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Abstract. In the present study, we aimed to construct a radiomics 
model using contrast‑enhanced computed tomography (CT) 
to predict the pathological invasiveness of thymic epithelial 
tumors (TETs). We retrospectively reviewed the records of 179 
consecutive patients (89 females) with histologically confirmed 
TETs from two hospitals. The 82 low‑ and 97 high‑risk TETs 
were assigned to training (90 tumors), internal validation (49 
tumors) and external validation (40 tumors) cohorts. Radiomics 
features extracted from preoperative contrast‑enhanced chest 
CT were selected using least absolute shrinkage and selection 
operator logistic regression. Three prediction models were 
developed using multivariate logistic regression analysis. Their 
performance and clinical utility were assessed using receiver 
operating characteristic curves and the DeLong test, respec-
tively. Eight radiomics features with non‑zero coefficients 
were used to develop a radiomics score, which significantly 
differed between low‑ and high‑risk TETs (P<0.001). The 
subjective finding, infiltration, was independently associated 
with high‑risk TETs. Prediction models based on infiltration 
alone, the radiomics signature alone, and both these parameters 
showed diagnostic accuracies of 72.2% [area under curve 
(AUC), 0.731; 95% confidence interval (CI): 0.627‑0.819; sensi-
tivity, 85.7%; specificity, 60.4%], 88.9% (AUC, 0.944; 95% CI: 
0.874‑0.981; sensitivity, 92.9%; specificity, 85.4%), and 90.0% 
(AUC, 0.953; 95% CI: 0.887‑0.987; sensitivity, 92.9%; speci-
ficity, 87.5%), respectively. Decision‑curve analysis showed 
that the combined model added more net benefit than the 
single‑parameter models. In conclusion, a radiomics signature 
based on contrast‑enhanced CT has the potential to differentiate 

between low‑ and high‑risk TETs. The model incorporating 
the radiomics signature and subjective finding may facilitate 
the individualized, preoperative prediction of the pathological 
invasiveness of TETs.

Introduction

Almost half of all anterior mediastinal tumors (47%) are thymic 
epithelial tumors (TETs) (1,2). The 2014 consensus statement 
of the International Thymic Malignancy Interest Group on the 
histological classification of TETs informed the 2015 update 
of the World Health Organization (WHO) TET classification. 
According to this WHO classification, TETs can be subdivided 
into thymoma (subtypes A, AB, B1, B2 and B3) and thymic 
carcinoma (subtype C), in the order of increasing degree of 
malignancy (3,4). In patients who have TETs with a low risk 
of malignancy (subtypes A, AB and B1), complete surgical 
resection without adjuvant or neoadjuvant chemotherapy is 
typically sufficient. In contrast, patients who have TETs with 
a high risk of malignancy (subtypes B2, B3 and C) require 
a combination of treatments, including chemotherapy, radio-
therapy, and/or surgical resection (5,6). Pretreatment needle 
biopsy is a reliable method of diagnosing TETs. However, a 
small biopsy specimen may not always be representative of 
the entire tumor, and deep biopsy is an invasive procedure that 
poses the risk of complications (2,7).

Different imaging modalities have been used for the preop-
erative assessment of TETs. The most common of these is 
thoracic computed tomography (CT) with intravenous contrast 
enhancement. On enhanced CT images, irregular contours, 
heterogeneous enhancement, and mediastinal fat invasion 
strongly suggest a high‑risk TET (8‑10). However, the value 
of qualitative CT features in determining the degree of tumor 
invasiveness remains controversial. Furthermore, the assess-
ment of qualitative imaging features is subjective and subject 
to inter‑reader variability. Therefore, an effective and objec-
tive approach for preoperative determination of the subtype of 
TET is urgently required.

Radiomics is a field of medical research in which a 
large amount of high‑quality, quantitative, mineable data 
is extracted from conventional medical images (11,12). The 
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application of radiomics techniques to further the development 
of personalized medicine in the field of oncology has already 
provided insights on the detection and classification of tumors, 
and the assessment of therapeutic response (13). Objective and 
quantitative radiomics signatures that may serve as prognostic 
biomarkers have already been developed for tumors such as 
brain glioblastoma, breast cancer and lung cancer (13‑15). 
However, to date, only one study (16) has investigated the 
relationship between CT‑based radiomics parameters and the 
histological classification of TETs. Furthermore, that study 
included only 16 patients and did not involve a comprehensive 
quantitative texture analysis to reflect whole‑tumor radiomics 
characteristics.

Therefore, the purpose of our research was to develop and 
validate a radiomics model that incorporated both the radiomics 
signature and subjective CT features for individual preopera-
tive prediction of the pathological invasiveness of TETs.

Materials and methods

Patient selection. The study protocol was approved by the 
Institutional Review Boards of Jiangmen Central Hospital and 
The Fifth Affiliated Hospital of Sun Yat‑sen University. The 
need for informed consent was waived as our study has a retro-
spective design. We searched the electronic medical database of 
the two hospitals for the records of all patients who underwent 
resection for thymic neoplasms and histopathologic diagnosis 
between February 2009 and March 2019. The following inclu-
sion criteria were applied: i) histopathologically confirmed 
primary TETs; ii) CT images available in the picture archiving 
and communication system; iii) thoracic spiral CT scan with 
intravenous contrast dual‑phase enhancement was performed 
within 4 weeks before surgery; iv) no history of prior resec-
tion for thymic neoplasm or other malignant tumor, and v) no 
history of biopsy, chemotherapy, or radiotherapy prior to the 
primary thoracic CT scans.

After the application of the selection criteria, we enrolled 
139 patients from center 1, including 69 men and 70 women. 
The median age of the patients was 54  years (age range, 
19‑81 years). Between 25 February 2009 and 2 December 
2016, 90 patients (42 men, 48 women; median age, 53 years; 
age range, 19‑81 years) were identified, and these patients 
comprised the training cohort. Between 15 December 2016 
and 10 October 2018, 49 consecutive patients (27 men, 22 
women; median age, 55 years; age range, 26‑75 years) were 
selected using the same criteria as those used for the training 
cohort; these patients formed an internal validation cohort. In 
center 2, 40 consecutive patients (21 men, 19 women; median 
age, 57 years; age range, 28‑83 years) were enrolled between 
March 2014 and March 2019 using the same criteria as those 
used in center 1, and constituted the external validation cohort. 
A flowchart of the patient‑selection process is shown in Fig. 1.

Thoracic contrast‑enhanced CT scan protocol. Chest CT 
was performed using four different CT scanners: Aquilion 
One‑64 (Toshiba Medical Systems), Somatom Sensation‑16 
and Dual‑energy Force (Siemens Medical Solutions), and 
Discovery HD 750 (GE Medical Systems). The scanning 
parameters were as follows: 120 kVp; 80‑200 mAs; rotation 
time, 0.5 sec; field of view, 350x350 mm; detector collimation, 

64x0.625  mm or 16x0.6  mm; and matrix, 512x512. Two 
different slice thicknesses of 3.0 mm (n=164) and 2.5 mm 
(n=15) were obtained, and the corresponding images were 
reconstructed using soft‑tissue and lung kernels, respectively. 

CT scanning was conducted during a single deep 
breath‑hold, with the patient in a supine position. The scan-
ning field extended from the level of the thoracic inlet to the 
level of the adrenal glands. First, a conventional plain CT 
scan was obtained, and then, an iodinated contrast agent was 
injected into the antecubital vein of the patient (Ultravist, 
Bayer Schering Pharma; dose, 1.5  ml/kg; injection rate, 
3.5‑4.5 ml/sec). Enhanced CT scans in the arterial and venous 
phases were obtained at 30 and 60 sec, respectively, after the 
injection of the contrast material.

Analysis of subjective CT findings. All CT scans were inde-
pendently reviewed by two radiologists, one with 10 years of 
experience (Reader 1) and the other with 25 years of experi-
ence (Reader 2) in thoracic radiology. Both radiologists were 
blinded to the clinical history and final histopathological diag-
nosis. For lesion evaluation, they reviewed images obtained 
using both the mediastinal [level, 30 HU (hounsfield unit); 
width, 350 HU] and lung (level, ‑600 HU; width, 1500 HU) 
window settings.

Subjective CT findings were evaluated as follows: i) 
location (left, right, or midline in the anterior medias-
tinum); ii)  diameter (average of the maximum long axis 
and the maximum short axis perpendicular to the long axis 
in the same transverse cross‑sectional slice); iii) margin 
(regular or irregular), iv) calcification (absent or present); v) 
enhancement pattern (homogeneous or heterogeneous); vi) 
enhancement degree (none, minimal, moderate, or severe), 
and vii) infiltration (absent or present). Minimal, moderate, 
and severe enhancement was defined as enhancement less 
than, equal to, and greater than that of the chest‑wall muscle, 
respectively (17). Infiltration was defined as the disappearance 
of the fat‑density plane between the tumor and the adjacent 
tissue (18). Consensus was reached through discussion.

Inter‑reader agreement and subjective findings model. 
Interobserver agreement for the evaluation of the subjective 
findings was determined using the Cohen kappa test as follows: 
κ<0.00, poor agreement; κ=0.00‑0.20, slight agreement; 
κ=0.21‑0.40, fair agreement; κ=0.41‑0.60, moderate agree-
ment; κ=0.61‑0.80, substantial agreement; and κ=0.81‑1.00, 
almost perfect agreement (19).

Age, sex, and subjective CT findings (lesion location, diam-
eter, margin, calcification, enhancement pattern, enhancement 
degree, and infiltration) were compared between study groups 
by using the t‑test, Chi‑square test, or Mann‑Whitney U test, 
as required. Variables that were found to be significant on 
univariate analysis were entered into multivariate logistic 
regression analysis. The results were used to construct a model 
of the subjective findings.

Pathological diagnosis. The median time between CT imaging 
and surgery was 18 days. Complete resection was achieved in 
159 (88.8%) patients and incomplete resection was achieved in 
20 (11.2%) patients. TET specimens were fixed with formalin 
and stained with hematoxylin and eosin. Pathological analysis 
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was performed by two pathologists, one with 10 years of expe-
rience and the other with 15 years of experience in thoracic 
pathological analysis. Both pathologists were blinded to the 
clinical history and chest CT findings. TETs were evaluated and 
classified according to the epithelial‑tumor‑cell morphology, 
relative proportion of the nontumoral lymphocytic component, 
immunohistochemical findings, and degree of resemblance to 
the normal thymic structure. The tumors were subdivided into a 
low‑risk group (subtypes A, AB and B1) and a high‑risk group 
(subtypes B2, B3 and C) according to the 2015 WHO histolog-
ical classification (3,4). All tumors were also staged according to 
the Masaoka‑Koga clinical‑pathologic staging system (2). 

Volume of interest segmentation. Volume of interest (VOI) 
segmentations were manually implemented by the same two 
readers who assessed the subjective CT findings. Using our 
in‑house tool developed on MATLAB 2016 (Mathworks), the 
TET lesions were manually delineated on venous‑phase axial 
CT images because most TETs exhibit significant enhance-
ment and relatively clear margins in this phase. Contouring 
was performed slightly within the tumor borders in order to 
avoid the adjacent tissues, such as mediastinal fat, tracheal, 
vessel, and lung tissues. For lesions that were ambiguous in 
the axial plane, the corresponding sagittal and coronal planes 
were referenced. Whole tumor volume was contoured on 
two‑dimensional images. For each lesion, two VOIs were 
obtained. Grayscale discretization and isotropic resampling 
were used to reconstruct the VOIs (Fig. 2).

Radiomics feature extraction and radiomics signature model. 
We extracted 10,394 three‑dimensional radiomics features 
that were based on factors such as shape, intensity, texture, and 
wavelets. Feature extraction was performed using our in‑house 
software developed with MATLAB 2016 (Mathworks). We 
randomly selected 20 patients in the training cohort, and 
Readers 1 and 2 performed tumor segmentations for these 
patients. Reader 1 repeated this same procedure 1 week 
later. Intraclass coefficients (ICCs) were calculated to assess 
the interobserver and intraobserver reproducibility of the 
extracted radiomics features. The remaining TET lesions were 
segmented by Reader 1. Radiomics features were extracted 
from all segmentations. The value of each feature in distin-
guishing between high‑ and low‑risk TETs was determined 
using the Mann‑Whitney U test. Features that significantly 
differed between the low‑ and high‑risk TETs and had an 
intraclass coefficient (ICC) >0.75 were filtered using Pearson 
correlation coefficient analysis and subjected to least absolute 
shrinkage and selection operator (LASSO) logistic regression 
with a 10‑fold cross validation (20). 

Radiomics features that were found to have non‑zero coeffi-
cients on LASSO logistic regression were subjected to Pearson 
correlation analysis. Features with Pearson correlation coeffi-
cients of <0.9 were selected as independent factors for building a 
radiomics‑signature model. We created the radiomics signature 
via the linear combination of the chosen radiomics features. 
For each patient, a radiomics score was calculated using the 
linear combination of the chosen features, weighted according 
to their coefficients (Appendix 1 and Table S1). The radiomics 
signature was employed to construct a model for the detection 
of high‑risk TETs in the training cohort.

Combined model. Multivariate logistic regression analysis 
was performed to construct a model including both relevant 
subjective findings and the radiomics signature. Backward 
step‑wise elimination was used with the likelihood ratio test 
and Akaike information criterion.

Model validation, performance, and potential clinical 
value. Receiver operating characteristic (ROC) curve 
analysis was used to evaluate the performances of all three 
models. We calculated the sensitivity, specificity, positive 
and negative predictive values (PPV and NPV, respectively), 
accuracy, and area under the curve (AUC). Next, cutoff 
values were chosen such that the sum of the sensitivity value 
and specificity value was maximized. Finally, we compared 
the AUCs of the three models by using the DeLong test. 
The calibrations of the subjective finding, radiomics signa-
ture, and combined models were assessed using calibration 
curves and the Hosmer‑Lemeshow test. Moreover, stratified 
analyses of clinical variables (sex, age, CT device, and CT 
slice thickness) were carried out to assess the impact of 
the combined model in the training, internal and external 
validation cohorts.

To estimate the clinical usefulness of the three models, we 
quantified their net benefits for multiple threshold probabilities 
by using decision‑curve analysis (DCA) (21).

Statistical analysis. All statistical analyses were performed using 
R software (v3.0.1; http://www.rproject.org) and MATLAB. 
LASSO analysis, ROC curve  analysis,Pearson  correlation 
coefficient analysis, and DCA were performed using the 
glmnet (https://cran.r‑project.org/web/packages/glmnet/ 
index.html), pROC (https://www.rdocumentation.org/packages/ 
pROC/versions/1.12.1), cor function (https://www.rdocumentation.
org/packages/stats/versions/3.4.1/topics/cor) and dca.r  
(https://www.rdocumentation.org/packages/DecisionCurve/ 
versions/1.4) packages, respectively. Parametric differences 
between the low‑ and high‑risk groups were compared using 
the two‑tailed t‑test. P<0.05 was considered to indicate a 
statistically significant difference.

Figure 1. Flowchart of the patient‑selection process. CT, computed tomog-
raphy.
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Results

General patient characteristics. In the two centers, there were 
82 patients in the low‑risk TET group (type A, 20 patients; 
type AB, 41 patients; and type B1, 21 patients), and 97 patients 
in the high‑risk TET group (type B2, 57 patients; type B3, 
22 patients; and type C, 18 patients). We found no significant 
differences between the low‑risk and high‑risk groups in 
terms of sex (training cohort, P=0.799; internal validation 
cohort, P=0.617; external validation cohort, P=0.796) and age 
(training cohort, P=0.898; internal validation cohort, P=0.794; 
external validation cohort, P=0.744). The locations of the 
TET lesions were as follows: Left anterior mediastinum, 52 
lesions; right anterior mediastinum, 69 lesions; and midline 
anterior mediastinum, 58 lesions (Table I). Patient distribution 
according to Masaoka‑Koga stage were classified as follows: 
Stage I, 76 patients; stage II, 56 patients; stage III, 30 patients; 
stage IV, 17 patients.

Subjective‑finding model. In the training cohort, the mean 
tumor diameter did not significantly differ between the 
low‑risk (4.78±2.17 cm) and high‑risk tumors (4.77±2.04 cm; 
P=0.926). Irregular margins were significantly more frequent 
in high‑risk tumors (n=25) than in low‑risk tumors (n=11; 
P=0.012). Calcifications were slightly less common in low‑risk 
tumors (n=12) than in high‑risk tumors (n=16), although the 
difference was not significant (P=0.626). Additionally, there 
were no significant differences in the pattern (P=0.181) and 
degree of enhancement (P=0.491) on venous‑phase CT images 
between the two study groups. Infiltration was significantly 
less frequent in low‑risk tumors (n=6) than in high‑risk 
tumors (n=29; P<0.001). These findings in the internal and  
external validation cohorts were similar. Patient characteris-
tics in the training and two validation cohorts are presented 
in Table I.

Using multivariate logistic regression, we identified 
infiltration [odds ratio (OR), 0.109; 95% confidence interval 
(CI): 0.039‑0.309; P<0.001] as an independent predictor in the 
subjective findings model. The interobserver agreement for 
various qualitative subjective CT features of TETs ranged from 
κ=0.557 to κ=0.972. Calcification showed perfect agreement 
(κ=0.944, 95% CI: 0.879‑0.972), while enhancement pattern 
(κ=0.798, 95% CI: 0.692‑0.876) and enhancement degree 
(κ=0.728, 95% CI: 0.623‑0.830) showed substantial agreement. 
Lesion margins (κ=0.656, 95% CI: 0.557‑0.786) and infiltration 
(κ=0.670, 95% CI: 0.560‑0.738) showed moderate agreement.

Radiomics feature selection and radiomics signature. Of 
the 10,394 radiomics features, 294 had ICC values between 
0.75 and 1.0 and showed significant differences between the 
low‑risk and high‑risk groups (P=1.112x10‑4‑0.049) in the 
training cohort. These 294 features were subjected to LASSO 
logistic regression, which identified 8 features with non‑zero 
coefficients. No repeatability was shown between these 8 
radiomics features through the Person correlation coefficient 
analysis (Table SII). These 8 features were used to create a 
formula for the calculation of a radiomics score (Table II; 
Fig.  3). The radiomics score thus calculated significantly 
differed between the low‑risk and high‑risk tumors in the 
training (P<0.001), internal validation (P<0.001) and external 
validation cohorts (P=0.009) (Table I; Fig. 4).

Among the 8 selected features, the shape‑related features 
eccentricity and solidity had smaller values for high‑risk tumors 
than for low‑risk tumors. The texture‑related features small 
zone emphasis_gray level size zone matrix (SZE_GLSZM), 
small zone high gray-level emphasis_gray level size zone matrix 
(SZHGE_GLSZM) and high gray-level run emphasis_gray-
level run-length matrix (HGRE_GLRLM) also had smaller 
values for the high‑risk tumors than for the low‑risk tumors. 
Variance of the gray‑level co‑occurrence matrix (GLCM) under 
low gray‑scale ranges, a texture spatial distribution‑related 
feature, had larger values for low‑risk tumors than for high‑risk 
tumors (Table II).

Model construction and performance. Multivariate analysis 
revealed that infiltration (OR, 0.208; 95% CI: 0.047‑0.930; 
P=0.040) and the radiomics signature (OR, 7.444; 95% CI: 
2.981‑18.585; P<0.001) were independent predictors of 
high‑risk TETs (Table  III). Therefore, we developed three 
models: One based on infiltration alone (subjective finding 
model), one based on the radiomics signature alone (radiomics 
signature model), and one based on the combination of these 
two factors (combined model).

In the training cohort, sensitivity, specificity, accuracy, PPV 
and NPV were lower in the subjective finding model than in the 
radiomics signature and combined models. The cut‑off values 
for the subjective finding model, radiomics signature model, and 
combined model were 0.1710, ‑0.3534 and 0.3923, respectively. 
The AUC value of the subjective finding model (0.731, 95% 
CI: 0.627‑0.819) was significantly lower than the AUC values 
of the radiomics signature model (0.944, 95% CI: 0.874‑0.981; 
P<0.001) and the combined model (0.953, 95% CI, 0.887‑0.987; 
P<0.001). However, no significant difference was found between 

Figure 2. Volume of interest segmentation of a thymic epithelial tumor. (A) One regular soft‑tissue mass with moderate and homogeneous enhancement is 
identified in the anterior mediastinum on a venous‑phase computed tomography scan. (B) Manual segmentation of the lesion on the same transverse slice. 
(C) Three‑dimensional volumetric reconstruction of the lesion obtained using the MATLAB platform.
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the AUCs of the radiomics signature and combined models 
(P=0.266). The diagnostic performance of each model and their 
ROC curves were summarized in Table IV and Fig. 5. The cali-
bration curves for each model demonstrated good agreement. 
The Hosmer‑Lemeshow tests were not significant (all P>0.05), 
representing a good fit (Table SIII, Fig. S1). As shown in Fig. S2, 
the stratified analysis (Appendix 2) showed that the performance 

of the combined model was not affected by sex, age, CT device, 
or CT slice thickness (Delong test; P>0.05).

Clinical value of the models. DCA showed that the net benefit 
of the combined model (threshold probability, 0.01‑0.87) was 
greater than those of the treat‑all‑patients and treat‑no‑patients 
schemes. Furthermore, the net benefit of the combined 

Figure 3. Radiomics‑feature selection. (A) The tuning parameter (λ) was selected using 10‑fold cross‑validation based on minimum criteria. Log(λ) is plotted 
on the x‑axis, and binomial deviance is plotted on the y‑axis. The dotted vertical lines indicate optimal values determined using the minimum criteria and one 
standard error of the minimum criteria (1‑SE). Optimal λ=0.04804; log(λ)=‑3.0357. (B) LASSO coefficient profiles of whole features. Coefficient profiles are 
plotted against log(λ). The vertical line is drawn where the eight optimal radiomics features with non‑zero coefficients were indicated in the plot according to 
10‑fold cross‑validation.

Figure 4. Low‑risk and high‑risk TETs. (A) Transverse contrast‑enhanced CT shows a homogeneous, enhanced soft‑tissue mass measuring 8.3‑cm in the 
anterior mediastinum in a 56‑year‑old man. (B) Histogram analysis of the entire lesion shows a low cumulative HU value but high relative frequency. The 
horizontal axis shows the CT‑value distribution, and the vertical axis represents the numbers in the mass. The radiomics score was 1.401. (C) This mass is 
confirmed as a low‑risk TET (WHO grade AB) on pathological analysis (hematoxylin and eosin, magnification x200). (D) Transverse contrast‑enhanced CT 
shows a homogeneous, enhanced soft‑tissue mass measuring 6.5-cm in the anterior mediastinum in a 48‑year‑old woman. (E) Histogram analysis of the entire 
lesion shows high cumulative HU value but low relative frequency. The horizontal axis shows the CT‑value distribution, and the vertical axis represents the 
numbers in the mass. The radiomics score was‑0.409. (F) This mass is confirmed as a high‑risk TET (WHO grade B2) on pathological analysis (hematoxylin 
and eosin, magnification x200). CT, computed tomography; HU, hounsfield unit; TETs, thymic epithelial tumors.
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model was greater than that of the subjective finding model 
(0.01‑0.42) and similar to that of the radiomics signature 
model (0.01‑0.84; Fig. 6).

Discussion

The preoperative prediction of the WHO histological subtype 
of TETs may help determine whether surgical tumor resec-
tion alone is sufficient or if preoperative adjuvant treatment 
is required. In the present study, we investigated the ability 
of enhanced CT‑based radiomics analysis to predict the risk 
status of patients with TETs. A radiomics model combining 
subjective findings and a radiomics signature was established, 
and showed better performance in the training and two vali-
dation cohorts than the prediction model based on subjective 
findings. Thus, radiomics features could serve as a noninvasive 
method to preoperatively predict the risk of malignancy, which 
has implications for treatment decisions.

Studies have shown that several CT features may be 
helpful in differentiating the invasiveness of TET subtypes. 
Tomiyama et al, found that tumor size did not significantly differ 
among the various TET subtypes (22). Another study revealed 
that homogeneous enhancement tended to indicate a low risk 
of malignancy, while heterogeneous enhancement indicated 
a high risk of malignancy (17). However, these density find-
ings were not observed in our study. Sadohara et al, reported 
that tumors with smooth contours likely carried a low risk of 
malignancy (23). Infiltration, which reflects invasion of the 
adjacent structures, suggests a high risk of malignancy (24). In 

the present study, lesion margins and infiltration significantly 
differed between the two TET subtypes in both the training 
and validation cohorts, which is consistent with previous find-
ings (9,23,24). The major drawbacks of subjective radiological 
evaluation were inter‑reader variability and weak repeat-
ability. Only moderate interobserver agreement was found 
for the characterization of margins and infiltration (κ=0.656 
and 0.670, respectively), even though two experienced thoracic 
radiologists performed the assessments in our study. Thus, 
the current descriptive criteria need to be replaced with more 
objective and quantitative criteria.

Our combined model was constructed in a training cohort 
of 90 patients (AUC, 0.953) and was confirmed to have a good 
predictive performance in two validation cohorts (internal 
validation, 49 patients, AUC: 0.852; external validation, 
40 patients, AUC: 0.826). Two shape‑related features, eccen-
tricity and solidity, were selected for the prediction of TET‑risk 
status. Eccentricity was a first‑order shape feature obtained by 
calculating the long axis‑to‑short axis ratio within the tumor 
volume. This feature describes the image compactness, and its 
value is 1 when the volume is close to a sphere. The greater 
eccentricity in low‑risk tumors than in high‑risk tumors could 
be interpreted as reflecting the expansive growth pattern 
and slow tumor‑doubling time in the former group (25,26). 
Solidity is also a first‑order shape feature that represents image 
compactness. Solidity was determined by calculating the 
number of voxels in the convex hull of the VOI. This feature 
also had higher values in low‑risk tumors than in high‑risk 
tumors. This finding could be explained by low‑risk TETs 

Table II. Eight radiomics features with non‑zero LASSO coefficients in the training cohort.

Characteristics	 Low‑risk group (n=42)	 High‑risk group (n=48)	 P‑value

GLSZM_SZE_0.5_1.5_Lloyd_32	 0.676±0.040	 0.659±0.024	 0.048a

GLSZM_SZHGE_0.5_2_Lloyd_8	 9.010±1.726	 8.061±1.906	 0.010a

GLCM_Variance_1_1.2_Equal_16	 0.077±0.002	 0.076±0.002	 0.019a

GLCM_Variance_1_2_Lloyd_32	 0.018±0.011	 0.014±0.006	 0.032a

GLCM_Variance_1.5_1.2_Equal_16	 0.077±0.002	 0.077±0.002	 0.026a

GLRLM_HGRE_1.5_0.67_Lloyd_8	 25.550±2.914	 23.369±2.443	 <0.001a

Eccentricity	 0.716±0.092	 0.666±0.099	 0.008a

Solidity	 0.795±0.109	 0.707±0.105	 <0.001a

aP<0.05, significant difference. All P‑values were calculated using the Mann‑Whitney U test. LASSO, least absolute shrinkage and selection 
operator. GLSZM, gray‑level size zone matrix; SZE, small zone emphasis; SZHGE, small zone high gray‑level emphasis; GLCM, gray‑level 
co‑occurence matrix; GLRLM, gray‑level run‑length matrix; HGRE, high gray‑level run emphasis.

Table III. Multivariate logistic regression analysis of parameters for distinguishing between low‑risk and high‑risk TETs.

Intercept and variable	 β	 Odds ratio (95% CI)	 P‑value

Intercept	 0.573		  0.212
Infiltration	 ‑1.570	 0.208 (0.047‑0.930)	 0.040a

Radiomics signature	 2.007	   7.444 (2.981‑18.585)	 <0.001a

aP<0.05, significant difference. β, regression coefficient; CI, confidence interval; TETs, thymic epithelial tumors.
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being mostly well‑differentiated with a complete capsule and 
high‑risk TETs being typically poorly differentiated without a 
capsule (27,28). These two quantitative radiomics parameters 
are based on 3D segmentation and offer an advantage over 
viewing the lesion in a single plane. Moreover, these features 
may distinguish and characterize the morphological measures 
of the edge characteristics of TETs more reproducibly and 
accurately than visual assessment.

Textural radiomics parameters reflect the intra‑tumor 
heterogeneity and cannot be identified visually. In our study, 
the variance of the GLCM under the low gray‑scale range was 
valuable for predicting the invasiveness of TETs. This variance 
was greater in low‑risk tumors than in high‑risk tumors, prob-
ably because more voxels with regular signal intensity spatial 
distribution were required to represent low‑grade, highly 

differentiated tumor cells. The texture unit‑related features 
SZE_GLSZM, SZHGE_GLSZM, and HGRE_GLRLM had 
lower values in high‑risk tumors than in low‑risk tumors, 
probably due to greater tumor‑cell accumulation, increased 
nucleocytoplasmic ratio, and decreased extracellular space. 
The pathophysiological basis of tumor invasiveness is complex 
and involves multiple mechanisms; therefore, the precise 
relationship of pathological findings with radiomics features, 
especially higher‑order features, remains to be fully eluci-
dated (29).

Few studies have investigated the radiomics features of 
TETs based on CT images (16). We have created a highly 
prognostic radiomics model that was validated in two inde-
pendent datasets of TET patients. The prediction ability of the 
radiomics model was greatly improved, compared with that of 

Figure 5. Receiving operating characteristic (ROC) curves of the subjective finding model (red), radiomics signature model (blue), and combined model (green) 
in the training (A), internal (B) and external validation (C) cohorts. AUC, area under the curve; CI, confidence interval.
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the subjective finding model, and significant differences were 
found between the AUCs of the two models in the training, and 
internal and external validation cohorts (DeLong test: P<0.0001, 
P=0.0187, P=0.0169, respectively). As the information of subjec-
tive findings may only take into consideration certain aspects 
of TETs, a better diagnostic performance can be achieved by 
integrating subjective findings with radiomics features to create 
a radiomics model. We used venous‑phase images rather than 
non‑enhanced or arterial‑phase images because venous‑phase 
images enable improved lesion visualization and accurate 
segmentation of anterior mediastinal neoplasms, which are 
surrounded by mediastinal fat tissue, large vessels, pleura, 
and lung parenchyma. Moreover, venous‑phase images have 
previously been used to reveal enhancement heterogeneity for 
the radiomics analysis of soft‑tissue neoplasms, such as gastric 
cancer, renal tumor, and hepatocellular cancer  (30‑32). We 
selected 3D radiomics features over 2D features because the 
former provide comprehensive information and improve the 
accuracy of radiomics‑based predictions (33). All extracted 
features with ICC values >0.75 were analyzed using LASSO 
logistic regression in our study.

The present study has certain limitations. First of all, the 
retrospective study design was associated with selection bias, 
and the sample size was relatively small, although datasets from 
two hospitals were collected independently. A larger prospec-
tive, multicenter study is required to validate our preliminary 
results. Secondly, the use of four different CT scanners may 
have influenced the evaluation of some CT findings owing to 
partial volume effects. However, all patient CT images were 
reconstructed using a slice thickness ≤3.0 mm, and multiplanar 
reconstruction including coronal and sagittal planes was applied. 
Moreover, there were no significant differences in the stratifica-
tion analyses of CT devices and CT slice thicknesses. Thirdly, 
lesions were manually segmented slice‑by‑slice and semi‑auto-
matically delineated. Further research and the development of 
advanced, automated segmentation techniques are needed for 
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Figure 6. Decision‑curve analysis. The net benefit of each model is plotted on 
the y‑axis. The x‑axis indicates the threshold probability, which is when the 
expected benefit of the receiving the treatment is the same as that of avoiding 
the treatment. The subjective finding, radiomics signature, and combined 
models are indicated by the red, blue, and green lines, respectively. The gray 
and black lines indicate the assumptions that all or no patients have high‑risk 
TETs, respectively. The combined model provides the highest net benefit 
(threshold probability, 0.01‑0.87). TETs, thymic epithelial tumors.
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more widespread clinical implementation of radiomics‑based 
prediction models in the future. Finally, radiomics signatures 
were extracted from enhanced CT images in our study since 
thoracic enhanced CT scans are routinely performed for patients 
with clinical suspected mediastinal masses. A radiomics model 
combining conventional CT images with more detailed and 
informative imaging biomarkers as well as positron emission 
tomography/computed tomography (PET/CT) parameters could 
substantially enhance the predictive value in the risk status of 
TETs. In the future, we will recruit more patients to increase 
the sample size and include more patients with PET/CT data to 
update our results.

In conclusion, our results suggest that enhanced CT‑based 
radiomics signature is a noninvasive, reliable, and reproducible 
imaging marker that may help to assess the pathological risk of 
TETs. Our combined model, which included both the radiomics 
signature and a subjective finding, may greatly facilitate the 
preoperative identification of low‑risk and high‑risk TETs.
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