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Abstract: A necessary pre-processing data analysis step is the removal of adapter sequences from the
raw reads. While most adapter trimming tools require adapter sequence as an essential input, adapter
information is often incomplete or missing. This can impact quantification of features, reproducibility
of the study and might even lead to erroneous conclusions. Here, we provide examples to highlight
the importance of specifying the adapter sequence by demonstrating the effect of using similar
but different adapter sequences and identify additional potential sources of errors in the adapter
trimming step. Finally, we propose solutions by which users can ensure their small RNA-seq data is
fully annotated with adapter information.
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Small non-coding RNAs comprise short RNAs less than 200 nt in length, including microRNAs
(miRNAs), Piwi-interacting RNAs (piRNAs) and small nucleolar RNAs (snoRNAs) and which have a
variety of functions. Next generation sequencing (NGS) is the most common technique for studying
small RNA expression. An NGS experiment requires the construction of a library, which includes
ligation of an adapter that acts as a binding site for priming the sequencing reaction and capturing
the endogenous small RNA inserts [1,2]. Due to the short insert size, the 3’ adapter sequence is
commonly included in the raw data reads and removing the adapter from raw reads is a necessary data
analysis step. Most studies consider adapter trimming a straightforward pre-processing step. For other
NGS experiments such as RNA-seq and ChIP-seq, the insert size is generally longer and the adapter
trimming step has less impact. However, there are many issues that can affect the trimming output,
which might influence further downstream analysis. For example, under- or overtrimming a read can
make a significant difference in the quantification of small RNAs of interest. The problem is further
exacerbated when mismatches are allowed during mapping. However, an even more serious challenge
is ensuring that the adapter sequence is available, or correctly specified. For example, the adapter
sequence in the instruction manual for the NEBNext Small RNA Library Prep Kit for Illumina is
specified as:

5’-rAppAGATCGGAAGAGCACACGTCT-NH2-3’

where the rApp, a 5’-adenylated termini, is removed when the 3’ adapter and inserted RNA fragment
are ligated by the T4 RNA ligase [3].

However, in several studies, for example, [4–6] the rApp was replaced with an additional Adenine
so the 3’ adapter sequence was specified as:
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AAGATCGGAAGAGCACACGTCT

It is unclear whether this modified adapter sequence was used for adapter trimming, but it
highlights how mistakes can occur and be propagated in subsequent publications.

Many tools are available for 3’ adapter trimming such as cutadapt [7], fastx_clipper
(http://hannonlab.cshl.edu/fastx_toolkit/) and Trimmomatic [8] and they generally require a
specified adapter sequence as mandatory input. However, while data portals such as The Gene
Expression Omnibus (GEO) and Sequence Read Archive (SRA) require deposition of original raw
data files, they do not require adapter information as mandatory data. Thus, several tools have been
developed to identify adapter sequence from the raw sequencing data, e.g., minion (part of the kraken
package [9]), DNApi [10] and AdapterRemoval v2 [11]. However, these predicted adapter sequences
should be used with care.

Thus, there are two situations that may lead to incorrect specification of adapter sequence in
read trimming. Firstly, different vendors use distinct or similar 3’ adapter sequences in their small
RNA sequencing library preparation kits (Supplementary Table S1). Moreover, some kits have been
discontinued or outdated. For example, the ScriptMiner Small RNA-Seq Library Preparation Kit from
Epicentre was discontinued in December 2013 and version 1 of the TailorMix kit is outdated. Secondly,
adapter information is not always available. As mentioned above, the GEO and the SRA do not require
adapter related data as mandatory information. A report in 2016 found that only one third of NGS
entries in the GEO provide adapter information [10]. Moreover, even when the library preparation kit
is specified, it is not always straightforward to find the corresponding adapter sequence. For example,
NEBNext, NEXTflex and TruSeq specify the sequence in their product instruction manuals; Lexogen
and QIAseq provide the information on their websites; the CleanTag 3’ adapter sequence is specified in
a publication [12]; and the TailorMix, the SMARTer and the TrueQuant (used by GenXPro) adapters are
declared neither on their websites nor manuals. Additionally, incorrect kit information is sometimes
given in publications. For example, some studies have reported preparing libraries using the TailorMix
miRNA Sample Preparation Kit v7 [13,14] instead of the currently available kit v2 (as of August 2019,
https://www.seqmatic.com/products/tailormix-mirna-sample-preparation-kit-v2/).

To review the situation in 2019, we retrieved small RNA-seq data entries from the SRA by
searching for “miRNA-Seq[Strategy]” and obtained 41,607 entries (access date 27 May 2019). TruSeq
is the most used kit (although 335 experiments specified this as TrueSeq) followed by NEBNext
(see Supplementary Table S2). However, still less than half (47%) of entries provide kit information.
For the 53% SRA entries are lacking this data, software tools are needed to determine the best guess
for the adapter sequence to proceed with trimming. As a simple test, we searched for the adapter in
the data from [15] using minion [9], DNApi [10] and AdapterRemoval [11]. Of these tools, only DNApi
gave the correct, but partial, sequence. The results are shown in Supplementary Table S3.

To determine the impact of adapter sequence and trimming protocol on trimming results, we used
data from a study by Dard-Dascot et al. [15]. For details, see “Materials and Methods” in the
Supplementary Materials. The goal of this study was to identify bias in various library kits by
resequencing the same samples using different kits. One sample included six synthetic RNAs, RNA1
to RNA6, of known sequence (see sequences in Supplementary Table S4, from [15]) and these were the
focus of our study. Firstly, we investigated the effect of using three similar adapter sequences on the
dataset prepared by the NEBNext kit. The three sequences were the correct adapter sequence from
the kit manual (NEBNext_trim01), the sequence with an additional A at the 5′ end (NEBNext_trim02)
and the partial adapter sequence from the CATS trimming instructions (NEBNext_trim03) with
two nucleotide changes relative to the correct adapter sequence (Figure 1A). The results are shown
in Figure 1B–D. Figure 1B shows the effect of using the three different adapters (NEBNext_trim01,
NEBNext_trim02 and NEBNext_trim03) on the read count of RNA1 to RNA6 in terms of the percentage
of perfectly matched reads identified in the trimmed data. RNA6 is not detected by any of the kits,
suggesting an issue with sequencing rather than a trimming problem. When the correct adapter,
NEBNext_trim01, is used all the RNAs are detected to varying degrees. RNA1, RNA2 and RNA5, are
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the three most highly represented—see Supplementary Table S5 for counts—with more than 90% of
these RNAs perfectly trimmed from the raw data. However, when the highly similar NEBNext_trim02
and NEBNext_trim03 adapters were used, fewer than 1% of the reads were correctly trimmed. In this
case, an analysis would fail to detect the presence of these RNAs.

Figure 1. Use of incorrect adapter sequence or trimming protocol can lead to incorrectly trimmed
reads and miscounting of reads mapping to features. The selected datasets are originally from [15],
samples containing six synthetic small RNAs prepared by the NEBNext and CATS kits. After trimming,
the Linux command grep -c was used for counting. (A) Top part of figure: Schematic of the different but
highly similar adapter sequences used in (B–D). Bottom section of figure: Different versions of the CATS
manual used for trimming protocol applied in (D). Legend under (A) Fill colour corresponds to the six
synthetic RNAs in the dataset, line colour corresponds to the two replicates for each sample. Sequence
for oligonucleotides are listed in Supplementary Table S5. (B) Choice of adapter sequence can have a
major impact on downstream analysis. Left: Use of the correct adapter sequence (NEBNext_trim01)
identifies the presence of 5 out of 6 synthetic small RNAs present in the NGS dataset. Middle and
right (NEBNext_trim02 and NEBNext_trim03): Using a highly similar adapter sequence that differs
by one or two nucleotides has a drastic effect on mapped reads with less than 1% of reads identified.
(C) In some case detailed trimming instructions are required in addition to the adapter sequence.
The trimming sets CATS_trim01 and CATS_trim02 were trimmed by specifying the correct adapter
sequence, but few perfectly trimmed reads were detected. (D) The problem extends to incorrect
application of manufacturer’s protocol during read trimming. From left to right, trimming results after
following trimming instructions specified in the January 2017, March 2017 and September 2017 releases
of the manual. The instructions in the latest version are distinct from those provided in the previous
two versions and this is reflected in the number of identified reads, with the latest protocol identifying
notably fewer reads associated with the synthetic RNAs. CATS_trim01 was trimmed using the same
adapter sequence as CATS_trim05, demonstrating that for some kits, specifying the adapter alone is
not sufficient to achieve efficient read trimming.

To further confirm that this is not a kit-specific effect, we also tested the TruSeq dataset with
eight different adapter sequences including the correct TruSeq 3’ adapter sequence. We found the
same results as the NEBNext dataset. Any additional or removed nucleotide at the 5’ end of the
adapter gives a different trimming result (Figure S1A). Thus, the correct adapter sequence is required
for correct read trimming, even a single base difference in the adapter sequence can introduce large
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changes in the digital gene expression (Figure S1B). Similar results are also found within the data
from [6], see Supplementary Figure S2 and Supplementary Table S6.

However, providing the correct kit information does not always guarantee correct adapter
trimming because of specific procedures in the library preparation protocol. For example, in the
CATS Small RNA-seq protocol, single stranded RNAs are first polyadenylated at the 3’ end, and then
cDNA synthesis is performed in the presence of a poly(T) anchored adapter. Therefore, in addition to
the adapter sequence, the poly(A) between the RNA insert and adapter needs to be properly removed.
Figure 1C shows the result of trimming the raw data prepared with the CATS Small RNA-seq Kit by
simply specifying the provided adapter sequence. In this case, virtually no reads were retrieved after
trimming. Once again, failure to following the manufacturer’s protocol for adapter trimming will
impact the trimmed output. Similar problems will arise in the dataset prepared by NEXTflex, which
requires removal of four additional random nucleotides after adapter removal. Few adapter trimming
tools provides built-in functions to handle these additional nucleotide removal steps.

Figure 1D shows the results from following the detailed trimming instructions provided in the
CATS manual using three different versions of the user manual dated January 2017, March 2017 and
September 2017. The instructions in the first two versions are identical, and detect notably more reads
than following the instructions in the latest version of the manual, only read RNA5 is consistently
reported after all three procedures. Thus, reporting the kit version is necessary to allow users to
reproduce the trimming, however this information is not always provided, for example, in [15].

Additionally, the provided trimming instructions are not effective for the two synthetic RNAs
that have an adenine at the 3’ end (RNA2 and RNA4 in this case). The perfectly trimmed reads from
these two RNAs were relatively few with less than 10 untransformed raw counts, despite thousands of
untrimmed reads present in the raw data (see Supplementary Table S5).

Thus, analysis of sequencing data is only reproducible with access to accurate and unambiguous
specification of the adapter sequence that was used in library preparation. Missing adapter sequence
represents a major obstruction to taking advantage of the vast amount of publicly available data.
Providing comprehensive and consistent information regarding the adapter sequence benefits the
research community in general. We therefore propose the three following solutions to increase the
reproducibility and accuracy in small RNA-seq studies.

Firstly, most journals publishing articles on sequencing analysis require that users deposit
accession numbers to public databases such as the SRA, GEO or ArrayExpress. At the same time,
editors could require the adapter sequence to be specified in submitted small RNA sequencing studies.
Researchers can also take responsibility by ensuring they include all relevant detail about the adapter,
as well as kit information.

Secondly, the fastest and most straightforward approach is to include adapter information as
mandatory metadata which needs to be filled out as part of the process of submitting sequencing data
to public data repositories such as the SRA. Implementing the FAIR (findable, accessible, interoperable,
reusable) principles in data repositories could maximize the sharing and reproducibility of sequencing
data [16]. The detailed information regarding library kit version and adapter sequence should be
included at this point.

Thirdly, consolidated information from kit manufacturers, offering practical adapter trimming
advice, as well as archived versions of adapter sequences, would also be helpful to the research
community. Biases, including barcoding, structural and ligation bias are well known and have
been discussed in the context of small RNA sequencing [17–21]. Manufacturers are continuously
developing or revising kits to achieve more efficient ligation, reduce bias and improve performance,
e.g., the NEBNext and NEXTflex kits are currently at version 3, and the current TailorMix kit is version
2. Any information about adapter updates is essential for users and information should be readily
available. As poly(A) based approaches are becoming more popular in library preparation, protocols
for poly(A) removal should also be defined for accurate adapter trimming. Many small RNAs (such as
miRNAs) contain adenines at their 3’ end and these may be mis-trimmed as part of poly(A) and lead
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to mis-quantitation. The CATS kit from Diagenode provides ready-to-use trimming instructions in
their manuals, and these were updated when they renewed their kit. Nevertheless, our simple analysis
indicates that trimming these sequences ending in one or more adenines remains a challenge.

Based on their crucial role in small RNA-seq data analysis, adapter information should follow
findable, accessible, interoperable and re-usable (FAIR) principles [22]. The reality is that accurate
adapter trimming is not a straightforward process. Consequently, more attention needs to be paid to
this step to ensure the correct sequence and protocol is used. Access to correct and detailed adapter
information will help to minimize some of the problems associated with this issue.

Supplementary Materials: The following are available online at http://www.mdpi.com/2311-553X/5/4/49/s1.
Figure S1: Use of incorrect adapter sequence or trimming protocol can lead to miscounting of reads mapping to
features; Figure S2: Trimming analysis results for dataset from [6]. Table S1: 3’ adapters for small RNA-seq kits for
the Illumina platform; Table S2: The number of SRA entries that mention library preparation kit in experimental
description as of 27 May 2019; Table S3: Predicted adapter sequence from raw sequencing data using three
tools, including Minion, DNApi and AdapterRemoval; Table S4: Sequences for the six synthetic oligonucleotides
from [15] shown in Figure 1 and Table S5; Table S5: Un-transformed count table for samples in dataset[15] for
raw data and using the various adapter sequences as specified in Figure 1; Table S6: Trimming results for top
15 most abundant miRNAs in [6]; Table S7: Datasets used in this analysis. Including their accession number,
library preparation kit, sample information and reference; Table S8: Trimming sets generated in the analyses with
different adapter sequence and corresponding trimming commands.
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