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Abstract

Background: The heavy metal arsenic is widely distributed in nature and posses a serious threat to organism’s
health. However, little is known about the arsenic-induced inflammatory response in the brain tissues of birds and
the relationship and mechanism of the inflammatory response. The purpose of this study was to explore the effects
of dietary arsenic on the expression of inflammatory cytokines in the brains of Gallus gallus.

Results: Seventy-two 1-day-old male Hy-line chickens were divided into a control group, a low arsenic trioxide
(As,O5)-treated (7.5 mg/kg) group, a middle As,Os-treated (15 mg/kg) group, and a high As,Os-treated (30 mg/kg) group.
Arsenic exposure caused obvious ultrastructural changes. The mRNA levels of the transcription factor nuclear factor-«<B
(NF-kB) and of pro-inflammatory cytokines, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2),
and prostaglandin E synthase (PTGEs), in chicken brain tissues (cerebrum, cerebellum, thalamus, brainstem and
myelencephalon) on days 30, 60 and 90, respectively, were measured by real-time PCR. The protein expression
of INOS was detected by western blot. The results showed that after being treated with As,O5 the levels of
inflammatory-related factor NF-kB and pro-inflammatory cytokines in chicken brain tissues increased (P < 0.05).

Conclusions: Arsenic exposure in the chickens triggered host defence and induced an inflammatory response
by regulating the expression of inflammatory-related genes in the cerebrum, cerebellum, thalamus, brainstem
and myelencephalon. These data form a foundation for further research on arsenic-induced neurotoxicity in

Gallus gallus.
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Background

Arsenic is one of the most toxic substances from the
natural environment and is classified as a human car-
cinogen (Group I) [1]. It is widely distributed in natural
sources (earth crust, air, soil), anthropogenic sources (in-
secticides, feed additives, industrial waste), and in drugs
and poisons in both organic and inorganic forms [2].
Arsenic reacts with environmental oxygen, chlorine, and
sulfur, generating more toxic, soluble inorganic com-
pounds (AsO3 and AsO3"), and posses a serious threat
to organism health [3]. Dermal exposure to toxic triva-
lent or pentavalent arsenic compounds can produce skin
cancer, melanosis, and dorsum [4]. Inhalation of arsenic-
contaminated air can affect the respiratory system and
can cause laryngitis, rhinitis, and pulmonary diseases
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[5, 6]. Arsenic-contaminated water can be absorbed by
the digestive system and leads to gastritis, abdominal
pain, and anorexia. Moreover, selenium deficiency can
cause muscular dystrophy in various species, arsenic
can also damage the liver, kidneys, heart, and reproductive
and nervous systems [7-12]. Arsenic can traverse the
blood brain barrier and accumulate in different regions of
the brain, making it a target organ of arsenic toxicity and
suggesting a role for it in neurological diseases [13, 14].
Because of their toxic effects, pollution of the environ-
ment with arsenic and arsenic compound attracts public
attention [15].

Previous studies showed that the development of toxicity
or alteration in cytokines level induced by molybdenum,
cadmium, selenium and lead, which was assessed by
evaluating mRNA expression and western blot [16—18].
Developing brain tissue is vulnerable to toxic arsenic
[19], and arsenic causes histopathological changes to
developing brain tissue (unpublished data). Several reports
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have indicated that acute or chronic exposure to inorganic
arsenic causes neural injury [20]. However, little is known
regarding whether arsenic-induced neural injury will
result in an inflammatory response in the brain tissues of
birds. One of the hallmarks of the inflammatory response
is the production of pro-inflammatory mediators, which
are needed to repair injured tissues [21, 22]. Nuclear tran-
scription factor-kB (NF-«B) is attached to regulatory pro-
teins named inhibitors of kB (IkB) and kept inactive in the
cytosol [23]. IkBa and IkBp are the main proteins involved
in NF-«B activation and sustained activation, respectively.
NE-«B is activated under inflammation stimulation
and then moves to the nucleus, recognizes the promoter re-
gion and regulates the transcription of the pro-inflammatory
genes inducible NO synthase (iNOS) and cyclooxygenase-2
(COX-2) [24—26]. INOS is a member of the NOS family and
is widely distributed in a diverse number of nerve cells,
whereas COX-2 is mainly found in specific neurons
[27, 28]. Neither is generally expressed in resting nerve
cells, and they are only expressed to take part in inflam-
matory responses under diverse pathological conditions,
such as Alzheimer’s disease, ischaemia, and neurodegener-
ative disorders [29-31]. iNOS and COX-2 have vital roles
in the pathophysiology of inflammation because they
produce NO and prostaglandins (PGE), respectively
[32-34]. Low concentrations of NO are sufficient to
maintain physiological functions; however, elevated NO
exerts genotoxic harm on the host [32]. Research on
the inflammatory mediators NF-«B, iNOS, COX-2, and
prostaglandin E synthase (PTGEs) in chickens treated
with arsenic trioxide (As,O3) may contribute to the un-
derstanding of the possible inflammatory mechanisms
of heavy metal arsenic in the nervous system of birds.

We explored the effects of arsenic on the mRNA and
protein levels of the main inflammatory-related media-
tors in the brain tissues of Hy-line chickens to answer
the question of whether arsenic induced an inflamma-
tory response in chicken brain tissues, specifically the
cerebrum, cerebellum, thalamus, brainstem and myelen-
cephalon, by affecting the expression of inflammatory
cytokines.

Methods

Reagents

RNAiso Plus and PrimeScript”RT reagent Kit were
purchased from TaKaRa (Dalian, Liaoning, China).
FastStart Universal SYBR Green Master was purchased
from Roche (Indianapolis, IN, USA). SDS Lysis Buffer,
Enhanced BCA Protein Assay Kit and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) antibody were
purchased from Beyotime (Shanghai, China). A horseradish
peroxidase (HRP)-labelled goat anti-rabbit IgG was pur-
chased from Beijing Biosynthesis Biotechnology Co., LTD
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(Beijing, China). The iNOS antibody was kindly provided
by Professor Xu (Northeast Agricultural University, China).

Animals and experimental design

Procedures used in the present study were authorized
by the Institutional Animal Care and Use Committee of
Northeast Forestry University (Harbin, China) (UT-31;
20 June 2014). The Hy-line chicken models were cre-
ated according to our previous research [35]. In short,
72 1-day-old healthy Hy-line chickens, purchased from
Weiwei Co. Ltd., Harbin, China., were randomly divided
into four groups (18 cocks per group): a control group, a
low (7.5 mg/kg) As,Os-treated group (L group), a middle
(15 mg/kg) As,Os-treated group (M group), and a high
(30 mg/kg) As,Os-treated group (H group), which arsenic
doses of dietary were daily administration by adding
As,O;3 into the food to make supplements uniformed
according to the chicken median lethal doses (LDs5p) of 0,
1/80, 1/40, 1/20, respectively. The composition of the diet
is: Maize, grains 421 g/kg; Wheat, grains 120 g/kg; Full fat
soy 180 g/kg; Pea 100 g/kg; Wheat bran 80 g/kg; Lime-
stone 80 g/kg; Dicalcium phosphate 15 g/kg and Sodium
chloride 4 g/kg. This diet met the minimum requirements
for energy and nutrients for chicken and without influen-
cing results according to Nisianakis et al. [36]. Food and
water were provided ad libitum. During the experiments,
all chickens were injected with sodium pentobarbital to
abate stress. Six brain tissue samples (cerebrum, cerebel-
lum thalamus, brainstem and myelencephalon) were taken
on day 30, 60 and 90, excised and then rinsed with ice-
cold sterilized deionized water, and promptly frozen in
liquid nitrogen until required.

Ultrastructural observations

For electron microscopy, brain tissue specimens were
fixed with 2.5% glutaraldehyde in 0.1 M sodium phos-
phate buffer (pH 7.2) for 3 h at 4 °C, washed in the same
buffer for 1 h at 4 °C and post-fixed with 1% osmium
tetroxide in sodium phosphate buffer for 1 h at 4 °C.
The tissues were then dehydrated in a graded series of
ethanol starting at 50% ethanol for 10 min at a time and
then were immersed twice in propylene oxide. The tissue
specimens were embedded in araldite. Ultrathin sections
were stained with Mg-uranyl acetate and lead citrate for
evaluation using a transmission electron microscope.

Primers

Primers used in the present study to detect inflamma-
tory cytokine expression in chickens treated with As,O3
are shown in Additional file 1 [26]. GAPDH was consid-
ered a housekeeping gene and was used in this study as
an internal reference.
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Total RNA isolation and reverse transcription

Total RNA from chicken brain tissues was isolated using
RNAiso Plus (Takara, China). The concentration and
purity were analysed by measuring the absorbance at
260 and 280 nm on a spectrophotometer (Ultrospec
1100 pro, Amersham Biosciences, China). The first-strand
c¢DNA was synthesized using the PrimeScriptTMRT re-
agent Kit (TaKaRa, China) according to the manufacturer’s
instructions. The single chain ¢cDNA was diluted tenfold
with sterile ddH,O and stored at —80 °C before use.

Quantitative real-time PCR

Quantitative real-time PCR was performed on a BIOER
LineGene 9600 Real-Time PCR System (Hangzhou, China).
Reactions contained 5 pL of the SYBR Green Master Mix
(Roche, USA), 1 uL of diluted cDNA, 1 pL of each primer
(10 uM) and 2 pL of ddH,O water. The reaction conditions
were set at 95 °C for 10 min, followed by 40 cycles of 95 °C
for 15 s and 60 °C for 1 min. A single peak could be seen in
the melting curve. The relative abundance of mRNA was
calculated using the 22" method and normalized to the
mean expression of GAPDH [37].

Western blot analysis

Total protein from chicken brain tissues was extracted
using SDS Lysis Buffer (Beyotime, China). The concen-
trations of the protein extracts were measured and cal-
culated using the Enhanced BCA Protein Assay Kit
(Beyotime, China). Equal amounts of protein from each
extract were subjected to 12% SDS-PAGE gel electro-
phoresis. Separated proteins were transferred to nitrocel-
lulose (NC) membranes in Tris-glycine buffer for 1 h at
100 mA. The NC membranes were blocked with 5%
skim milk at 37 °C and 50 rpm for 4 h and incubated
overnight with the diluted iNOS primary antibody
(1:1000, provided by Dr. Xu) and GAPDH antibody
(1:1000, Beyotime, China) followed by a 1 h incubation
with a horse-radish peroxidase (HRP)-conjugated goat
anti-rabbit IgG (1:5000, Bioss, Beijing) at 37 °C and
50 rpm. The signals were detected by X-ray film (Kodak,
USA), and the corresponding protein expression levels
were calculated according to greyscale values of the
iNOS and GADPH bands.

Statistical analyses

GraphPad Prism 5 statistical software was used to analyse
the data. When a significant value (P < 0.05) was obtained
by one-way ANOVA, further analysis was carried out. All
data showed a normal distribution and passed equal vari-
ance testing. Differences between means were assessed
using Tukey’s honest significant difference test for post
hoc multiple comparisons. Data are expressed as the
mean + SD of 6 observations.
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Fig. 1 Ultrastructural observations in the brain tissues of chickens.
Panels A, B, C, D and E were the histology of the cerebrum, cerebellum,
thalamus, brainstem and myelencephalon tissue in the control group,
respectively. Panels a, b, ¢, d and e represented the histology of the
cerebrum, cerebellum, thalamus, brainstem, and myelencephalon tissue
in the As,Os treated groups at 90 d (H groups)
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Results

All treatment groups showed no mortality during our
experiments when compared with the controls. We ob-
served no significantly differences between the feed in-
take, water intake and the body weight of As,O3-treated
group and the control group.

Ultrastructural changes

The brain tissues from the control groups showed a nor-
mal ultrastructure with cells that had smooth rounded
nuclei, intact nuclear membranes, normally distributed
chromatin, and integrated mitochondria with normal
cristae (Fig. 1A-E). Arsenic treatment caused extensive
injury of the brain tissues. The mitochondria in brain
tissues of the arsenic groups were swollen and vacuolated
with degeneration or loss of cristae. The cells showed
typical chromatin condensation and margination, fusion
of nuclear membrane, and shrinkage of their nuclei. In
addition, the nuclei and organelles of some cells were
unclear (Fig. 1a-e).
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Effects of As,03; on NF-kB mRNA levels in the brain tissues
of chickens

The NF-kB mRNA levels in the brain tissues treated
with As,O3 are shown in Fig. 2. The NF-«B levels in-
creased in a dose-dependent manner in the cerebrum,
cerebellum, thalamus, brainstem and myelencephalon
tissues compared with the control group (P < 0.05). The
NF-kB mRNA levels also increased in a time-dependent
manner except the L group of cerebellum, which increased
first and then decreased (P < 0.05).

Effects of As,03 on the iINOS mRNA levels in the brain
tissues of chickens

The mRNA levels of iNOS were displayed in Fig. 3. The
iNOS mRNA levels were found to be significantly in-
creased in a time-dependent manner after As,Oj3 treat-
ment in the cerebrum, cerebellum, thalamus, brainstem
and myelencephalon tissues compared with the control
chickens (P < 0.05). The mRNA levels of iNOS also in-
creased in a dose-dependent manner except for the H
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group in the cerebellum, which was lower than that of
the corresponding M group at 90 d (P < 0.05).

Effects of As,03 on the COX-2 mRNA levels in the brain
tissues of chickens

The COX-2 mRNA levels in the cerebellum, thalamus
and brainstem tissues of chickens treated with As,O3
increased in a time- and dose-dependent manner com-
pared with the controls (Fig. 4, P < 0.05). However, the
COX-2 mRNA levels of the H group was lower than that
of the M group in the cerebrum at 90 d, whereas the
COX-2 mRNA levels in the L and M groups increased
in a time- and dose-dependent fashion (P < 0.05). The
COX-2 mRNA levels of the H group were slightly lower
than those of the corresponding M group in the myelen-
cephalon tissue at 30 d, whereas the COX-2 levels were
found to be obviously increased in a dose-dependent
manner at 60 d and 90 d (P < 0.05).

Effects of As,05; on the mRNA levels of PTGEs in chicken
brain tissue

The mRNA levels of PTGEs increased in a time- and
dose-dependent fashion in the cerebrum, cerebellum,
and thalamus of chickens exposed to As,O3; compared
with the controls (Fig. 5, P < 0.05). In the brainstem, the
L and M groups showed an increasing time- and dose-
dependent trend (P < 0.05); however, at 60 d, the H
group had slightly increased mRNA levels of PTGEs
compared with the L group (P < 0.05). In the myelen-
cephalon, all groups except the H group showed a dose-
dependent increasing trend (P < 0.05) in the mRNA
levels of PTGEs. The H group had lower mRNA levels
of PTGEs at 90 d than at both the 30 and 60 d time
points (P < 0.05).

Western blot analysis of the iNOS levels
As,Oj3 treatment for a period of 90 days resulted in a
significant increase (P < 0.05) in the protein expression
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Fig. 4 Effects of As,03 on the COX-2 mRNA levels in the brain tissues. a-e represented the COX-2 mRNA levels in the cerebrum, cerebellum,
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of iNOS as detected by western blot (Fig. 6). The results
revealed that iNOS protein expression was significantly
increased in the cerebellum, thalamus, brainstem and
myelencephalon tissues in a dose-dependent manner
compared with the control group (P < 0.05). iNOS pro-
tein levels increased at different levels in diverse tissues.
Compared with the control group, the iNOS protein
levels in the cerebrum tissues of the As,Os-treated
groups increased at 30 d, decreased at 60 d, and slightly
increased at 90 d (P < 0.05) compared with controls.

Discussion

As a natural component of the environment, animals easily
access to relatively low levels of arsenic by eating food,
breathing air, and drinking water [38]. The respiratory, car-
diovascular gastrointestinal, haematological, renal, dermal,
reproductive, and neurological toxicity of arsenic have been
recorded for centuries [2]. Therefore, it is valuable to re-
search how environmental arsenic exposure affects organ-
ism health, particularly at low levels. One of the risk factors
of neurological toxicity is arsenic. The acute or chronic
exposure to inorganic arsenic causes arsenic-associated
neurotoxicity in humans that cause behavioural alterations
in turn [39, 40]. In this study, we performed an ultrastruc-
ture assay of chicken brain tissues and found that arsenic

trioxide exposure caused typical features of injury such as
fusion of the nuclear membrane, nucleus shrinkage, chro-
matin condensation, and margination. The As,O3-induced
neural injury could further trigger host defences, such as an
inflammatory response. Therefore, we investigated the ef-
fect of As,O3 on the expression of inflammatory cytokines
in the brain tissues of chickens.

When organisms are exposed to heavy metals, NF-kB
level increases, interact with reactive oxygen species
(ROS) [41] and accelerate the generation of inflamma-
tory cytokines [42]. In our study, the expression of NF-
kB was assessed by qRT-PCR, and we confirmed that
NF-«B expression was significantly increased in a time-
and dose-dependent manner except in the cerebrum
and brainstem tissues from the As,Os-treated L group
(P < 0.05). The expression of NF-kB was similar trend
in a time- and dose-dependent manner in five brain tis-
sues. Increased NF-kB activity has been found in the
brain tissues of patients with Alzheimer’s disease and
takes part in the neurodegenerative process [43]. Our
results showed that arsenic activated NF-kB expression
in the brain tissues of chickens, which might further
induce the expression of other pro-inflammatory genes
such as TNF-q, IL-6, iNOS, and COX-2 involved in the
inflammatory process.
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NOS expression has a wide range of distribution and
has been found in endothelial cells, glial cells, neurons,
and perivascular nerves [27, 28]. iNOS is a member of
the NOS family and is expressed in inflammatory cells
and nerve cells including astrocytes and microglia [44—46].
Thus, iNOS is well known to be abundant in brain tissue
[47, 48]. In our study, we examined iNOS mRNA and pro-
tein levels by qRT-PCR and western blot, respectively. The
iNOS mRNA levels were significantly increased in the brain
tissues of the As,O3-treated groups except for the cere-
bellum tissues of the H group and the cerebrum tissues
of the L group (P < 0.05), suggesting that iNOS might
play a role in inducing brain tissue inflammation upon
arsenic exposure. In the cerebrum, there was a fluctu-
ation in protein expression that may have been related
to post transcriptional regulation of gene expression
[49]. Madrigal et al. reported that the iNOS level could
be decreased in the brain cortex of animals treated with
an NF-«B inhibitor [50]. This provides further evidence
that in our study, the activation of NF-«xB through ar-
senic exposure induced iNOS production in different
brain tissues.

In addition, it is believed that COX-2 is of primary
importance in the inflammatory response [51]. Several
studies have shown that kainic acid can lead to the

induction of COX-2 expression and neuronal apoptosis.
Excitotoxin induces neuronal death in vitro and is ac-
companied by a selective elevation in the mRNA level
of COX-2. Nonsteroidal anti-inflammatory drugs cause
the contents of COX to vary in vivo [52]. These obser-
vations demonstrate that the expression of COX-2 may
be involved in the pathway leading to neuronal death.
COX-2 expression and the subsequent prostaglandin
E2 (PTGE2) production are both used as prognostic
markers of inflammation [53]. Additionally, these two
markers are regarded as targets of therapeutic interven-
tion during the inflammatory response. In the tissues
damage, enzymes of iNOS and cyclooxygenase-2 (COX-2)
could induce the generation of prostaglandin E synthase
(PTGEs) [34]. And following the initiation of COX-2
expression, TNF-a could induce the activation of NF-kB
in the COX-2 promoter [54]. Consistent with these previ-
ous studies, the mRNA levels of COX-2 and the PTGEs
were up-regulated in time- and dose-dependent manners
in the brain tissues from As,Os-treated chickens
(P < 0.05) compared with the control group, especially
myelencephalon. The results illustrated that NF-kB activa-
tion also up-regulated the expression of iNOS, COX-2
and the PTGEs to take part in an arsenic-induced inflam-
matory response in the brain tissues of chickens.
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Conclusion

In conclusion, we demonstrated that arsenic exposure
in chickens affected the expression of inflammatory
cytokines in their brain tissues. Arsenic could trigger
host defence and induce an inflammatory response in
the brain tissues of chickens. The mRNA levels of NF-
kB, iNOS, COX-2 and PTGEs and the protein levels of
iNOS were significantly up-regulated in the brain tis-
sues from As,Os—treated chickens compared with the
controls. The mechanisms of neurotoxicity induced by
arsenic could lead to inflammatory response in chicken
brain tissues.

Additional file

Additional file 1: Table S1. Primers used for quantitative real-time PCR.
(DOC 33 kb)
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