is to locate raw GO terms. The number of annotated gene 
ontology (GO) terms from differentially expressed genes is provided by 
the seventh column in Table 1. We performed Fisher’s exact test after 
mapping the gene to a functional gene ontology hierarchy to provide 
statistically significant GO term lists [28].We conducted a classical 
enrichment test by checking whether genes involved in GO processes 
were overrepresented in the genes that were differentially expressed. 
Eight columns in Table 1 represents the number of important GO terms 
enriched from the Fisher exact test. We have also done a comparison 
study to determine which of the DEGs are shared between COVID and 
neurological diseases. Figs. 2 and 3 present the number of shared DEGs 
between the COVID-19 and NDs. Our methodologies showed 52 DEGs 
shared between COVID-19 and AD, and 38 of which are upregulated and 
14 are downregulated. COVID-19 has 76 DEGs shared with ALS, 55 of 
which have been upregulated, and 21 genes are downregulated. 
COVID-19 and ED share eight DEGs, four of which are upregulated and 
four of which are downregulated.Similarly, the 73 DEGs commons be-
tween HD and COVID-19, including 49 upregulated and 24 down-
regulated genes, were identified. 60 genes were common between MS 
and COVID-19, and 25 genes were upregulated and 25 genes were 
downregulated. 91 genes that are common to PD and COVID-19, among 
these, 72 are upregulated and 19 are downregulated. In order to 
represent significant linkages between COVID-19 and NDs, upregulated 
and downregulated disease-gene association networks were constructed 
using Cytoscape as seen in Figs. 2 and 3 and we note, as compared to 
other conditions, that COVID-19 has the highest number of shared DEGs 
with PD. We have provided the abbreviations of all common genes 
shown in the network as supplementary file. 

3.2. Identification of significant signalling pathways 

We used the DEGs discovered from each neurological disorder and 
COVID-19 in this enrichment study to discover the cell signaling path-
ways by utilizing KEGG, Wiki, BioCarta, and Reactome databases. Our 
identified cellular mechanisms were common to both COVID-19 and 
each of the neurological disorders that have been chosen.The pathways 
from these databases have been combined and a total of 72 pathways 
were found between COVID-19 and AD, among which were top 4 
pathways from KEGG, top 4 from Wiki, top 4 from BioCarta, and top 4 
from Reactome is enriched and statistically significant. Similarly, a total 
of 51 pathways were found between COVID-19 and ALS among which 
were the top 4 pathways from KEGG, top 4 from Wiki, top 4 from Bio-
Carta, and top 4 from Reactome. A total of 27 pathways were found 
between COVID-19 and ED among which were the top 4 pathways from 
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KEGG, top 4 from Wiki, 2 from BioCarta, and top 4 from Reactome. A 
total of 45 pathways were found between COVID-19 and HD among 
which were the top 4 pathways from KEGG, top 4 from Wiki, 2 from 
BioCarta, and top 4 from Reactome. A total of 32 pathways were found 
between COVID-19 and MS among which were 2 pathways from KEGG, 
top 4 from Wiki, top 2 from BioCarta, and top 4 from Reactome. A total 
of 56 pathways were found between COVID-19 and PD among which 
were top 4 pathways from KEGG, top 4 from Wiki, top 4 from BioCarta, 
and top 4 from Reactome are shown in Fig. 4 and the remaining others 
pathways are shown as a supplementary file. 

The data obtained from Fig. 4 indicates the Glycolysis/Gluconeo-
genesis, HIF-1 signaling, Endocytosis, Endocrine and other factor- 
regulated calcium reabsorption, Natural killer cell-mediated cytotox-
icity, Staphylococcus aureus infection, Complement and coagulation 
cascades, Mineral absorption, Tryptophan metabolism, Histidine meta-
bolism, Arginine and proline metabolism, Cell cycle, Sphingolipid 
signaling, Osteoclast differentiation, Phospholipase D signaling, NOD- 
like receptor signaling, and C-type lectin receptor signaling pathway 
interaction with the number of common genes according to the database 

of the KEGG pathway. 
Meanwhile, Wiki Pathways revealed the Photodynamic therapy- 

induced HIF-1 survival signaling, Type II interferon signaling (IFNG), 
Glycolysis and Gluconeogenesis, Complement Activation, TYROBP 
Causal Network, Mammary gland development, Oxidative Damage, 
Apoptosis-related network due to altered Notch3 in ovarian cancer, 
Complement and Coagulation Cascades, MET in type 1 papillary renal 
cell carcinoma, Association between Physico-Chemical Features and 
Toxicity Associated Pathways, Prostaglandin Synthesis and Regulation, 
Oxidative Stress, Zinc homeostasis, Benzo(a) pyrene metabolism, Cell 
Cycle, Splicing factor NOVA regulated synaptic proteins, Regulation of 
Microtubule Cytoskeleton and Nuclear Receptors Meta-Pathway inter-
action with the number of common genes according to the database of 
the WiKi pathway. 

Results from the Biocarta pathway produce the IFN gamma signaling 
pathway, Metabolism of Anandamide, an Endogenous Cannabinoid, 
SREBP control of lipid synthesis, Classical Complement Pathway, Stat3 
Signaling Pathway, Lectin Induced Complement Pathway, Inhibition of 
Matrix Metalloproteinases, Alternative Complement Pathway, METS 

Fig. 2. Genes-Disease Association network (diseasome) of the upregulated genes common between COVID-19 and NDs. Circular node legends are used for genes and 
hexagonal node legends for diseases. 
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affect on Macrophage Differentiation, Keratinocyte Differentiation, BTG 
family proteins, Granzyme A mediated Apoptosis Pathway, and cell 
cycle regulation, Regulation of cell cycle progression by Plk3, Cell Cycle: 
G2/M Checkpoint, Neuroregulin receptor degradation protein-1 Con-
trols ErbB3 receptor recycling, FOSB gene expression and drug abuse, 
D4-GDI Signaling Pathway, cdc25 and chk1 Regulatory Pathway in 
response to DNA damage, and BRCA1-dependent Ub-ligase activity 
interaction with the number of common genes according to the database 
of the Biocarta pathway. 

Results from the Reactome pathway include the Metabolism of car-
bohydrates, Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell, Glucose metabolism, Glycolysis, Metabolism, 
Translocation of ZAP-70 to Immunological synapse, Innate Immune 
System, Initial triggering of complement, Scavenging by Class A Re-
ceptors, Phosphorylation of CD3 and TCR zeta chains, PD-1 signaling, 
Regulation of Complement cascade, Response to metal ions, Metal-
lothioneins bind metals, Arachidonic acid metabolism, Dissolution of 
Fibrin Clot, Chk1/Chk2(Cds1) mediated inactivation of Cyclin B: Cdk1 
complex, BMAL1: CLOCK, NPAS2 activates circadian gene expression, 

TP53 Regulates Transcription of Cell Cycle Genes, GRB7 events in 
ERBB2 signaling, Inflammasomes, The NLRP3 inflammasome, and NLR 
signaling pathways interact with the number of common genes ac-
cording to the database of the Reactome pathway. 

3.3. GO enrichment and GO terms tree 

We conducted a GO enrichment analysis for all common DEGs 
among COVID-19 and NDs to discover common ontological pathways. 
Through assessing the biological process type of gene ontology, we have 
identified the pathways of gene ontology. During the study of GO terms, 
a total of 105 important GO terms were found to be substantially 
enriched and are summarized in Fig. 5. Fig. 5 demonstrates the most 
important ontological pathways dependent on the metric of the p-value. 
Our pipeline reveals the top 19 GO terms between COVID-19 and AD, 
the top 20 terms between COVID-19 and ALS, 7 terms between COVID- 
19 and ED, the top 20 terms between COVID-19 and HD, 17 terms be-
tween COVID-19 and MS, and the top 20 terms between COVID-19 and 
PD based on the p-value for the gene ontology group of biological 

Fig. 3. Genes-Disease Association network (diseasome) of the downregulated genes common between COVID-19 and NDs. Circular node legends are used for genes 
and hexagonal node legends for diseases. 
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Fig. 4. Top cell signalling pathways between COVID-19 and NDs. Pathways discovered from DEGs were a) pathways linked between COVID-19 and AD b) pathways 
linked between COVID-19 and ALS c) pathways linked between COVID-19 and ED d) pathways linked between COVID-19 and HD e) pathways linked between 
COVID-19 and MS and f) pathways linked between COVID-19 and PD. 

M.H. Rahman et al.                                                                                                                                                                                                                            



Computers in Biology and Medicine 138 (2021) 104859

10

processes shown in Fig. 5. Direct Acyclic Graphs (DAG) are used to 
define ontologies, in which terms are described as nodes and links as 
edges. Fig. 6 illustrates how the most important five significant GO terms 

are spread over the GO graph hierarchy (GO: 0051239: regulation of the 
multicellular organismal process, GO: 0048584: positive regulation of 
response to stimulus, GO: 0048731: system development, GO: 

Fig. 4. (continued). 
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Fig. 5. Top gene ontological pathways between COVID-19 and NDs. Ontological Pathways discovered from DEGs were a) ontologies linked between COVID-19 and 
AD b) ontologies linked between COVID-19 and ALS c) ontologies linked between COVID-19 and ED d) ontologies linked between COVID-19 and HD e) ontologies 
linked between COVID-19 and MS and f) ontologies linked between COVID-19 and PD, respectively. 
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01048518: positive regulation of the biological process, GO: 0032501: 
multicellular organismal process) of the dataset of GSE64810. For GO 
enrichment study and GO graph structure, we used Fisher’s exact test 

statistics and classical algorithms. Based on p-values, we identified the 
most significant GO terms (top 5) using a classical enrichment test. The 
DAG (Directed Acyclic Graph) shows the most important nodes as 

Fig. 5. (continued). 
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rectangles. For each node in the graph, the first line is GOID, followed by 
GO term, p-value, and finally, the ratio of the total number of significant 
genes to the total number of genes annotated for each GO. Black arrows 
in the DAG demonstrate is-a relationship. 

3.4. Computations of gene and GO semantic similarity 

Measures of semantic similarity quantify the degree of similarity or 
correlation between two disease groups, such as COVID-19 and NDs. A 
computation of semantic similarity returns a numerical value that rep-
resents the closeness between COVID-19 and NDs in context. We carried 
out semantic similarity measures in two groups: semantic similarity in 
terms of DEGs and semantic similarity in terms of GO between COVID- 
19 and NDs. Concerning DEGs, measures of semantic similarity are used 
to quantify the similarities between genes each with a collection of GO 
terms annotated. The functional similarity between genes is important 
and is normally determined by semantic similarities between the GO 
terms annotated for any gene. With regard to GO, semantic similarity 

tests are used for the purpose of measuring the similarity between two 
sets of terms representing two entities. 

Fig. 7 depicts the results of semantic similarity in terms of DEGs 
between pathologies. In terms of semantic value, we notice that COVID- 
19 is linked to all selected neurological comorbidities. Fig. 8 displays the 
conceptual similarity matrix of GO terms. Based on our semantic simi-
larity value, it seems that the COVID-19 dataset has a notable correlation 
with many other neurological databases and well links together with all 
neurological diseases. We have used so many datasets to reduce biases 
and to maximize the power of the proposed approach. By computing 
semantic similarity between COVID-19 and each of the ND, we have 
observed a maximum semantic score of 0.87 between COVID and AD, 
0.87 between COVID-19 and ALS, 0.86 between COVID-19 and ED, 0.86 
between COVID-19 and HD, 0.84 between COVID-19 and MS and 0.9 
between COVID-19 and PD. Among them, we observed that the semantic 
score between COVID-19 and PD is maximum and the semantic score 
between COVID-19 and MS is minimum. Similarly, we have found a 
gene ontology based maximum semantic score between COVID and HD 

Fig. 6. Direct Acyclic Graphs representing the ontologies for the dataset of GSE64810. The most important terms are represented by red nodes, while the less 
significant terms are represented by elliptical nodes. 
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Fig. 7. Results of semantic correlation in terms of DEGs between COVID-19 and NDs. The datasets of the matrix legend were the disease abbreviation, the datset order, and the dataset accession numbers.  
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Fig. 8. Results of semantic correlation in terms of GO between COVID-19 and NDs. The datasets of the matrix legend were the disease abbreviation, the datset order, and the dataset accession numbers.  
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and a minimum semantic score between COVID and ED. 

3.5. Study of protein-protein interactions to identify functional networks 

We investigated the association between diseases by looking at 
protein-protein interactions. For this, the common DEGs between 
COVID-19 and neurological disorders were used to construct the 
protein-protein interaction (PPI) network in STRING using Network 
Analyst. Fig. 9 illustrates the participation and interaction of proteins in 
the PPI network of the signature genes. In the PPI network, proteins are 
depicted as nodes connected by undirected edges, suggesting the asso-
ciation between two proteins. Moreover, the PPIs network is used for 
hub protein detection that may help to identify drug molecules for these 
comorbidities of the disease. 

The hub protein of the PPI network is identified using the Cytoscape 
plugin, as seen in Fig. 9. The hub proteins were sorted according to their 
degree value 3, showing the number of proteins interactions within the 
PPI network. Based on the findings of the topological study, we identi-
fied the hub proteins (COPB1, AP2S1, COPE, CYBB, JAK2, GATA3, 
COPA, COX5A, SIRPA, ANK1, HGF) between COVID-19 and AD. Simi-
larly, FN1, ITGB2, C1QB, GZMB, TIMP1, LGALS3, HGF, LAMC1, C1QC, 
SLC2A5, MCEMP1, CAMP between COVID-19 and ALS. JUN, MAPK1, 
C3, ETS1, PAX5, CFH between COVID-19 and ED. ANXA2, LYZ, LGALS1, 
CLEC4D, CLEC12A, IL18, FRMPD3, IL1R2, MARCO between COVID-19 
and HD. CDK2, CCT7, CCNB1, CCT8, CCT5, CCT6A, FGD6 between 

COVID-19 and MS. BRCA1, CCNA2, NCAPG, BUB1, MKI67, KIFC1, 
NEK2, HIST1H2BO, KIF14, H2AFY, HFE, HIST1H4H between COVID-19 
and PD. The abbreviations of all hub proteins are provided as supple-
mentary file. 

3.6. Identification of controlling biomolecules in the transcriptional and 
post transcriptional level 

Little is understood regarding the identity of transcription factors 
(TFs) and microRNA (miRNAs or miRs) implicated in the development 
and progression of NDs owing to comorbidities. In this section, the 
regulatory biomolecule (i.e. TFs and mi RNAs) controlling DEG of in-
terest at the transcriptional and post-transcriptional levels have been 
identified by the Network Analyst from the DEGs-Transcription Factors 
(TFs) and DEGs-MicroRNAs (miRNAs) interaction analysis. To evaluate 
the DEGs-TFs interaction, we used the JASPAR database. We identified a 
set of TFs (FOXC1, NFIC, E2F1, YY1, NFKB1) common between COVID- 
19 and AD. Similarly, JUN, GATA2, CREB1, ANK3, FOXC1, FOXL1 are 
common between COVID-19 and ALS. HINFP, GATA2, STAT3, FOXC1 
are common between COVID-19 and ED. FOXC1, GATA2, YY1, SRF are 
common between COVID-19 and HD. GATA2, E2F1, FOXC1, FOXL1, 
TFAP2A are common between COVID-19 and MS. NFYA, FOXC1, 
FOXL1, GATA2, YY1 are common between COVID-19 and PD using the 
JASPER database. The abbreviations of all TFs are provided as sup-
plementary file. On the other hand, we identified a set of miRNAs such 

Fig. 9. Network of protein-protein interaction to detect hub proteins built from DEGs common between COVID-19 and NDs.  

M.H. Rahman et al.                                                                                                                                                                                                                            



Computers in Biology and Medicine 138 (2021) 104859

17

as hsa-mir-485-5p, hsa-mir-16-5p, hsa-mir-30c-1-3p, hsa-mir-484, hsa- 
mir-335-3p, hsa-mir-6788-3p, hsa-mir-30c-2-3p common between 
COVID-19 and AD. Similarly, hsa-mir-485-5p, hsa-mir-3929, hsa-mir- 
4478, hsa-mir-4419b, hsa-mir-6884-5p, hsa-mir-7977, hsa-mir-26b-5p 
common between COVID-19 and ALS. hsa-mir-450b-5p common be-
tween COVID-19 and ED. hsa-mir-329-3p, hsa-mir-362-3p, hsa-mir- 
8485 common between COVID-19 and HD. hsa-mir-5011-5p, hsa-mir- 
1277-5p, hsa-mir-190a-3p, hsa-mir-32-5p, hsa-mir-92a-3p, hsa-mir- 
8485 common between COVID-19 and MS. hsa-mir-192-5p, hsa-mir- 
215-5p, hsa-mir-16-5p, hsa-mir-186-5p, hsa-mir-124-3p, hsa-mir-155- 
5p common between COVID-19 and PD using miRTarBase databases. 
Figs. 10 and 11 demonstrate the TF-DEG interaction network and 
miRNA-DEG interaction network to reveal TFs and miRNAs. The ame-
thyst color node represents the TFs and the royal blue color node rep-
resents the miRNAs. Node size depends on the degree of the node. The 
degree of a node implies the number of links it has. Higher-degree nodes 
are known as important hubs for the network. 

3.7. Potential targets verifications 

With the use of bioinformatics tools, we have built up a pipeline that 
will help us to discover biomarkers for which COVID-19 has an impact 
on the development of neurological diseases. To our knowledge, the 
impact of COVID-19 on NDs development is not identified by these 
techniques. There are many more cross-checking tests for the given 
findings, but they are excessively time-consuming to be clinically useful. 
A benchmarking study evaluates the results of well-established bioin-
formatics approaches. The goal of benchmarking studies is to thoroughly 
compare the findings of various techniques with gold-standard bench-
mark datasets in order to evaluate the strengths of the results obtained 
from proposed methods. dbGap, OMIM, and OMIM Expanded are often 

used to serve as the gold standard database against which we may 
compare our findings. Our investigations make use of gold-standard 
datasets to serve as a benchmark and well-defined scoring criteria to 
evaluate our findings. To evaluate our findings, we fed the dysregulated 
DEGs (discovered from COVID-19 by our pipeline as a potential candi-
date.) into the online gene set enrichment analysis tool, Enrichr and 
retrieved enriched genes and their disease associations from the three 
gold-standard datasets [30]. We choose only neurological and neuro-
degenerative diseases for the construction of the disease-gene associa-
tion network among many diseases with their enriched genes. We 
identified five of our chosen NDs within the list of NDs gathered from the 
stated databases after many stages of statistical analysis. Using Cyto-
scape [72]; Our enriched disease-gene association network is con-
structed utilizing the list of disorders as in Fig. 12. 

Furthermore, we discovered that the genes we identified in Fig. 12 
have previously been demonstrated to be related to NDs development in 
other research. Specifically, Vo Van Giau et al., Longfei Jia et al. and 
Carlos Cruchaga et al. found APP, PSEN1 and PSEN2 to be associated 
with AD incidence [76–78]; Callista B. Harper et al., Daniel G.Calame 
et al. and Callista B Harper et al. found a link between SV2A and EP [79, 
80]. Lishou Pan et al. showed ANG to be linked to ALS incidence [81]; M 
Allen et al., A Spurkland et al., and Lineu Cesar Werneck et al. shown the 
association of DQA1, DQB1, DRB1, and DPB1 to MS progression 
[82–84]; Victoria S Burchell et al. identified a link between PINK1 and 
PD [85]; Tianwen Huang et al. showed PINK1 and FBXO7 to be asso-
ciated with PD [86]. Our findings are rigorously benchmarked against 
gold-standard data to build confidence in the results we get via our 
computational approach. When we look at the literature to see which of 
our discovered genes have been clinically utilized as biomarkers for 
GBM development. Therefore, it suggested that COVID-19 may have a 
strong interaction with NDs. 

Fig. 10. Results of DEGs-TFs interactions to reveals TFs that regulate DEG of interest common between COVID-19 and NDs at the transcriptional and post- 
transcriptional levels. The amethyst color node represents the TFs. 

M.H. Rahman et al.                                                                                                                                                                                                                            



Computers in Biology and Medicine 138 (2021) 104859

18

4. Discussion 

In this work, we have developed an empirical pipeline of the bioin-
formatics and network-based approaches for comorbidity studies and 
demonstrated its usefulness for mining knowledge from public data-
bases. We explored the genetics of COVID-19 to the progression of 
neurological disorders, where intra- and interconnections between 
genes, proteins, and pathways may provide useful knowledge regarding 
their functions in the development of those diseases. We identified 
which genes were differentially expressed in each dataset and to find 
shared genes, we matched COVID-19’s DEGs to one of the six other 
neurological diseases of concern. We find the greatest number of com-
mon genes between COVID-19 and PD, in comparison, we noticed the 
least number of common genes between COVID-19 and ED, as seen in 

Figs. 2 and 3. We identified important cell signaling mechanisms and 
biological gene ontological pathways using gene set enrichment analysis 
in order to investigate the relationship of COVID-19 with neurological 
diseases. Fig. 4 shows the findings from the pathway databases of KEGG, 
WiKi, Biocarta, and Reactome. Among the identified pathways we 
observed that some pathways have been shown previously to be asso-
ciated with COVID-19 and NDs. The glycolysis/gluconeogenesis and 
hypoxia-inducible factor-1 (HIF-1) signaling pathways are shown to be 
associated with COVID-19 and ND [87,88]. Endocytosis is used by 
SARS-CoV-2 to enter the host cell and induce COVID-19 [89] and the 
alteration in the endocytic pathway is thought to play a key role in the 
pathogenesis of NDs [90]. Type II interferons (IFNs) have been linked to 
higher COVID-19 severity [91] and the development of ND [92]. It is 
proposed that astrocyte SREBPs are involved in neuronal function in the 

Fig. 11. Results of DEGs-miRNAss interactions to reveal miRNAs that regulate DEG of interest common between COVID-19 and NDs at the transcriptional and post- 
transcriptional levels. The royal blue color node represents the miRNAs. 
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central nervous system [93]. The STAT3 pathway plays a novel role in 
neural progenitor cell differentiation. During brain inflammation, 
inhibiting STAT3 inhibits astrogliogenesis and promotes neurogenesis 
[94] and the mechanisms of STAT3 contribute to COVID-19 pathogen-
esis [95]. Impaired glucose metabolism is linked with severe COVID-19 
infection [96] and altered glucose metabolism regulation in the brain is 
connected with neurodegenerative diseases [97]. Bacteremia caused by 
Staphylococcus aureus is linked with a significant death rate in in-
dividuals hospitalized with COVID-19 [98] and has been linked to 
increased neurodegeneration [99]. NK cell-mediated cytotoxicity has 
also been involved in different brain diseases [100] and associated with 
SARS-CoV-2 viral RNA shedding and mortality in COVID-19 patients 
[101]. The pathology of COVID-19 and neurodegenerative diseases is 
affected by oxidative stress [102,103]. The development of lung damage 
in COVID 19 is linked to the activation of conventional and alternative 
complementary pathways [104]. Inhibition of matrix metal-
loproteinases has a role in the development of COVID-19 [105] and the 
neuroinflammatory response in many neurological disorders [106]. 
Variability in innate immune system components is a major factor to the 
COVID-19 caused by SARS-CoV-2 [107]. The innate immune system is a 
critical mechanism that activates microglia, causes neuroinflammation, 
and contributes to clinical issues including neurodegenerative disorders 
[108]. Apoptosis may have a role in neuronal cell death in certain 

diseases and cell death is a factor in many neurological diseases [109] 
and COVID-19 severity is linked to apoptosis-induced T-cell lympho-
penia [110]. A growing number of recent studies show the significance 
of the PD-1/PD-L pathway in CNS diseases [111] and the role of 
PD-1/PD-L1 in COVID-19 [112]. The complement activation plays the 
role to contribute COVID-19 severity [113]. Essential mineral de-
ficiencies or excesses (e.g., iron, zinc, copper, and magnesium) may 
impair brain development and neurophysiology, resulting in neurode-
generative disorders [114] and it has been implicated in the patho-
physiology of COVID-19 [115]. Tryptophan is metabolized mainly via 
the kynurenine pathway, which has significant effects on central ner-
vous system neurons and causes neurodegenerative diseases [116]. The 
tryptophan has a function in the immune response to SARS-CoV-2 and 
possible connection to the clinical severity of the COVID-19 [117]. Zinc 
inadequacy has demonstrated that it affects and increases neurogenesis, 
leading to learning and memory loss. Impaired zinc homeostasis is also 
indicated as a neurodegenerative disease risk factor [118]. Zinc defi-
ciency may exacerbate immune system dysregulation and increases 
vulnerability to infections caused by COVID-19 [119]. Dysregulation of 
the cell cycle has been linked to the development of neurodegenerative 
diseases [120]. The alteration in normal cell cycle regulatory systems 
caused by SARS-CoV-2 may damage cell physiology and may eventually 
lead to COVID-19 diseases [121]. Alterations in arachidonic acid (AA) 

Fig. 12. Gene-disease association network demonstrating the validity of our research. Various NDs are represented by red-colored octagon-shaped nodes. The five 
NDs we chose are represented by violet-colored octagon-shaped nodes, nodes with round-shaped teal-colored indicate genes that are differently expressed for 
COVID-19. 
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metabolism has been linked to neurological and neurodegenerative 
diseases [122] and a potential association between the AA pathway and 
COVID-19 pathophysiology [123]. Sphingolipids are a diverse and 
complicated family of lipids found in the central nervous system (CNS). 
Alterations in sphingolipid metabolism affect the central nervous system 
[124] and are associated with COVID-19 [125]. The neuronal cyto-
skeleton serves a vital role in sustaining neuronal functioning. Dysre-
gulation of neuronal architecture is associated with both injury and 
diseases of the central nervous system [126] and regulation of cyto-
skeleton is associated with COVID-19 [127]. The PI3K/AKT signaling 
pathway is involved in various aspects of COVID-19 [128]. The regu-
latory mechanisms of the PI3K/AKT/mTOR signaling pathway are 
associated with the development of neurodegenerative diseases [129]. 
Severe COVID-19 instances are characterized by a severe inflammatory 
response which may lead to organ failure and patient mortality in the 
long run [130]. Recent inflammasome discoveries have disclosed new 
molecular pathways that contribute to a wide variety of neurological 
diseases [131]. The NLRP3 inflammasome is known as a critical 
component in the development of neuroinflammation which is identi-
fied as a causal factor in a variety of neurological disorders [132] and the 
NLRP3 inflammasome is involved in the pathogenesis of COVID-19 
[133]. 

For the identification of Gene Ontology (GO) terms, the identified 
differentially expressed genes have been used. As per the p-value, GO 
terms were chosen. The GO terms with the relation between COVID-19 
and each ND in the biological process category of gene ontology are 
shown in Fig. 5. For each chosen pathology, Direct Acyclic Graphs 
(DAG) were built for semantic similarities, and Fig. 6 displays the DAG 
for the dataset of GSE64810. The high level of genomic similarity can be 
caused by the analogous pathogens and clinical presentation of the 
disease. Our findings of semantic similarities suggest that COVID-19 is 
highly linked to selected neurological disorders. The association be-
tween protein-protein interactions, TF-DEG, and DEG-miRNA in-
teractions has also been discovered. The subsequent study of the PPI 
network offers a deeper understanding of the fundamental underlying 
processes that drive progression. That is why we integrated the findings 
of a statistical investigation into the pattern of protein interaction to 
create a PPI network across the DEGs we have defined. Topological 
analyses were used to find hub proteins (i.e., hubs) that engage in 
several pathways. From the study of the PPI network, we found 11 
proteins between COVID-19 and AD. Similarly, 12 proteins between 
COVID-19 and ALS. 6 proteins between COVID-19 and ED. 9 proteins 
between COVID-19 and HD. 7 proteins between COVID-19 and MS. 12 
proteins between COVID-19 and PD as shown in Fig. 9. These proteins 
are concerned with the comorbidity of COVID-19 and NDs that could be 
regarded as candidates for prospective drug targets. TFs regulate tran-
scription rates while miRNAs are important players in RNA silencing and 
post-transcriptional modulation of gene expression. In various compli-
cated diseases, these regulatory biomolecules serve as possible bio-
markers. Both are thus essential for understanding the development of 
these diseases. Keeping this part in memory, the behaviors of TF-DEG 
and miRNAs-DEG interactions that are studied for the control of com-
mon differentially expressed genes are visualized in the coregulatory TF- 
miRNA network in Figs. 10 and 11. In this regard, this analysis unveiled 
the connection between common DEGs and their respective TFs and 
regulatory miRNAs. During the development of particular diseases, TFs 
and miRNAs typically attack host proteins to modify their expression. 
The analysis shows 29 TFs and 29 miRNAs as shown in Figs. 10 and 11. 

Identification of the interconnection at the molecular level within a 
collection of pathologies will enrich our understanding of the mecha-
nism of the disease process which would potentially contribute to more 
precise diagnoses and more efficacious therapies. Beyond simply iden-
tifying new biological processes, the usage of semantic correlations in 
terms of genes and GO terms to measure disease comorbidity score 
improves identification and characterization of these disease comor-
bidity. For the disease comorbidity analysis, the number of previous 

methods was developed by analyzing datasets from a particular omics 
experiment or from a clinical trial such as comoR [134]; POGO [135]; 
comorbidity4j [136]; comorbidity [137] and CytoCom [138]. The R 
module comoR analyses relative risk and phi-correlation for identifying 
associated genes and comorbidity prediction pathways where the author 
just looks at gene expression and molecular information [134]. Moni 
et al. developed a ’POGO” R software method to assess disease comor-
bidity using omics, pathology, and ontological data [135] but the ge-
netic influences on diseases were not taken into account in this study. 
Ronzano et al. developed the Comorbidity4j software framework to 
identify a number of comorbidity indexes using clinical data in 
Ref. [136]. Gutièrrez-Sacristán et al. introduced a comorbidity approach 
that conducts disease comorbidity analysis incorporating clinical evi-
dence and information dependent on genotype-phenotype, but the he-
reditary impact on diseases was not taken into consideration by this 
method [137]. Moni et al. developed CytoCom for the Cytoscape app to 
represent the network for disease comorbidity [138]. Compared to other 
recent approaches, the number of prior reported methods concentrated 
on identifying the relationships between diseases by taking into account 
particular omics or clinical datasets. In comparison, we have adopted an 
integrated methodology utilizing enormous amounts of publicly acces-
sible datasets of gene expression which is a highly efficient way of 
identifying molecular mechanisms related to the interaction of comor-
bidity. The usage of too many datasets maximizes this approach’s 
strength by reducing data set biases and maximizing knowledge about 
other prior research. It is currently unknown whether there are any 
previous comorbidity studies using Gene Set enrichment and semantic 
comparisons to identify the comorbidity interactions between COVID-19 
and ND but we identified the interactions at the molecular level using 
Gene Set Enrichment and semantic similarity-based approaches which 
outperforms the previous approaches. Our approach ensures the ability 
to reuse accessible data and to identify DEGs, GO terms, molecular 
mechanisms, PPIs, hub proteins, TFs, and miRNAs that induce disease. 
The results reported in this study were enhanced by the use of diverse 
datasets, help us to fill a wide gap of biological knowledge in COVID-19 
and the understanding of the interactions between the COVID-19 and its 
neurological comorbidities. Thus, this approach may be useful in 
discovering new knowledge from already released datasets. Since 
COVID-19 and its neurological comorbidities are not recommended for 
specific antiviral treatment. This bioinformatics and network-based 
analysis by using genomics, omics, miRNA, and molecular data will 
offer an insight into the COVID-19 and its ND comorbidity which will 
help to diagnose disease risk, drug treatment, and dosage selection, and 
eventually, it will reflect the advancement of personalized medicine. 
Furthermore, physicians and medical professionals may use this method 
to learn more about the basic disease mechanisms that underpin the 
pathology and etiology of disease comorbidity and our results may assist 
in the development of more reliable and efficient treatments in the form 
of individualized and personalized pharmacotherapy. Therefore, it’s of 
crucial importance to further grasp the pathophysiological pathways 
and unanswered questions involved in the association between 
COVID-19 and its NDs, which make COVID-19 and ND more serious 
using the pipeline of bioinformatics and network-based approaches. 

5. Conclusion 

We explored how the methodologies explained in this manuscript 
can be used to examine the transcriptome of COVID-19 and NDs for the 
identification of comorbidity interactions. In this research, we identified 
DEGs, cell signaling pathways and gene ontology mechanisms that 
connect the comorbidities between COVID-19 and NDs and we explored 
how SARS-CoV-2 infection may impact neurological disease progression 
and how COVID-19 patients are seriously impaired by the existence of 
neurological diseases. We have conducted transcriptional and post- 
transcriptional studies to detect DEG-TF interactions, DEG-miRNA in-
teractions, and protein-protein interactions. This study provides 
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molecular insights into the possible biomarkers and regulatory elements 
that may contribute to the development of potential novel drugs to 
combat the serious COVID-19 and the progression of neurological dis-
eases. The comorbidity study provided here offers mechanistic insight 
into the disorder and related prognostic characteristics for COVID-19 
and neurological disorders. Thus, our approach will drive the 
decision-making forward for personalized medicine. This study has its 
drawbacks, in spite of our best efforts. The sample size for certain dis-
ease studies may be insufficient to capture all of the critical disease- 
associated genes required to identify the common DEGs. So, further 
research may be required to fully assess the biological relevance of the 
putative target candidates discovered in this work. 
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models for the study of central nervous system infection by sars-cov-2, Front. 
Immunol. 11 (2020) 2163. 

[18] C. Hu, C. Chen, X.P. Dong, Impact of covid-19 pandemic on patients with 
neurodegenerative diseases, Front. Aging Neurosci. 13 (2021) 173. 

[19] F. Nikbakht, A. Mohammadkhanizadeh, E. Mohammadi, How does the covid-19 
cause seizure and epilepsy in patients? the potential mechanisms, Multiple 
Sclerosis Related Disorders (2020) 102535. 

[20] K. Saleki, M. Banazadeh, A. Saghazadeh, N. Rezaei, The involvement of the 
central nervous system in patients with covid-19, Rev. Neurosci. 31 (2020) 
453–456. 

[21] A.C. Pfalzer, L.M. Hale, E. Huitz, D.A. Buchanan, B.K. Brown, S. Moroz, R. 
M. Rouleau, K.R. Hay, J. Hoadley, A. Laird, et al., Healthcare delivery and 
huntington’s disease during the time of covid-19, J. Huntingt. Dis. (2021) 1–10. 

[22] F. Safavi, B. Nourbakhsh, A.R. Azimi, B-cell depleting therapies may affect 
susceptibility to acute respiratory illness among patients with multiple sclerosis 
during the early covid-19 epidemic in Iran, Multiple Sclerosis Related Disorders 
43 (2020) 102195. 

[23] P. Salles-Gándara, A. Rojas-Fernandez, C. Salinas-Rebolledo, A. Milan-Sole, et al., 
The potential role of sars-cov-2 in the pathogenesis of Parkinson’s disease, Front. 
Neurol. 11 (2020) 1044. 

[24] W. Huber, V.J. Carey, R. Gentleman, S. Anders, M. Carlson, B.S. Carvalho, H. 
C. Bravo, S. Davis, L. Gatto, T. Girke, et al., Orchestrating high-throughput 
genomic analysis with bioconductor, Nat. Methods 12 (2015) 115–121. 

[25] S. Davis, P.S. Meltzer, Geoquery: a bridge between the gene expression omnibus 
(geo) and bioconductor, Bioinformatics 23 (2007) 1846–1847. 

[26] M.E. Ritchie, B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi, G.K. Smyth, Limma 
powers differential expression analyses for rna-sequencing and microarray 
studies, Nucleic Acids Res. 43 (2015) e47–e47. 

[27] R. Gentleman, V. Carey, W. Huber, F. Hahne, Genefilter: Methods for Filtering 
Genes from High-Throughput Experiments. R Package Version 1, 2015. 

[28] A. Alexa, J. Rahnenfuhrer, et al., topgo: enrichment analysis for gene ontology, 
R package version 2 (2010) 2010. 

[29] G. Yu, F. Li, Y. Qin, X. Bo, Y. Wu, S. Wang, Gosemsim: an r package for measuring 
semantic similarity among go terms and gene products, Bioinformatics 26 (2010) 
976–978. 

[30] M.V. Kuleshov, M.R. Jones, A.D. Rouillard, N.F. Fernandez, Q. Duan, Z. Wang, 
S. Koplev, S.L. Jenkins, K.M. Jagodnik, A. Lachmann, et al., Enrichr: a 
comprehensive gene set enrichment analysis web server 2016 update, Nucleic 
Acids Res. 44 (2016) W90–W97. 

[31] T. Barrett, S.E. Wilhite, P. Ledoux, C. Evangelista, I.F. Kim, M. Tomashevsky, K. 
A. Marshall, K.H. Phillippy, P.M. Sherman, M. Holko, et al., Ncbi geo: archive for 
functional genomics data sets—update, Nucleic Acids Res. 41 (2012) D991–D995. 

[32] C.E. Cook, O. Stroe, G. Cochrane, E. Birney, R. Apweiler, The european 
bioinformatics institute in 2020: building a global infrastructure of 
interconnected data resources for the life sciences, Nucleic Acids Res. 48 (2020) 
D17–D23. 

[33] Y. Xiong, Y. Liu, L. Cao, D. Wang, M. Guo, A. Jiang, D. Guo, W. Hu, J. Yang, 
Z. Tang, et al., Transcriptomic characteristics of bronchoalveolar lavage fluid and 
peripheral blood mononuclear cells in covid-19 patients, Emerg. Microb. Infect. 9 
(2020) 761–770. 

[34] E.M. Blalock, J.W. Geddes, K.C. Chen, N.M. Porter, W.R. Markesbery, P. 
W. Landfield, Incipient alzheimer’s disease: microarray correlation analyses 
reveal major transcriptional and tumor suppressor responses, Proc. Natl. Acad. 
Sci. Unit. States Am. 101 (2004) 2173–2178. 

[35] C. Williams, R. Mehrian Shai, Y. Wu, Y.H. Hsu, T. Sitzer, B. Spann, C. McCleary, 
Y. Mo, C.A. Miller, Transcriptome analysis of synaptoneurosomes identifies 
neuroplasticity genes overexpressed in incipient alzheimer’s disease, PloS One 4 
(2009), e4936. 

[36] C. Scheckel, E. Drapeau, M.A. Frias, C.Y. Park, J. Fak, I. Zucker-Scharff, Y. Kou, 
V. Haroutunian, A. Ma’ayan, J.D. Buxbaum, et al., Regulatory consequences of 
neuronal elav-like protein binding to coding and non-coding rnas in human brain, 
Elife 5 (2016), e10421. 

M.H. Rahman et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.compbiomed.2021.104859
https://doi.org/10.1016/j.compbiomed.2021.104859
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref1
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref1
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref1
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref1
https://covid19.who.int/
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref3
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref3
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref4
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref4
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref5
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref5
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref5
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref6
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref6
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref7
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref7
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref7
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref8
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref8
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref8
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref8
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref9
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref9
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref9
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref9
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref10
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref10
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref10
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref10
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref11
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref11
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref11
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref11
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref12
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref12
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref12
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref12
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref13
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref13
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref14
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref14
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref14
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref14
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref15
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref15
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref15
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref15
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref16
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref16
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref16
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref17
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref17
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref17
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref17
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref18
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref18
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref19
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref19
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref19
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref20
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref20
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref20
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref21
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref21
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref21
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref22
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref22
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref22
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref22
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref23
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref23
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref23
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref24
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref24
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref24
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref25
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref25
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref26
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref26
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref26
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref27
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref27
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref28
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref28
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref29
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref29
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref29
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref30
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref30
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref30
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref30
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref31
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref31
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref31
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref32
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref32
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref32
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref32
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref33
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref33
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref33
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref33
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref34
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref34
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref34
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref34
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref35
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref35
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref35
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref35
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref36
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref36
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref36
http://refhub.elsevier.com/S0010-4825(21)00653-3/sref36


Computers in Biology and Medicine 138 (2021) 104859

22

[37] F. Dangond, D. Hwang, S. Camelo, P. Pasinelli, M.P. Frosch, G. Stephanopoulos, 
G. Stephanopoulos, R.H. Brown Jr., S.R. Gullans, Molecular signature of late-stage 
human als revealed by expression profiling of postmortem spinal cord gray 
matter, Physiol. Genom. 16 (2004) 229–239. 

[38] C.W. Lederer, A. Torrisi, M. Pantelidou, N. Santama, S. Cavallaro, Pathways and 
genes differentially expressed in the motor cortex of patients with sporadic 
amyotrophic lateral sclerosis, BMC Genom. 8 (2007) 1–26. 

[39] R. Ho, S. Sances, G. Gowing, M.W. Amoroso, J.G. O’Rourke, A. Sahabian, 
H. Wichterle, R.H. Baloh, D. Sareen, C.N. Svendsen, Als disrupts spinal motor 
neuron maturation and aging pathways within gene co-expression networks, Nat. 
Neurosci. 19 (2016) 1256–1267. 

[40] O. Butovsky, M.P. Jedrychowski, R. Cialic, S. Krasemann, G. Murugaiyan, 
Z. Fanek, D.J. Greco, P.M. Wu, C.E. Doykan, O. Kiner, et al., Targeting mi r-155 
restores abnormal microglia and attenuates disease in sod 1 mice, Ann. Neurol. 77 
(2015) 75–99. 

[41] J. Cooper-Knock, J.J. Bury, P.R. Heath, M. Wyles, A. Higginbottom, 
C. Gelsthorpe, J.R. Highley, G. Hautbergue, M. Rattray, J. Kirby, et al., C9orf72 
ggggcc expanded repeats produce splicing dysregulation which correlates with 
disease severity in amyotrophic lateral sclerosis, PloS One 10 (2015), e0127376. 

[42] C.E. Niesen, J. Xu, X. Fan, X. Li, C.J. Wheeler, A.N. Mamelak, C. Wang, 
Transcriptomic profiling of human peritumoral neocortex tissues revealed genes 
possibly involved in tumor-induced epilepsy, PLoS One 8 (2013), e56077. 

[43] F. Agus, D. Crespo, R.H. Myers, A. Labadorf, The caudate nucleus undergoes 
dramatic and unique transcriptional changes in human prodromal huntington’s 
disease brain, BMC Med. Genom. 12 (2019) 1–17. 

[44] E.D. Nekrasov, V.A. Vigont, S.A. Klyushnikov, O.S. Lebedeva, E.M. Vassina, A. 
N. Bogomazova, I.V. Chestkov, T.A. Semashko, E. Kiseleva, L.A. Suldina, et al., 
Manifestation of huntington’s disease pathology in human induced pluripotent 
stem cell-derived neurons, Mol. Neurodegener. 11 (2016) 1–15. 

[45] L. Lin, J.W. Park, S. Ramachandran, Y. Zhang, Y.T. Tseng, S. Shen, H. 
J. Waldvogel, M.A. Curtis, R.L. Faull, J.C. Troncoso, et al., Transcriptome 
sequencing reveals aberrant alternative splicing in huntington’s disease, Hum. 
Mol. Genet. 25 (2016) 3454–3466. 

[46] R.G. Lim, C. Quan, A.M. Reyes-Ortiz, S.E. Lutz, A.J. Kedaigle, T.A. Gipson, J. Wu, 
G.D. Vatine, J. Stocksdale, M.S. Casale, et al., Huntington’s disease ipsc-derived 
brain microvascular endothelial cells reveal wnt-mediated angiogenic and blood- 
brain barrier deficits, Cell Rep. 19 (2017) 1365–1377. 

[47] T. Zrzavy, S. Hametner, I. Wimmer, O. Butovsky, H.L. Weiner, H. Lassmann, Loss 
of ‘homeostatic’microglia and patterns of their activation in active multiple 
sclerosis, Brain 140 (2017) 1900–1913. 

[48] M.H. Han, D.H. Lundgren, S. Jaiswal, M. Chao, K.L. Graham, C.S. Garris, R. 
C. Axtell, P.P. Ho, C.B. Lock, J.I. Woodard, et al., Janus-like opposing roles of 
cd47 in autoimmune brain inflammation in humans and mice, J. Exp. Med. 209 
(2012) 1325–1334. 

[49] A. Lieury, M. Chanal, G. Androdias, R. Reynolds, S. Cavagna, P. Giraudon, 
C. Confavreux, S. Nataf, Tissue remodeling in periplaque regions of multiple 
sclerosis spinal cord lesions, Glia 62 (2014) 1645–1658. 

[50] T.G. Lesnick, S. Papapetropoulos, D.C. Mash, J. Ffrench-Mullen, L. Shehadeh, 
M. De Andrade, J.R. Henley, W.A. Rocca, J.E. Ahlskog, D.M. Maraganore, 
A genomic pathway approach to a complex disease: axon guidance and Parkinson 
disease, PLoS Genet. 3 (2007) e98. 

[51] N.M. Lewandowski, S. Ju, M. Verbitsky, B. Ross, M.L. Geddie, E. Rockenstein, 
A. Adame, A. Muhammad, J.P. Vonsattel, D. Ringe, et al., Polyamine pathway 
contributes to the pathogenesis of Parkinson disease, Proc. Natl. Acad. Sci. Unit. 
States Am. 107 (2010) 16970–16975. 

[52] B. Zheng, Z. Liao, J.J. Locascio, K.A. Lesniak, S.S. Roderick, M.L. Watt, A. 
C. Eklund, Y. Zhang-James, P.D. Kim, M.A. Hauser, et al., Pgc-1α, a potential 
therapeutic target for early intervention in Parkinson’s disease, Sci. Transl. Med. 
2 (2010), 52ra73–52ra73. 

[53] M.H. Rahman, S. Peng, C. Chen, M.A. Moni, et al., Genetic Effect of Type 2 
Diabetes to the Progression of Neurological Diseases, BioRxiv, 2018, p. 480400. 

[54] N.K. Podder, H.K. Rana, M.S. Azam, M.S. Rana, M.R. Akhtar, M.R. Rahman, M. 
H. Rahman, M.A. Moni, A system biological approach to investigate the genetic 
profiling and comorbidities of type 2 diabetes, Gene Rep. 21 (2020) 100830. 

[55] M.H. Rahman, B. Sarkar2Ψ, M.S. Islam, M.I. Abdullah, Discovering biomarkers 
and pathways shared by alzheimer’s disease and Parkinson’s disease to identify 
novel therapeutic targets, Int. J. Eng. Res. Technol. (2020). 

[56] A. Dumitriu, J. Golji, A.T. Labadorf, B. Gao, T.G. Beach, R.H. Myers, K.A. Longo, 
J.C. Latourelle, Integrative analyses of proteomics and rna transcriptomics 
implicate mitochondrial processes, protein folding pathways and gwas loci in 
Parkinson disease, BMC Med. Genom. 9 (2015) 1–17. 

[57] H.K. Rana, M.R. Akhtar, M.B. Ahmed, P. Lio, J.M. Quinn, F. Huq, M.A. Moni, 
Genetic effects of welding fumes on the progression of neurodegenerative 
diseases, Neurotoxicology 71 (2019) 93–101. 

[58] M.H. Rahman, S. Peng, X. Hu, C. Chen, M.R. Rahman, S. Uddin, J.M. Quinn, M. 
A. Moni, A network-based bioinformatics approach to identify molecular 
biomarkers for type 2 diabetes that are linked to the progression of neurological 
diseases, Int. J. Environ. Res. Publ. Health 17 (2020) 1035. 
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A. Moni, Machine learning and bioinformatics models to identify pathways that 

mediate influences of welding fumes on cancer progression, Sci. Rep. 10 (2020) 
1–15. 

[62] M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, K. Morishima, Kegg: new 
perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res. 45 
(2017) D353–D361. 

[63] M. Martens, A. Ammar, A. Riutta, A. Waagmeester, D.N. Slenter, K. Hanspers, 
A. Miller, R., D. Digles, E.N. Lopes, F. Ehrhart, et al., Wikipathways: connecting 
communities, Nucleic Acids Res. 49 (2021) D613–D621. 

[64] D.S. Wishart, C. Li, A. Marcu, H. Badran, A. Pon, Z. Budinski, J. Patron, D. Lipton, 
X. Cao, E. Oler, et al., Pathbank: a comprehensive pathway database for model 
organisms, Nucleic Acids Res. 48 (2020) D470–D478. 

[65] A. Fabregat, S. Jupe, L. Matthews, K. Sidiropoulos, M. Gillespie, P. Garapati, 
R. Haw, B. Jassal, F. Korninger, B. May, et al., The reactome pathway 
knowledgebase, Nucleic Acids Res. 46 (2018) D649–D655. 

[66] Y. Zhou, B. Zhou, L. Pache, M. Chang, A.H. Khodabakhshi, O. Tanaseichuk, 
C. Benner, S.K. Chanda, Metascape provides a biologist-oriented resource for the 
analysis of systems-level datasets, Nat. Commun. 10 (2019) 1–10. 

[67] G.O. Consortium, The gene ontology resource: 20 years and still going strong, 
Nucleic Acids Res. 47 (2019) D330–D338. 

[68] M.H. Rahman, S. Peng, X. Hu, C. Chen, S. Uddin, J.M. Quinn, M.A. Moni, 
Bioinformatics methodologies to identify interactions between type 2 diabetes 
and neurological comorbidities, IEEE Access 7 (2019) 183948–183970. 

[69] M. Liu, P.D. Thomas, Go functional similarity clustering depends on similarity 
measure, clustering method, and annotation completeness, BMC Bioinf. 20 (2019) 
1–15. 

[70] G. Zhou, O. Soufan, J. Ewald, R.E. Hancock, N. Basu, J. Xia, Networkanalyst 3.0: a 
visual analytics platform for comprehensive gene expression profiling and meta- 
analysis, Nucleic Acids Res. 47 (2019) W234–W241. 

[71] D. Szklarczyk, A.L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, 
M. Simonovic, N.T. Doncheva, J.H. Morris, P. Bork, L.J. Jensen, C. Mering, 
STRING v11: protein–protein association networks with increased coverage, 
supporting functional discovery in genome-wide experimental datasets, Nucleic 
Acids Res. 47 (2018) D607–D613, https://doi.org/10.1093/nar/gky1131. URL: 
https://academic.oup.com/nar/article-pdf/47/D1/D607/27437323/gky1131. 
pdf. arXiv:. 

[72] D. Otasek, J.H. Morris, J. Bouças, A.R. Pico, B. Demchak, Cytoscape automation: 
empowering workflow-based network analysis, Genome Biol. 20 (2019) 1–15. 

[73] A. Khan, O. Fornes, A. Stigliani, M. Gheorghe, J.A. Castro-Mondragon, R. Van Der 
Lee, A. Bessy, J. Cheneby, S.R. Kulkarni, G. Tan, et al., Jaspar 2018: update of the 
open-access database of transcription factor binding profiles and its web 
framework, Nucleic Acids Res. 46 (2018) D260–D266. 

[74] D. Karagkouni, M.D. Paraskevopoulou, S. Chatzopoulos, I.S. Vlachos, 
S. Tastsoglou, I. Kanellos, D. Papadimitriou, I. Kavakiotis, S. Maniou, G. Skoufos, 
et al., Diana-tarbase v8: a decade-long collection of experimentally supported 
mirna–gene interactions, Nucleic Acids Res. 46 (2018) D239–D245. 

[75] H.Y. Huang, Y.C.D. Lin, J. Li, K.Y. Huang, S. Shrestha, H.C. Hong, Y. Tang, Y. 
G. Chen, C.N. Jin, Y. Yu, et al., Mirtarbase 2020: updates to the experimentally 
validated microrna–target interaction database, Nucleic Acids Res. 48 (2020) 
D148–D154. 

[76] V.V. Giau, E. Bagyinszky, Y.C. Youn, S.S.A. An, S. Kim, App, psen1, and psen2 
mutations in asian patients with early-onset alzheimer disease, Int. J. Mol. Sci. 20 
(2019) 4757. 

[77] L. Jia, Y. Fu, L. Shen, H. Zhang, M. Zhu, Q. Qiu, Q. Wang, X. Yan, C. Kong, J. Hao, 
et al., Psen1, psen2, and app mutations in 404 Chinese pedigrees with familial 
alzheimer’s disease, Alzheimer’s Dementia 16 (2020) 178–191. 

[78] C. Cruchaga, S. Chakraverty, K. Mayo, F.L. Vallania, R.D. Mitra, K. Faber, 
J. Williamson, T. Bird, R. Diaz-Arrastia, T.M. Foroud, et al., Rare variants in app, 
psen1 and psen2 increase risk for ad in late-onset alzheimer’s disease families, 
PloS One 7 (2012), e31039. 

[79] C.B. Harper, C. Small, E.C. Davenport, D.W. Low, K.J. Smillie, R. Martínez- 
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[135] M.A. Moni, P. Liò, How to build personalized multi-omics comorbidity profiles, 
Front. Cell Dev. Biol. 3 (2015) 28. 

[136] F. Ronzano, A. Gutiérrez-Sacristán, L.I. Furlong, Comorbidity4j: a tool for 
interactive analysis of disease comorbidities over large patient datasets, 
Bioinformatics 35 (2019) 3530–3532. 
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