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Background: Adenosine deaminase (ADA) via two isoenzymes, ADA1 and

ADA2, regulates intra- and extracellular adenosine concentrations by

converting it to inosine. In the central nervous system (CNS), adenosine

modulates the processes of neuroinflammation and demyelination that

together play a critical role in the pathophysiology of multiple sclerosis (MS).

Except for their catalytic activities, ADA isoenzymes display extra-enzymatic

properties acting as an adhesion molecule or a growth factor.

Aims: This study aimed to explore the distribution and activity of ADA1 and

ADA2 in the plasma and the CSF of MS patients as well as in the human brain

microvascular endothelial cells (HBMEC), human brain vascular pericytes and

human astrocytes.

Methods and results: The enzyme assay following reverse phase-high

performance liquid chromatography (HPLC) analysis was used to detect

the ADA1 and ADA2 activities and revealed an increased ratio of ADA1 to

ADA2 in both the plasma and the CSF of MS patients. Plasma ADA1 activity

was significantly induced in MS, while ADA2 was decreased in the CSF, but

significance was not reached. The brain astrocytes, pericytes and endothelial

cells revealed on their surface the activity of ADA1, with its basal level being

five times higher in the endothelial cells than in the astrocytes or the pericytes.

In turn, ADA2 activity was only observed in pericytes and endothelial cells.

Stimulation of the cells with pro-inflammatory cytokines TNFα/IL17 for 18 h

decreased intracellular nucleotide levels measured by HPLC only in pericytes.

The treatment with TNFα/IL17 did not modulate cell-surface ATP and AMP

hydrolysis nor adenosine deamination in pericytes or astrocytes. Whereas

in endothelial cells it downregulated AMP hydrolysis and ADA2 activity and

upregulated the ADA1, which reflects the ADA isoenzyme pattern observed

here in the CSF of MS patients.
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Conclusion: In this study, we determined the impaired distribution of

both ADA isoenzymes in the plasma and the CSF of patients with MS.

The increased ADA1 to ADA2 ratio in the CSF and plasma may translate

to unfavorable phenotype that triggers ADA1-mediated pro-inflammatory

mechanisms and decreases ADA2-dependent neuroprotective and growth-

promoting effects in MS.

KEYWORDS

adenosine deaminase (ADA), adenosine, multiple scleorsis (MS), endothelium, ADA1,
ADA2, nucleotides

Introduction

Multiple sclerosis (MS) is a chronic inflammatory
neurodegenerative disease of the brain and the spinal cord
characterized by neuronal inflammation, demyelination and
degeneration of axons. In MS, peripheral lymphocytes infiltrate
the central nervous system (CNS) where they propagate
inflammatory events by further recruitment of immune cells
and activation of local glial cells (McFarland and Martin, 2007;
Ortiz et al., 2014). The neurovascular unit, or the blood-brain
barrier (BBB), broadly consists of the basement membrane,
endothelial cells, pericytes and the astrocytic endfeet which
together regulate the passage of molecules between the blood
and the CNS. Dysfunction of the BBB occurs early and focally in
MS and its increased permeability is a marker of MS-associated
neuroinflammation (Cramer et al., 2015; Spencer et al., 2018).

Adenosine signaling in neurons and glial cells plays a
significant role in neurological diseases due to its involvement
in neurotransmission, neuromodulation, inflammation,
regeneration, and regulation of BBB permeability to cells and
molecules (Dunwiddie and Masino, 2001). Under pathological
stimulation, cells extensively release ATP that promotes
pro-inflammatory responses by interaction with purinergic
receptors P2X and P2Y, while its breakdown product, adenosine,
manifests anti-inflammatory and immunosuppressive activity
(Domercq et al., 2019).

The metabolism of extracellular ATP is conducted
by cell-surface ecto-enzymes, broadly expressed in the
CNS (Zimmermann, 2008). These include ecto-nucleoside
triphosphate diphosphohydrolase 1 (eNTPD1, CD39), which
hydrolises adenosine triphosphate (ATP) via diphosphate
(ADP) to monophosphate (AMP), and ecto-5’-nucleotidase
(e5’NT, CD73) that dephoshorylates AMP to form adenosine.
Adenosine deaminase (ADA) catalyzes the deamination of
adenosine and deoxyadenosine into inosine and deoxyinosine,
respectively. It maintains catalytic activity intracellularly, on
the cell surface or as a soluble form in body fluids (Franco
et al., 1997). These processes seem to be controlled by the
release of cytokines on the cell surface after T cell activation

(Cordero et al., 2001). Higher serum concentrations of inosine
were observed in MS patients, and it has been concluded that the
activity of soluble ADA increases in MS (Polachini et al., 2014).
Similarly, ADA activity was enhanced in the cerebrospinal fluid
(CSF) of MS patients in an isolated case report (Samuraki et al.,
2017).

There are two isoenzymes of ADA, ADA1 and ADA2.
ADA1 has a higher affinity to adenosine and neutral optimal
pH. It is the most abundant in B and T lymphocytes and
essential in the development of the acquired immune system. Its
activity prevents the accumulation of toxic deoxyadenosine in
proliferative cells and decreases the extracellular concentration
of adenosine, which serves as an agonist for P1 receptors
(Garcia-Gil et al., 2021). ADA1 also interacts with dipeptidyl
peptidase-4 (CD26), causing the formation of ecto-ADA
(eADA), and A1 and A2 adenosine receptors, expanding
their activity in the striatum (Gracia et al., 2011). CD26 is
more abundant in microglia and astrocytes than in neurons.
Based on observation of CD26-ADA-A2AR complexes, it has
been concluded that ADA may take part in the interaction
between cells with CD26 antigen and those with adenosine
receptors, including neurons (Moreno et al., 2018). Our recent
studies revealed that also endothelial cells play a critical
role as a source of ecto-ADA1 activity that was upregulated
under endothelial activation and dysfunction (Kutryb-Zajac
et al., 2016, 2019). This may be of special importance in
the CNS, where microvascular endothelial-derived ADA can
mute protective pathways dependent on adenosine receptor
signaling (Bynoe et al., 2015). Although ADA2 deamination
is less active than ADA1 due to lower affinity to adenosine,
it may be crucial when adenosine concentrations are higher
for instance in inflammatory conditions and tumorigenesis
(Meyts and Aksentijevich, 2018). ADA2 is highly abundant
in myeloid and microglial cells, and its shortage leads to
vasculopathy, inflammation, hemorrhagic stroke, and various
neurological disorders (Sozeri et al., 2021). Unlike ADA1, ADA2
does not interact with CD26, but it has been speculated that
this isoenzyme can also bind to the cell surface and act as
an ecto-enzyme (Zavialov et al., 2010). Moreover, it has been
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shown that soluble ADA2 is a dominant ADA isoenzyme in
the human serum (Andreasyan et al., 2005). However, there
is a lack of reports regarding the activity of ADA isoenzymes
in MS patients. Therefore, this study aimed to analyze the
distribution of ADA1 and ADA2 in the plasma and CSF of
MS patients as well as determine these activities in the human
brain microvascular endothelial cells (HBMEC), brain vascular
pericytes and astrocytes.

Materials and methods

Human participants

Written informed consent was obtained from all patients
in accordance with the Declaration of Helsinki, and the study
was approved by the Independent Bioethics Committee For
Scientific Research at the Medical University of Gdańsk, Poland
under the license number: NKBBN/457/2019. Whole blood
was collected from MS patients (n = 7, F/M = 7/0) at age
27 ± 4.0 (mean ± SEM) presenting with the clinically isolated
syndrome (CIS) during a routine diagnostic procedure or non-
MS patients (controls, n = 8, F/M = 6/2) at age 48 ± 9.7
(mean ± SEM). Cerebrospinal fluid (CSF) was collected from
MS patients (n = 5, F/M = 4/1) at age 27 ± 4.0 (mean ± SEM)
presenting with the CIS during a routine diagnostic procedure
or non-MS patients (controls, n = 4, F/M = 3/1) at age 39 ± 8.4
(mean ± SEM) suspected of disorders requiring a lumbar
puncture for diagnosis. Immediately after collection the CSF
was centrifuged, aliquoted, and frozen at –80◦C. Whole blood
collected in plasma tubes was centrifuged, aliquoted, and stored
at –80◦C.

Determination of the plasma and
cerebrospinal fluid activities of
adenosine deaminase iso-enzymes

To determine the activities of soluble total ADA (tADA) and
ADA2 in plasma and CSF, 49 µL of each body fluid was pre-
warmed to 37◦C and incubated with adenosine (20 µM final
concentration) in the presence or absence of ADA1 inhibitor,
erythro-9-(2-hydroxy-3-nonyl) adenine (5 µM EHNA). After
30 min incubation, the reaction was stopped by deproteinization
with 1.3 M HClO4 (ratio 1:1). The samples were maintained
on ice for 15 min and centrifuged (20,800 × g, 4◦C, 15 min).
The supernatant was neutralized to pH 6.5–7.0 by 3 M K3PO4

and analyzed with HPLC-RP according to the modified method
described earlier (Smolenski et al., 1990). Briefly, 2 µL of the
sample was injected into a UHPLC system consisting of a Nexera
LC40 set and an SPD-M30A diode array detector equipped
with a high-sensitivity, 85 mm optical path cell (Shimadzu,
Japan). Analytes were separated on a ReproSil-Pur 120 C18-
AQ (150 × 2.0 mm ID, 4 µm) column with a dedicated

guard (Dr. Maisch, Germany) using gradient elution at a flow
rate of 500 µL/min. Column compartment temperature was
set to 23◦C. Mobile phase A consisted of 150 mM KCl and
150 mM phosphate buffer in ultrapure water, adjusted to pH
6 by controlling the ratio between mono- and dipotassium
orthophosphate salts. Phase B was a 15% acetonitrile solution
(v/v) of phase A. The gradient progression was as follows: 0 min,
0% B; 0.06 min, 0.5% B; 2.1 min, 2% B; 4.8 min, 22% B; 5.4 min,
100% B. The plateau was maintained for 1.2 min followed by
1.9 min of equilibration, resulting in a total analysis time of
8.5 min. Absorbance was monitored at 254 nm. Results were
shown as µmol/min/L for plasma and nmol/min/L for CSF. The
activity of ADA1 was determined by subtracting ADA2 activity
from the total ADA.

Cell culture and treatment

Conditionally immortalized HBMEC clone 18
(HBMEC/ci18), human brain vascular pericytes clone 37
(HBPC/ci37) and human astrocytes clone 35 (HASTR/ci35)
originally created to build a tri-cell in vitro BBB model were
used in this study in single-cell culture to investigate ADA
expression and activity as well as the effects of TNFα/IL17
treatment on ADA activity. The astrocytes were grown in
DMEM supplemented with 10% FBS, 1% N2 supplement-A
(Stemcell, #07152), 1% penicillin/streptomycin and 4 µg/ml
blasticidin S (for a detailed cell culture protocol see Furihata
et al. (2016). Pericytes were grown in the pericytes growth media
(ScienCell, #1201) supplemented with 4 µg/ml blasticidin S
as described by Umehara et al. (2018). The endothelial
cells were grown in EBM-2 BM (Cellab, CC-3162) (without
gentamicin) supplemented with 1% penicillin/streptomycin,
10 mM GlutaMax and 4 µg/ml blasticidin S as described by
Kamiichi et al. (2012). Endothelial cells were plated on collagen
I (Merck, C3867-1VL) coated plates and all cells were plated
in 24-well plates without blasticidin S. For treatment with
TNFα/IL-17, cells were serum-starved for 2 h before treatments
for 18 h with a mix of recombinant human TNFα (10 ng/ml)
(Bio-techne, 210-TA) and recombinant human IL-17A (50
ng/ml) (Bio-techne, 317-ILB). All cells were grown and cultured
at 33◦C, 5% CO2.

Determination of the rates of
adenosine triphosphate and adenosine
monophosphate hydrolysis and
adenosine deaminase iso-enzymes’
activities in blood-brain barrier cells

To measure cell-surface ecto-enzymes’ activities, cells were
incubated on 24-well plates with 1 ml of Hanks Balanced
Salt Solution (HBSS). The rate of ATP hydrolysis and AMP
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hydrolysis were analyzed in the presence of 1 µM S-
(4-Nitrobenzyl)-6-thioinosine (NBTI), nucleoside transporter
inhibitor and 0.1 µM deoxycoformycin (ADA1 and ADA2
inhibitor) after the addition of 50 µM ATP or AMP. Total
ADA activity was measured only in the presence of NBTI
after the addition of 50 µM adenosine. Cell surface ADA2
activity was measured in the presence of adenosine and
additional 5 µM EHNA (ADA1 inhibitor). After the addition
of substrates for ecto-enzymes, samples were collected after
0, 5, 15, and 30 min of incubation at 37◦C and analyzed
using HPLC-RP as described above. The rate of nucleotide
hydrolysis and adenosine deamination was calculated from a
linear phase of the reaction and expressed per protein content as
nmol/min/mg prot. Protein concentration was measured using
the Bradford method.

Determination of intracellular
nucleotide concentration in
blood-brain barrier cells

After 18 h treatment with 50 ng/ml IL17 and 10 ng/ml
TNFα, the cell medium was removed from 24 well plates
and the adherent cells were washed twice with HBSS. Then
300 µL ice-cold 0.4 M HClO4 was added and the plate was
frozen at –80◦C. After 24 h, the plate thawed on ice and froze
again. After thawing, the supernatant was aspirated and 3 M
K3PO4 was added to obtain a pH of 6.5. All samples were
centrifuged (20,800 × g, 4◦C, 10 min), and the supernatants
were used for the analysis of nucleotide concentrations with
RP-HPLC as described above. The results were expressed as
nmol/mg of protein.

Statistical analysis

Statistical analysis was performed using InStat software
(GraphPad, San Diego, CA, USA). First, the normality of data
distribution was assessed using the Shapiro–Wilk test. Then,
comparisons of mean values were evaluated and parametrical
on non-parametrical tests were used followed by post hoc tests
as described in figure legends. The exact value of n was provided
for each type of experiment. Statistical significance was assumed
at p < 0.05.

Results

The increase of total activity of both ADA isoenzymes
(tADA) in plasma of MS patients compared to healthy subjects
(Figure 1A) resulted from enhanced ADA1 activity (Figure 1B),
whereas no significant differences were observed in ADA2
activity (Figure 1C). The ratio of ADA1 to ADA2 was higher in

the plasma of MS patients than in the control group (Figure 1D).
While we did not observe any significant differences between
activities of tADA (Figure 2A) and ADA1 (Figure 2B) or ADA2
(Figure 2C) alone in the CSF between MS patients and the
control group, the ratio of ADA1:ADA2 was increased in the MS
group (Figure 2D).

In the single-cell culture, we observed the highest activity of
total cell-surface eADA in HBMEC as compared to human brain
vascular pericytes (HBVP) and human astrocytes (HASTR)
(Figures 3A,B). Pericytes and endothelial cells expressed both
eADA1 and eADA2, while astrocytes showed only slight activity
of ADA1 (Figures 3C,D).

Then, we analyzed the effects of inflammatory stimulation
by IL17/TNFα on the BBB cells’ intracellular nucleotide
status and cell-surface nucleotide-converting activities that
included eADA. Treatment with IL17/TNFα did not change cell
morphology (Figures 4A–G) and only slightly affected adenine
nucleotide levels (Figures 4C–G). The rates of extracellular ATP
and AMP hydrolysis, as well as adenosine deamination, were
not affected by IL17/TNFα treatment of astrocytes (Figures 4H–
L). In turn, the intracellular concentration of ATP, ADP and
NAD as well as ATP/ADP and ATP/NAD ratios were decreased
in IL17/TNFα-treated pericytes (Figures 5A–G). Despite that,
in these conditions, we did not observe any changes in
cell-surface nucleotide hydrolysis and adenosine deamination
(Figures 5H–L). In contrast, endothelial cells after IL17/TNFα

treatment showed no changes in intracellular nucleotides
(Figures 6A–G). Extracellular ATP hydrolysis was either not
affected (Figure 6H), but the rate of AMP hydrolysis was
higher in IL17/TNFα-treated endothelial cells (Figure 6I). The
activity of total eADA tended to be higher after the treatment
(Figure 6J). Significant differences were also observed in ADA
isoenzymes. eADA1 activity was increased (Figure 6K), while
eADA2 decreased (Figure 6L) after IL17/TNFα stimulation of
endothelial cells. Representative chromatograms for the analyses
of nucleotide and adenosine conversions on the surface of
endothelial cells are shown in Figure 6M.

Discussion

This study for the first time revealed the alterations in ADA
isoenzymes’ activities in patients with MS. In both plasma and
CSF, the increased ratio of ADA1 to ADA2 was observed, even
though total ADA activity in the CSF was 100 times lower
than in the plasma. Soluble ADA1 was significantly higher in
MS patients’ plasma and tended to be higher in the CSF. The
activity of ADA2 was diminished especially in the CSF. HBMEC,
human brain vascular pericytes and human astrocytes revealed
on their surfaces the activities of nucleotide and adenosine-
converting ecto-enzymes. Under inflammatory stimulation with
IL17/TNFα, we observed a lower rate of AMP hydrolysis and
higher activity of eADA1 in endothelial cells. This can promote
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FIGURE 1

Soluble total adenosine deaminase (ADA) activity was increased in the plasma of MS patients compared to healthy subjects but individual ADA
iso-enzymes displayed activity changes in opposite directions. Plasma total soluble adenosine deaminase (tADA) (A), ADA1 (B) and ADA2 (C)
activities and ADA1 to ADA2 ratio (D) in patients with multiple sclerosis (n = 7) and healthy controls (n = 8). Results are shown as mean ± SEM;
∗p < 0.05 by Student t-test (A–D); ns, not significant.

FIGURE 2

The ratio of soluble adenosine deaminase ADA1 to ADA2 activity was increased in the CSF of MS patients compared to healthy subjects.
Cerebrospinal fluid (CSF) total soluble adenosine deaminase (tADA) (A), ADA1 (B) and ADA2 (C) activities and ADA1 to ADA2 ratio (D) in patients
with multiple sclerosis (n = 5) and healthy controls (n = 4). Results are shown as mean ± SEM; ∗p < 0.05 by Student t-test (D); ns, not significant.

an adverse pattern that removes adenosine from its extracellular
signaling. Treatment with IL17/TNFα did not affect ecto-
nucleotidases and ADA isoenzymes in pericytes and astrocytes,
but heightened eADA1 activity. It also diminished ADA2 in
endothelial cells, reflecting the same ADA isoenzyme pattern
that was observed in the CSF of MS patients (Figure 7).

Burnstock (1972) proposed the concept of purinergic
signaling in the CNS in 1972. Over the years, he and the others
demonstrated that both ATP and its precursore adenosine are
essential for cell communication and signaling as purinergic
receptors are widely expressed in neurons, oligodendrocytes,
microglia, astrocytes, pericytes, and microvascular endothelial
cells (Zarrinmayeh and Territo, 2020; Aslam et al., 2021;
Hørlyck et al., 2021). ATP can be released at synapses together
with other neurotransmitters, or extra-synaptically via plethora
non-lytic mechanisms including vesicular exocytosis, ATP-
binding cassette (ABC) transporters, connexin hemichannels,
and pannexin channels (Lohman et al., 2012). When ATP,
physiologically present inside the cells at millimolar level, is

extensively released to intercellular space and increases its
extracellular concentration from nanomolar to micromolar,
immune cells can recognize it as an injury signal (Di Virgilio
et al., 2020). The increase in ATP concentration is interpreted
as a danger signal by the cells and triggers innate and adaptive
immune responses via interaction with P2 purinergic receptors
(Junger, 2011; Domercq et al., 2013).

In MS, modulated expression of P2Y12, P2X4 and P2X7
receptors stimulates the release of proinflammatory chemokines
and cytokines as well as immune cell migration and proliferation
that leads to demyelination and axonal damage (Domercq
et al., 2019). P2 receptor activation can be downregulated
by cell-surface ecto-nucletidases that hydrolyze nucleotides to
anti-inflammatory adenosine (Zimmermann et al., 2012). This
adenine nucleotide derivative directly affects G protein-coupled
adenosine receptors A1, A2A, A2B, and A3 on the surface
of immune and brain cells having protective effects in MS
(Sánchez-Gómez et al., 2013). Especially decreased signaling
via A1 and A2A adenosine receptors seem to be linked to
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FIGURE 3

The activity of both cell-surface ecto-adenosine deaminase (eADA) iso-enzymes was highest in the brain microvascular endothelial cells.
Representative images of the human brain astrocytes (HASTR), human vascular pericytes (HBVP) and human brain microvascular endothelial
cells (HBMECs), scale bar = 50 µm (A). The activities of cell-surface total eADA (B), eADA1 (C) and eADA2 (D) in HASTR, HBVP and HBMEC (B).
Results are shown as mean ± SEM, N = 3 independent experiments; n = 6 biological replicates per experiment; ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001 by
One-way ANOVA followed by Kruskal-Wallis post-hoc test (n = B–D); ns, not significant.

neuroinflammation and demyelination. It has been shown that
chronic administration of caffeine, an A1 receptor antagonist,
resulted in the augmented expression of the A1 receptor in
microglia, together with a reduction in the severity of the
experimental allergic encephalomyelitis (EAE), the model of
MS, accompanied by neuroinflammation and demyelination
(Tsutsui et al., 2004). In turn, A2A adenosine receptors
are highly expressed on infiltrating immune cells inside MS
plaques correlating to tissue damage (Cekic and Linden, 2016).
Moreover, in murine monocytes, knock-out of the A2A receptor
substantially upregulated TNF-α production, while stimulating
the A2A receptor with the agonist, CGS21680 produced a
significant downregulation in TNF-α production (Haskó et al.,
2000; Zhang et al., 2005). These observations were confirmed
by the elevated TNF-α levels in the CSF of MS patients
(Selmaj et al., 1995). Furthermore, in cultured lymphocytes from
untreated MS patients, the A2A receptor agonist inhibited the
release of TNF-α, IL-6, IL-1β, IFN-γ, and IL-17 following the
incubation with phorbol myristate acetate. This inhibitory effect

of the A2A agonist was abolished by the selective antagonist
SCH 442416 indicating A2A-dependent response (Vincenzi
et al., 2013).

Extracellular adenosine concentration is maintained by
the balance between its cell surface production from ATP
by ecto-nucleotidases, degradation by eADA, and cell uptake
by nucleoside transporters (Yegutkin et al., 2000; Burnstock
and Ralevic, 2014). Interestingly, it has been shown that
adenosine levels are reduced in the blood of MS patients
(Mayne et al., 1999). Adenosine is generated from the
breakdown of ATP by the activities of ecto-nucleoside
triphosphate diphosphohydrolase 1 (eNTPD1, CD39), and ecto-
5’nucleotidase (e5’NT, CD73), both extensively expressed in the
CNS (Wang and Guidotti, 1998; Braun et al., 2000). As we have
demonstrated in this study, all analyzed cells including brain
microvascular endothelial cells, brain vascular pericytes, and
astrocytes revealed substantial rates of extracellular ATP and
AMP hydrolysis that are mainly covered by CD39 and CD73
enzymatic activities. It has been shown before that CD73
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FIGURE 4

Treatment of HASTR with IL17 and TNFα did not affect cell-surface ecto-adenosine deaminase (eADA) activity. Representative images of human
astrocytes treated for 18 h with 50 ng/ml IL17 and 10 ng/ml TNFα, scale bar = 50 µm (A). Representative chromatogram with signals for
adenosine triphosphate (ATP), adenosine diphosphate (ADP), and nicotinamide adenine dinucleotide (NAD) in control (black) and
IL17/TNFα-treated (pink) astrocytes (B). Intracellular ATP (C) and ADP (D) concentration and ATP/ADP ratio (E), NAD (F) concentration and
ATP/NAD ratio (G) in IL17/TNFα-treated astrocytes. The rate of cell-surface ATP (H) and AMP (I) hydrolysis and the activity of cell-surface total
eADA (J), eADA1 (K) and eADA2 (L) in IL17/TNFα-treated astrocytes (C). Results are shown as mean ± SEM; N = 3 independent experiments;
n = 2 (C–G), n = 6 (H–L) biological replicates per experiment; ∗p < 0.05 by Student t-test; ns, not significant.

expression on brain endothelial cells regulates lymphocyte
immune surveillance between the blood and the CSF. Also,
treatment of primary human brain microvascular cells and
astrocytes with IFN-β upregulated CD73 expression and
inhibited transmigration of CD4+ T cells via an in vitro BBB
model indicating that the increased expression of CD73 is
protective in MS (Niemelä et al., 2008).

Our data showed that IL17/TNFα-stimulated HBMECs
decreased the rate of extracellular AMP hydrolysis resulting
in reduced adenosine production which, in consequence,
may diminish its protective effects. We did not observe
differences in ATP and AMP hydrolysis on the surface of
astrocytes after IL17/TNFα stimulation, but the decreased
CD73 expression has been demonstrated in astrocytes in the
EAE model where it mediated the reactivity of infiltrating T

cells (Zhou et al., 2019). Moreover, the basement levels of
extracellular ATP hydrolysis were similar in endothelial cells,
astrocytes, and pericytes, but among these cells, the rate of AMP
hydrolysis was the highest in untreated pericytes. Interestingly,
unlike other cells, pericytes were the most susceptible to
the decrease in intracellular nucleotide pool after IL17/TNFα

stimulation. Despite this, IL17/TNFα treatment did not induce
any differences in extracellular adenosine metabolism on their
surface. Nevertheless, as shown in previous works and this
study, brain vascular pericytes treated with pro-inflammatory
stimuli may be a significant source of extracellular ATP that can
enter purinergic signaling pathways (Hørlyck et al., 2021; Lee
et al., 2021).

The dysregulation of CD39/CD73 has also been reported
in microglia, where disrupted adenosine metabolism strongly
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FIGURE 5

Treatment of HBVP with IL17 and TNFα did not affect cell-surface ecto-adenosine deaminase (eADA) activity. Representative images of human
brain vascular pericytes treated for 18 h with 50 ng/ml IL17 and 10 ng/ml TNFα, scale bar = 50 µm (A). Representative chromatogram with
signals for adenosine triphosphate (ATP), adenosine diphosphate (ADP), and nicotinamide adenine dinucleotide (NAD) in control (black) and
IL17/TNFα-treated (pink) pericytes (B). Intracellular ATP (C) and ADP (D) concentration and ATP/ADP ratio (E), NAD (F) concentration and
ATP/NAD ratio (G) in IL17/TNFα-treated pericytes. The rate of cell-surface ATP (H) and AMP (I) hydrolysis and the activity of cell-surface total
eADA (J), eADA1 (K) and eADA2 (L) in IL17/TNFα-treated pericytes. Results are shown as mean ± SEM; N = 3 independent experiments; n = 2
(C–G), n = 6 (H–L) biological replicates per experiment; ∗∗p < 0.01; ∗∗∗∗p < 0.0001 by Student t-test (C,D) and Mann-Whitney U-test (E–G) ns,
not significant.

limited survival of knock-out microglia in vitro and reduced
microglia density in the cortex of knock-out mice (Braun
et al., 2000). In turn, pharmacological inhibition of adenosine
membrane transporter, the equilibrative nucleoside transporter
1 (ENT1), by dipyridamole together with activation of adenosine
receptors by adenosine, restored the microglial response in
CD39 knock-out mice (Matyash et al., 2017).

The last component that regulates the bioavailability of
adenosine for its signaling is deamination by ADA. Inside
the cells, ADA plays a minor role in adenosine metabolism
as most of this nucleoside is effectively phosphorylated to
AMP by adenosine kinase (ADK) that has a much lower
Km value for adenosine (∼1 µM) than ADA (25–150 µM)
(Zhulai et al., 2022). Although, intracellular ADA is critical
for maintaining a low concentration of deoxyadenosine,
which, via phosphorylation to dATP, can inhibit ribonucleotide

reductase (RNR) and suppress DNA synthase (Redelman
et al., 1984). This provides severe immunosuppressive effects
observed, for instance, in severe combined immunodeficiency
(SCID) patients, who have deficient ADA activity (Kuo et al.,
2020). However, precisely due to the inhibition of RNR and
immunosuppressive properties, deoxynucleoside derivatives,
such as cladribine (chlorodeoxyadenosine, CdA), became
disease-modifying therapies for MS (Giovannoni, 2017). While
CdA is a successful drug for relapsing MS, it is ineffective
in some cases (Deeks, 2018; Brochet et al., 2022). Initially, it
was thought that CdA is completely resistant to deamination
and can be fully converted to CdATP, inhibiting RNR and
further lymphocyte proliferation (Johnston, 2011). However,
it was later demonstrated that CdA can be transformed into
many non-active derivatives, including chlorodeoxyinosine by
ADA and chloroadenine by purine nucleoside phosphorylase
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FIGURE 6

Treatment of HBMEC cells with IL17 and TNFα induced eADA1 and decreased eADA2 activities. Representative images of human brain
microvascular endothelial cells (HBMEC) treated for 18 h with 50 ng/ml IL17 and 10 ng/ml TNFα, scale bar = 50 µm (A). Representative
chromatogram with signals for adenosine triphosphate (ATP), adenosine diphosphate (ADP), and nicotinamide adenine dinucleotide (NAD) in
control (black) and IL17/TNFα-treated (pink) HBMEC (B). Intracellular ATP (C) and ADP (D) concentration, ATP/ADP ratio (E), NAD concentration
(F) and ATP/NAD ratio (G) in IL17/TNFα-treated HBMEC. The rate of cell-surface ATP (H) and AMP (I) hydrolysis, the activity of cell-surface total
ecto-adenosine deaminase (eADA) (J), eADA1 (K) and eADA2 (L) in IL17/TNFα-treated HBMEC. Representative chromatograms with signals for
the determination of ATP hydrolysis, AMP hydrolysis and total adenosine deamination in control and IL17/TNFα-treated HBMEC (M). Results are
shown as mean ± SEM; N = 3 independent experiments; n = 2 (C–G), n = 6 (H–L) biological replicates per experiment; ∗p < 0.05 by Student
t-test (H,J) or Mann-Whitney U-test (K). ns, not significant; Inc. time, incubation time; AMP, adenosine monophosphate; Ado, adenosine; Ino,
inosine; Hypo, hypoxanthine; rt, retention time.
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FIGURE 7

The concept of extracellular nucleotide and adenosine metabolism in multiple sclerosis. ATP, adenosine triphosphate; ADP, adenosine
diphosphate; AMP, adenosine monophosphate; Ado, adenosine; Ino, inosine; CD39, ecto-nucleoside triphosphate diphosphohydrolase 1;
CD73, ecto-5’-nucleotidase; eNPP, ecto-pyrophosphatase/phosphodiesterase; eADA, ecto-adenosine deaminase; ADA1, adenosine deaminase
1; ADA2, adenosine deaminase 2; sADA1, soluble adenosine deaminase 1; sADA2, soluble adenosine deaminase 2; AR, adenosine receptors;
CD26, adenosine deaminase complexing protein 2/cluster of differentiation 26; P2X, purinergic 2X receptor subtype, P2Y, purinergic 2Y
receptor subtype. Created with BioRender.com.

(PNP), which is further deaminated to chlorohypoxanthine,
also by ADA (Scheible et al., 2013). Interestingly, an analysis
of short nucleotide polymorphisms (SNP) of the ADA gene
in a group of 561 MS patients revealed that ADA SNP
rs244072 was related to increased CSF levels of TNF-α,
IL-5, and RANTES and decreased levels of IL-10 (Bassi
et al., 2020). Moreover, the presence of the C allele was
associated with a tendency of increased lymphocyte count that,
most probably, was related to an increased ADA activity in
those patients, as lymphocytes are a key source of soluble,
intracellular, and cell-surface ADA activity (Kutryb-Zajac et al.,
2019). This can have serious implications for the use of
CdA treatment in MS and, as such, a selective targeting of
the ADA pathway could be more effective in the treatment
of MS.

Besides significant expression of ADA in the immune cells,
we observed its abundant activity on the surface of brain
microvascular endothelial cells that was much more effective
than in astrocytes and brain vascular pericytes. Interestingly,
the stimulation with IL17/TNFα only slightly affected the total
adenosine deamination rate, but significantly increased eADA1
activity and decreased eADA2. This finding sheds new light
on the importance of cell surface eADA in MS pathogenesis.
The greater amounts of soluble ADA that we observed in the
plasma and the CSF of MS patients testify to a phenotype

that reduces protective adenosine receptor signaling. This
can be the effect of ADA release from ADA-rich immune
cells during neuroinflammation. Furthermore, deregulated
cell surface eADA1 to eADA2 ratio in brain microvascular
endothelial cells that originated from the enhanced eADA1
and diminished eADA2 reflects soluble ADA isoenzyme pattern
in the CSF. This may be due to the possible shedding of
eADA isoenzymes from the surface of endothelial cells. On
the other hand, both ADA1 and ADA2 have extra-enzymatic
properties that can play a role in MS (Zavialov and Engström,
2005; Franco et al., 2007). ADA1 by the formation of trimeric
complexes with CD26 protein and adenosine receptors may
facilitate binding of lymphocytes to endothelial cells triggering
neuroinflammation (Moreno et al., 2018). Whereas decreased
ADA2 activity as a growth factor for M2-polarized macrophages
can redirect them, and the microglial cells, to the M1 pro-
inflammatory phenotype that, at early stages of MS, leads to
severe tissue damage in the CNS (Chu et al., 2018; Watanabe
et al., 2019; Kutryb-Zajac et al., 2021). Therefore both ADA
isoenzymes may serve as therapeutic targets for MS with
the potential to decrease the adhesion mode exhibited by
ADA1, inhibit their catalytic activity, or induce the growth
factor properties of ADA2 by, for example, the recently
proposed pegylated-ADA2 (PEG-ADA2) treatment (Wang
et al., 2021).
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Conclusion

In conclusion, the data here presented indicates that
the increased ADA1 to ADA2 ratio in MS CSF and
plasma may translate to an unfavorable phenotype that
triggers ADA1-mediated pro-inflammatory mechanisms and
decreases the ADA2-dependent neuroprotective and growth-
promoting effects.
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