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Abstract. Globally, colorectal cancer (CRC) is one of the 
most lethal and prevalent malignancies. Based on the presence 
of immune cell infiltration in the tumor microenvironment, 
CRC can be divided into immunologically ‘hot’ or ‘cold’ 
tumors, which in turn leads to the differential efficacy of 
immunotherapy. However, the immune characteristics of 
hot and cold CRC tumors remain largely elusive, prompting 
further investigation of their properties regarding the tumor 
microenvironment. In the present study, a predictive model 
was developed based on the differential expression of proteins 
between cold and hot CRC tumors. First, the differentially 
expressed proteins (DEPs) were identified using digital spatial 
profiling and mass spectrometry‑based proteomics analysis, 
and the pathway features of the DEPs were analyzed using 
functional enrichment analysis. A novel eight‑gene signa‑
ture prognostic risk model was developed (IDO1, MAT1A, 
NPEPL1, NT5C, PTGR2, RPL29, TMEM126A and TUBB4B), 
which was validated using data obtained from The Cancer 

Genome Atlas. The results revealed that the risk score of 
the eight‑gene signature acted as an independent prognostic 
indicator in patients with stage II CRC (T3‑4N0M0). It was 
also found that a high‑risk score in the eight‑gene signature 
was associated with high immune cell infiltration in patients 
with CRC. Taken together, these findings revealed some of 
the differential immune characteristics of hot and cold CRC 
tumors, and an eight‑gene signature prognostic risk model 
was developed, which may serve as an independent prognostic 
indicator for patients with stage II CRC (T3‑4N0M0).

Introduction

The composition and proportion of infiltrating immune 
cells varies across tumors, and may be associated with the 
specific biological properties of the tumor and its response 
to immunotherapy (1,2). Based on the characteristics of the 
tumor microenvironment (TME), tumors can be divided into 
‘cold’ and ‘hot’ types (3,4). Hot tumors often exhibit immune 
cell infiltration and immune activation, whereas cold tumors 
exhibit significant features of low immune cell infiltration (4). 
At present, colorectal cancer (CRC) with high microsatellite 
instability is generally considered to be a hot tumor, and thus, 
patients may benefit from anti‑PD‑1/PD‑L1 therapy (5‑7). 
Conversely, microsatellite‑stable (MSS) CRC exhibits 
profound heterogeneity regarding the immune ecosystem, and 
only a small percentage of patients are likely to benefit from 
immune‑based combination therapy (8,9). Although there is 
an in‑depth understanding of the molecular basis of CRC, the 
important contributing factors to the tumor immune micro‑
environment of CRC remain unclear (10). Therefore, further 
exploration is required to reveal the causes and characteristics 
of hot and cold colorectal tumors, which may be beneficial for 
the development of novel therapeutic strategies.

The infiltration of immune cells into tumors involves 
multiple processes and is influenced by intricate factors, such 
as tumor mutation burden (TMB), the presence of immune 
cells and the cytokines present (11,12). In general, tumors with 
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a higher TMB are considered to carry a higher neoantigen load 
that is essential for immune recognition and priming (13,14), 
whereas cold tumors are relatively incapable of initiating 
tumor immunity and being infiltrated due to a lower TMB and 
fewer neoantigens (15‑18). Antigen‑presenting cells (APCs) 
also serve a vital role in tumor immunity. Defects and altera‑
tions in tumor antigen processing and presentation machinery, 
such as the downregulated expression of the MHC‑I molecule, 
limit antigen presentation in the face of tumor antigens (19‑21). 
Dendritic cells, a type of APC, recruit T cells into the TME by 
secreting cytokines, such as CXCL10, the lack of which may 
lead to infiltration deficiency in cold tumors (22‑24). Deficient 
T‑cell homing to the tumor bed also accounts for immune 
infiltration deficiency in cold tumors (25). Previous studies 
have illustrated the association between the abnormal activa‑
tion of the tumor cell‑intrinsic oncogenic pathway and the 
absence of T‑cell infiltration in melanoma (26) and CRC (27). 
The aberrant production and interactions of chemokines (28) 
and the extensive tumor vasculature (29) have been confirmed 
to increase T‑cell infiltration in the tumor bed. In addition, 
immunosuppressive cells and cytokines can lead to T‑cell 
exclusion from the tumor bed; for example, cancer‑associated 
fibroblasts reduce T‑cell responses and exert immunosuppres‑
sive effects through the production of the extracellular matrix, 
CXCL12, TGFβ and IL‑6 (30‑33).

Patients with CRC exhibit varying responses to different 
treatment regimens based on clinical stage. The prognosis of 
patients generally worsens as the cancer stage advances, partic‑
ularly if the cancer is initially diagnosed at an advanced stage, 
with patients with early‑stage CRC typically experiencing 
more favorable outcomes (34,35). For certain early‑stage 
patients, there is no need for adjuvant chemotherapy and 
the intervals of postoperative follow‑up surveillance can be 
adjusted appropriately. However, there are a few patients with 
early‑stage CRC (stage I and stage II) that are at a high risk of 
recurrence and distant metastasis, resulting in a poorer prog‑
nosis, and this is related to the T stage, particularly T3 and 
T4 (36). Currently, prediction models for the prognosis of these 
patients with early‑stage CRC are limited. In the present study, 
differential analyses were performed on hot and cold MSS 
CRC tumors using digital spatial profiling (DSP) and mass 
spectrometry (MS). Combined with CRC genomic expression 
profile data from The Cancer Genome Atlas (TCGA) database, 
a predictive risk model for the prognosis of early‑stage CRC 
was developed, which may have potential guiding significance 
for treating early‑stage CRC in the clinic.

Materials and methods

Patients. A total of 60 patients with MSS CRC, diagnosed 
between January 2010 and December 2012, were retrospec‑
tively enrolled in the present study. The clinicopathological 
data are shown in Table SI. The inclusion criteria were as 
follows: i) Patients who underwent surgical treatment at The 
Second Affiliated Hospital, Zhejiang University School of 
Medicine (Hangzhou, China), and were diagnosed with CRC 
by pathological, immunohistochemical and clinical examina‑
tion; ii) patients with surgical specimens still available for 
paraffin sectioning; and iii) patients with complete case data 
and complete pathological data. The exclusion criteria were 

as follows: i) Patients suffering from primary tumors other 
than CRC or ii) patients undergoing primary lesion resection 
in an external hospital. The formalin‑fixed paraffin‑embedded 
(FFPE; fixed in 10% formalin at room temperature for 
24‑48 h) tissue sections (5 µm) were used for MS and DSP. 
Information on 378 patients with CRC with complete prog‑
nostic data was obtained from TCGA (https://cancergenome.
nih.gov/; data were downloaded on July 27, 2023), and the 
entire cohort was randomly divided into the training cohort 
and the validation cohort at a ratio of 1:1 using R (version 4.3.0; 
https://www.r‑project.org/) (Table SII).

MS‑based proteomics. The proteomics data were obtained 
from our in‑house CRC proteomics database. FFPE samples 
from patients were punched (weight range: 0.8‑1.0 mg; diam‑
eter: 1.5 mm) using a Manual Tissue Arrayer MTA‑1 (Beecher 
Instruments, Inc.), after which they were assessed to confirm 
that they contained both tumor tissue and stromal tissue with 
the guidance of hematoxylin and eosin (H&E) staining (10% 
hematoxylin staining for 5 min, 1% eosin solution staining for 
2 min, at room temperature with a light microscope) by two 
senior pathologists. Pressure cycling technology coupled with 
data‑independent acquisition (PCT‑DIA) analysis of FFPE 
tissues was performed as described previously (37,38). Briefly, 
after dewaxing, rehydration and hydrolysis, FFPE tissues were 
digested using LysC and trypsin (Hualishi Tech. Ltd.) (39) 
with PCT assistance. Purified peptides were analyzed using an 
LTQ Orbitrap XL mass spectrometer (Thermo Q Exactive™ 
HF; Thermo Fisher Scientific, Inc.). DIA data were analyzed 
using DIA‑NN software (version 1.7.4) (40). 

DSP. Spatially resolved quantitation of 59 immunologically 
relevant proteins (including three normalization controls and 
three negative controls) were measured using the DSP plat‑
form (NanoString Technologies, Inc.; Table SIII). Previously 
prepared FFPE tissue microarray slides were stained with 
immunofluorescent antibodies to facilitate the identification 
of tissue morphology: Pan‑cytokeratin (PanCK; 1:40; 
cat. no. NBP2‑33200; Novus Biologicals, LLC; staining for 
30 min at room temperature) for epithelial cells, CD45 (1:40; 
cat. no. NBP2‑34528; Novus Biologicals, LLC; staining for 
30 min at room temperature) for leukocytes, and SYTO13 
(1:10; cat. no. S7575; Thermo Fisher Scientific, Inc.; staining 
for 15 min at room temperature) for nuclei. In each tissue core, 
at least one circular region of interest (ROI; measuring 300 µm 
in diameter) of cancerous tissue and one ROI of stromal tissue 
were selected. Upon exposure to ultraviolet light, the barcoded 
oligonucleotides corresponding to the 59 aforementioned 
antigen targets were released. They were collected via micro‑
capillary aspiration and then dispensed into a 96‑well plate. 
Digital counting was performed with the nCounter system 
(GeoMx DSP Control Center using the Data Analysis module 
V.2.4.0.421; NanoString, Inc.) and the data were normalized to 
internal controls.

Data processing. Only patients with CRC with adequate 
prognostic data were extracted from TCGA data. Log2 trans‑
formation using R was used to process raw microarray data. 
The DSP and MS result data were standardized and de‑batched 
using R.
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Identification of hot and cold tumors. Tumor‑infiltrating 
lymphocytes (TILs) of MSS CRC tumors were assessed by 
three senior pathologists using H&E‑stained slides. A total of 
60 patients were enrolled and divided into two groups: Cold 
CRC group (37 patients, TIL count ≤5%) and hot CRC group 
(23 patients, TIL count ≥20%).

Identification of DEPs between hot and cold tumors. The 
DEPs from the DSP cohorts and the MS cohorts between cold 
and hot tumors were analyzed using the Limma package (41) 
in R, and P<0.05 and |log2‑fold change|>0.5 were set as the 
cutoff criteria.

Construction and validation of the prognostic model. 
Firstly, DEP IDs were converted into gene IDs to obtain 
differentially expressed genes (DEGs). Subsequently, the 
R package ‘survival’ (https://cran.r‑project.org/web/pack‑
ages/survival/index.html) was used to further construct the 
prognostic model. The prognostic value of each DEG was 
identified using univariate Cox regression analysis from R 
package. Next, LASSO regression analysis revealed poten‑
tial risk genes and established an optimized polygenic risk 
score model. In the present study, bioinformatics software 
(X‑Tile, 3.6.1) (42) was applied to identify the most optimal 
outcome‑based cut‑off value of the risk score. This method 
provides a graphical presentation of substantial subpopula‑
tions and presents the discovery of population cut‑points 
based on biomarker expression. On the basis of this, the TCGA 
cohorts were divided into two groups (low‑risk and high‑risk 
groups). The performance and effectiveness of the model 
were assessed by Kaplan‑Meier curve analysis and receiver 
operating characteristic (ROC) curve analysis. Furthermore, 
univariate and multivariate Cox regression analyses were 
performed with the risk scores as the independent variable. 
In addition, the clinicopathological features, including sex, 
age, pathological T stage, pathological N stage, pathological 
M stage and clinical stage, were divided into two groups, 
and Kaplan‑Meier survival analysis was performed for each 
subgroup.

Establishment of a nomogram. The independence of the 
prognostic signature was assessed using univariate and 
multivariate Cox analyses in conjunction with clinical factors, 
including age and sex. The nomogram was established using 
the package ‘rms’ (https://hbiostat.org/r/rms/). Additionally, 
ROC curve analysis was performed to assess the prognostic 
value of the nomogram for predicting overall survival (OS).

Immune inf iltration and immune checkpoint genes. 
The R package Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Expression data 
(ESTIMATE; https://bioinformatics.mdanderson.org/esti‑
mate/rpackage.html) was used to calculate the immune 
score, stromal score and ESTIMATE score between the 
high‑risk group and the low‑risk groups of patients with 
stage II CRC in the data obtained from TCGA. CIBERSORT 
(https://cibersortx.stanford.edu/) was used to calculate the 
proportions of immune cells. In addition, the relationships 
between the prognostic model and 15 important immune 
checkpoint genes were also studied using R.

Statistical analysis. SPSS Statistics version 22.0 (IBM 
Corp.) and R version 4.3.0 were used for statistical analysis. 
The Wilcoxon rank‑sum test was used for comparison 
of two groups. Gene Ontology (GO) enrichment analysis 
and gene set enrichment analysis (GSEA) were performed 
using the R package clusterProfiler (https://bioconductor.
org/packages/release/bioc/html/clusterProfiler.html) with a 
Fisher's exact test, and the P‑values were adjusted using the 
Benjamini‑Hochberg method. *P<0.05 was considered to indi‑
cate a statistically significant difference. 

Results

DSP and MS‑based proteomics analysis for identification 
of DEPs between hot and cold MSS CRC tumors. A total of 
60 patients were enrolled and divided into two groups: The 
cold CRC group (37 patients, TIL count ≤5%) and the hot CRC 
group (23 patients, TIL count ≥20%). 

To evaluate the immune features of the TME, DSP analysis 
was performed on the 60 primary MSS CRC specimens. Based 
on the tumor (PanCK) and stroma (CD45) compartments, 
ROIs were identified (Fig. 1A). Comparing the hot CRC group 
with the cold CRC group: 20 upregulated proteins and one 
downregulated protein were identified (Fig. 1B; Table SIV).

Next, MS‑based proteomics analysis was used to 
further identify DEPs between the two groups. As shown in 
Fig. 1C and Table SV, 57 proteins were upregulated and 191 
proteins were downregulated in the hot CRC group compared 
with in the cold CRC group.

Functional enrichment analysis reveals the different func‑
tional pathways between hot and cold CRC. To gain a more 
comprehensive understanding of the functional significance of 
DEPs between the two groups, GO enrichment analysis was 
performed on the MS proteomics data. As shown in Fig. 2A, 
the upregulated proteins were primarily involved in biological 
processes, such as ‘phagocytosis’, ‘myeloid leukocyte activa‑
tion’ and ‘integrin‑mediated signaling pathway’. To show more 
specific items in the biological processes, tree diagrams were 
employed, which revealed that most items were related to 
immune response (Fig. 2B). Neutrophil cytosol factor (NCF)1 
was one of the most upregulated proteins that contributed 
to these biological processes (Fig. 2C), as well as NCF2 
and NCF4, which belong to the NADPH oxidase complex. 
Additionally, integrin family members, including ITGAL, 
ITGAM and ITGB2, were upregulated and were involved in 
the aforementioned biological processes. Furthermore, GSEA 
revealed that the antigen processing and presentation pathway 
was prominently upregulated in hot CRC tissues (Fig. 2D).

The downregulated proteins were primarily involved in the 
various small molecule catabolic processes, such as ‘organic 
acid catabolic process’, ‘carboxylic acid catabolic process’ 
and ‘monosaccharide metabolic process’ (Fig. 2E and F). 
Enoyl coenzyme A hydratase domain‑containing 2 and 
glutamate‑pyruvate transaminase were the most significantly 
downregulated proteins of those involved in ‘small molecule 
catabolic process’ (Fig. 2G).

Construction and validation of a prognostic risk model 
of the eight‑gene signature. The protein IDs of the DEPs 

https://www.spandidos-publications.com/10.3892/ol.2024.14552
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obtained from differential analysis of the DSP‑ and MS‑based 
proteomics data were converted into gene IDs. Notably, some 
protein IDs matched with multiple gene IDs and a total of 274 
DEGs were identified (Table SVI). Univariate Cox regression 
analysis revealed that nine genes were markedly associated 
with prognosis in 189 patients from the data obtained from 
TCGA in the training cohort (Fig. 3A).

To guarantee the stability and viability of the clinical 
prognosis, eight genes (IDO1, MAT1A, NPEPL1, NT5C, 
PTGR2, RPL29, TMEM126A and TUBB4B) were identi‑
fied after LASSO Cox analysis, which was used to further 
narrow the list of effective genes (Fig. 3B and C). Based on 
the products of mRNA expression levels and relative coef‑
ficients of each gene in the LASSO regression, the following 

Figure 1. DSP‑ and MS‑based proteomics analysis for the identification of DEPs between hot and cold CRC tumors. (A) Representative images of hot and cold 
tumors obtained by immunofluorescent staining for SYTO13 (blue), PanCK (green) and CD45 (red) using the NanoString DSP platform. SYTO13, PanCK and 
CD45 were used to characterize the nuclei, tumor and stroma compartments, respectively. (B) Volcano plot of the DEPs in the stroma compartment between 
primary hot and cold CRC tumor samples via DSP analysis. (C) Volcano plot of the DEPs between primary hot and cold CRC tumor samples via MS‑based 
proteomics analysis. The vertical lines represent the log2 fold changes of ‑0.5 and 0.5, and the horizontal line represents the P‑value of 0.05. DSP, digital spatial 
profiling; MS, mass spectrometry; CRC, colorectal cancer; DEP, differentially expressed protein.



ONCOLOGY LETTERS  28:  419,  2024 5

predictive model was developed: Risk score=0.0968736 x 
IDO1‑0.0445986 x MAT1A‑0.0119460 x NPEPL1‑0.0684733 x 
NT5C‑0.1227449 x PTGR2‑0.0994621 x RPL29‑0.0026656 x 
TMEM126A‑0.0018182 x TUBB4B.

To evaluate the validity of the prognostic model, the risk 
score, as determined by the eight‑gene signature was calcu‑
lated, and the most optimal cut‑off value for the 189 patients 
in the training cohort from TCGA was identified with X‑tile 

Figure 2. Functional enrichment analysis reveals the functional differential pathways between the hot and cold CRC tumors. (A) Bubble plots of the GO 
analysis of upregulated proteins in the hot CRC group. (B) Tree diagrams of the GO analysis of the upregulated proteins in the hot CRC group. Circle size, the 
number of genes contributing to the pathway. Color bar, adjusted P‑value for the pathway. (C) Heatmap of the top ten biological processes and the expressions 
of the corresponding proteins. (D) Gene set enrichment analysis of antigen processing and presentation pathway genes. (E) Bubble plots of the GO analysis 
of downregulated proteins in the hot CRC group. (F) Tree diagrams of the GO analysis of the downregulated proteins in the hot CRC group. Circle size, the 
number of genes contributing to the pathway. Color bar, adjusted P value for the pathway. (G) Heatmap of the top eight biological processes and the expression 
of the corresponding proteins. CRC, colorectal cancer; GO, Gene Ontology.

https://www.spandidos-publications.com/10.3892/ol.2024.14552
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software. According to the most optimal cut‑off value of the 
risk score (‑2.70), the training cohort, the validation cohort and 
the full TCGA dataset were divided into low‑ and high‑risk 
groups. Subsequently, through Kaplan‑Meier analysis, it was 
noted that there was a difference between the two groups; 
the survival time was notably reduced in the high‑risk score 

group (Fig. 3D, H and L). Moreover, the time‑dependent ROC 
curves were plotted to verify that the prognostic model was 
accurate (Fig. 3E, I and M). Subsequently, the risk score was 
combined with other clinicopathological features, including 
sex, age and clinical stage, for the univariate (Fig. 3F, J and N) 
and multivariate (Fig. 3G, K and O) Cox analyses to explore 

Figure 3. A prognostic risk model of the eight‑gene signature constructed and validated using data obtained from TCGA. (A) Forest plot of the prognosis‑related 
genes based on the univariate Cox regression analysis. (B) LASSO regression analysis was used to identify the eight‑gene signature. (C) Cross‑validation in 
the LASSO model. (D) Kaplan‑Meier curve of the OS between the high‑ and low‑risk subgroups in all patients from TCGA. (E) ROC curves of the eight‑gene 
signature for 3‑ and 5‑year OS in all patients from TCGA. Forest plots of the (F) univariate and (G) multivariate Cox regression analyses for the clinicopatho‑
logical factors and the risk score in all patients from TCGA. (H) Kaplan‑Meier curve of the OS between the high‑ and low‑risk subgroups in the training 
cohort from TCGA. (I) ROC curves of the eight‑gene signature for 3‑ and 5‑year OS in the training cohort from TCGA. Forest plots of the (J) univariate and 
(K) multivariate Cox regression analyses for the clinicopathological factors and the risk score in the training cohort from TCGA. (L) Kaplan‑Meier curve 
of the OS between the high‑ and low‑risk subgroups in the validation cohort from TCGA. (M) ROC curves of the eight‑gene signature for 3‑ and 5‑year OS 
in the validation cohort from TCGA. Forest plots of the (N) univariate and (O) multivariate Cox regression analyses of the clinicopathologic factors and the 
risk score in the validation cohort from TCGA. TCGA, The Cancer Genome Atlas; OS, overall survival; AUC, area under the curve; ROC, receiver operating 
characteristic.
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its independence. Taken together, the results demonstrated that 
the risk score may be an independent prognostic factor.

Kaplan‑Meier analysis shows an association between the risk 
score of the eight‑gene signature and OS. To ensure that the 
prognostic model was accurate, Kaplan‑Meier analysis was 
used to assess the predictive ability of the model stratified by 

sex, age (≤60 years or >60 years), pathological T stage (T1‑2 
or T3‑4), pathological N stage (N0 or N1‑2), and pathological 
M stage (M0 or M1) on the data obtained from TCGA. The 
survival analysis indicated an association between lower risk 
scores and improved OS rates in female (P=0.00018; Fig. 4A) 
and male (P=0.0027; Fig. 4B) patients, patients aged ≤60 years 
(P=0.0062; Fig. 4C) and >60 years (P<0.0001; Fig. 4D), 

Figure 4. Kaplan‑Meier analysis showing the association between the risk score of the eight‑gene signature and survival in the different subgroups of patients. 
Kaplan‑Meier curves showing the overall survival between the high‑ and low‑risk subgroups in (A) female and (B) male patients, patients (C) aged ≤60 years 
and (D) aged >60 years old, and patients with stage (E) T1‑2, (F) T3‑4, (G) N0, (H) N1‑2, (I) M0 and (J) M1 tumors.

https://www.spandidos-publications.com/10.3892/ol.2024.14552


ZHOU et al:  A HOT AND COLD TUMOR‑RELATED PROGNOSTIC SIGNATURE FOR STAGE II COLORECTAL CANCER8

and patients with T3‑4 (P<0.0001; Fig. 4F), N0 (P<0.0001; 
Fig. 4G) and M0 (P<0.0001; Fig. 4I) tumors. However, there 
was no association between the risk score of the eight‑gene 
signature and prognosis in the T1‑2 (P=0.36; Fig. 4E), N1‑2 
(P=0.12; Fig. 4H), and M1 (P=0.9; Fig. 4J) subgroups.

Risk score of the eight‑gene signature serves as an inde‑
pendent prognostic indicator in patients with stage II CRC 
(T3‑4N0M0). To further examine the effect of the risk score 
on the prognosis of different stages of CRC, Kaplan‑Meier 
analysis was used to examine the association between the risk 
score and OS in the patients with stage I (T1‑2N0M0), stage II 
(T3‑4N0M0), stage III and stage IV CRC in the data obtained 
from TCGA. As shown in Fig. 5A‑D, the results indicated that 
a high‑risk score was associated with a poorer prognosis in 
patients with stage II (T3‑4N0M0) CRC, but not in patients 
with stage I (T1‑2N0M0), stage III or stage IV CRC. In addi‑
tion, according to the AJCC 8th edition staging system of 
CRC (43), patients with M1 tumors (Fig. 4J) were classified as 
clinical stage IV (Fig. 5D).

By comparing the clinical characteristics, such as age 
and sex, univariate and multivariate Cox regression analyses 
were performed to investigate the independence of the prog‑
nostic model for patients with stage II CRC (T3‑4N0M0) 
(Fig. 5E and F). The findings revealed that the risk score and 
age were highly significant prognostic indicators. To provide 
a more accurate prognosis for patients with stage II CRC 
(T3‑4N0M0), a nomogram was established using the risk score 
and several clinicopathological factors, including age and sex. 
The concordance index of the nomogram was 0.612, which 
showed that the model was accurate in predicting the prognosis 
of patients with stage II CRC (T3‑4N0M0) (Fig. 5G). The total 
score can be calculated using the score of each variable on the 
point scale of this nomogram and can be used to determine the 
probability of survival after 1‑, 3‑ and 5‑years. Furthermore, 
the predictive validity of the nomogram was assessed using 
ROC analysis. As shown in Fig. 5H, the areas under the curve 
for the prediction of 3‑ and 5‑year OS were 0.661 and 0.782, 
respectively. Collectively, these results indicated that the risk 
score may serve as an independent prognostic indicator in 
patients with stage II CRC (T3‑4N0M0).

Risk score is associated with the tumor immune infiltration 
characteristics in CRC. To determine the difference in 
immune infiltration between the high‑ and low‑risk groups, the 
stromal, immune and ESTIMATE scores between the high‑ 
and low‑risk groups in patients with stage II CRC were used. 
As shown in Fig. 6A, all three scores were significantly higher 
in the high‑risk group than in the low‑risk group (all P<0.001). 

Next, the proportion of 22 types of immune cells between 
the high‑ and low‑risk groups of patients with stage‑II CRC 
was determined using CIBERSORT. According to the results, 
the proportion of macrophages (both M1 and M2) and resting 
mast cells were positively associated with the risk score, 
whereas the proportion of CD4+ memory resting T cells and 
activated mast cells were negatively associated with the risk 
score (Fig. 6B). 

Furthermore, the relationship between the risk score and 
the expression of 15 key immune checkpoint genes (CD27, 
CD274, CD276, CD28, CD40, CTLA4, HAVCR2, ICOS, 

LAG3, PDCD1, TIGIT, TNFRSF18, TNFRSF4, TNFRSF9 and 
VSIR) was explored. The results illustrated that the expres‑
sion of 12 immune checkpoint genes (CD27, CD274, CD28, 
CTLA4, HAVCR2, ICOS, LAG3, PDCD1, TIGIT, TNFRSF18, 
TNFRSF4 and TNFRSF9) were elevated in the high‑risk 
groups (Fig. 6C). 

The relationships between the 15 key immune checkpoint 
genes and the eight selected genes in the prognostic model 
were next investigated. According to the median expression 
level of each gene, the cohort was divided into a high expres‑
sion group and a low expression group of each gene. PTGR2 
exhibited positive associations with the expression of CD28, 
CD40, ICOS and TIGIT (Fig. 6D), whereas RPL29 showed 
positive associations with the expression of CD274, CD276, 
CD40, LAG3, PDCD1, TIGIT, TNFRSF9 and VSIR (Fig. 6E). 
As shown in Fig. 6F, TMEM126A exhibited positive associa‑
tions with the expression of all the immune checkpoint genes, 
except TNFRSF18. MAT1A showed no relationship with any 
of the 15 immune checkpoint genes (Fig. 6G). NPEPL1 was 
positively associated with the expression of CD276, CD40, 
TNFRSF4 and VSIR (Fig. 6H). NT5C was positively associ‑
ated with the expression of CD276, CD40, LAG3, PDCD1, 
TNFRSF18, TNFRSF4 and VSIR (Fig. 6I). TUBB4B was 
positively associated with the expression of CD274, CD276, 
CD40, LAG3, PDCD1, TIGIT, TNFRSF18, TNFRSF4 and 
VSIR (Fig. 6J). Finally, IDO1 was positively correlated with 
the expression of all the immune checkpoint genes (Fig. 6K). 
These results demonstrated that differences in tumor immune 
infiltration were observed between the high‑ and low‑risk 
groups, showing that a high‑risk score may be associated with 
increased immune cell infiltration.

Discussion

Patients with CRC show differing levels of immune cell 
infiltration, and this is directly associated with the specific 
immunobiological behaviors of a tumor (44,45). The most 
fundamental reason for these differences is the tumor cells 
themselves. Thus, in the present study, patients with CRC were 
divided into hot and cold groups using immunofluorescent 
staining. Using MS, the differences in the expression of several 
proteins between hot and cold CRC tumors were examined 
and compared.

Compared with in cold CRC tumors, proteins that 
were upregulated in hot tumors were primarily enriched 
in immune‑related pathways, including ‘phagocytosis’, 
‘leukocyte cell‑cell adhesion’, ‘myeloid leukocyte activation’ 
and ‘integrin‑mediated signaling pathway’, amongst other 
processes. This result indicated that the immune interactions 
were relatively active in hot tumors. However, a large number of 
immune cells present in the TME do not attack the surrounding 
tumor cells. Therefore, a relative equilibrium state may be 
formed between cancer cells and tumor‑infiltrating immune 
cells. According to the tumor stroma ROI DSP results, several 
vital immune‑related proteins exhibited upregulated expres‑
sion in hot CRC tumors, such as IDO1, STING, VISTA, PD‑L1, 
4‑1BB and LAG3. The majority of these upregulated proteins 
are immune checkpoint molecules that may serve immunosup‑
pressive functions to maintain a balance in immune tolerance 
status. Targeting these proteins may be a potential approach 
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Figure 5. Risk score of the eight‑gene signature serves as an independent prognostic indicator in patients with stage II CRC (T3‑4N0M0). Kaplan‑Meier curves 
for OS between the high‑ and low‑risk subgroups in patients with (A) stage I (T1‑2N0M0), (B) stage II (T3‑4N0M0), (C) stage III and (D) stage IV CRC using 
data obtained from TCGA. Forest plots of (E) univariate and (F) multivariate Cox regression analyses for the clinicopathologic factors and the risk score in 
patients with stage II CRC (T3‑4N0M0) using data obtained from TCGA. (G) Nomogram for predicting the 1‑, 3‑ and 5‑year OS in patients with stage II CRC 
(T3‑4N0M0). (H) Receiver operating characteristic curves of the eight‑gene signature for 3‑ and 5‑year OS in patients with stage II CRC (T3‑4N0M0). TCGA, 
The Cancer Genome Atlas; OS, overall survival; AUC, area under the curve; CRC, colorectal cancer.
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Figure 6. Risk score is associated with the tumor immune infiltration characteristics of colorectal cancer. (A) Box plots of the comparison of the stromal score, 
immune score, and ESTIMATE score between the high‑ and low‑risk subgroups. (B) Box plots of the differences in the proportion of immune cells between 
the high‑ and low‑risk subgroups. (C) Box plots of the differences in the expression of immune checkpoint genes between the high‑ and low‑risk subgroups. 
Box plots of the differences in the expression of immune checkpoint genes between the high‑ and low‑expression subgroups of (D) PTGR2, (E) RPL29, 
(F) TMEM126A, (G) MAT1A, (H) NPEPL1, (I) NT5C, (J) TUBB4B and (K) IDO1. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ESTIMATE, Estimation of 
STromal and Immune cells in MAlignant Tumor tissues using Expression data. 
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to disturb this balance and mobilize immune cells to attack 
tumor cells. 

The protein expression profiles in cold colorectal tumors 
were distinct from those in the hot tumors. It was revealed 
that metabolism‑related proteins were highly expressed in 
cold tumors, which may be related to the tumor metabolic 
microenvironment. These proteins may assist tumor cells in 
overcoming energy barriers and survive in a nutrient‑deprived 
microenvironment. Moreover, the upregulated expression of 
SMA, a common marker of stromal cells (46), was observed 
in cold tumors. The stromal components of tumors are closely 
intertwined, and a barrier between tumor cells and immune 
cells is frequently formed (47). However, they do not directly 
contact each other, and the immune cells are not activated to 
attack tumor cells. Based on this, cold colorectal tumors with 
minimal immune cell infiltration exhibit limited sensitivity 
to immune monotherapy (48,49). Even though some effective 
treatments are available, such as chemotherapy or radiotherapy, 
which induce necrosis of tumor cells and antigen exposure, the 
immune cells and tumor antigens still do not directly contact 
the numerous stromal proteins. Therefore, the therapeutic 
efficacy of immunotherapy remains unsatisfactory.

Based on the MS and DSP differential expression anal‑
yses of hot and cold CRC tumors, a novel prognostic model 
was established. The model was validated using data from 
TCGA, and it was shown to perform well, whether in the 
training cohort, validation cohort or the overall TCGA CRC 
cohort. After subgroup analysis, it was demonstrated that 
this model had different predictive outcomes in different T 
stages, N stages and M stages. Compared with the T1‑2 stage, 
the model showed higher predictive efficacy in patients with 
T3‑4 stage tumors, which indicated that this model may be 
more appropriate for later T‑stage patients, and this effect 
may be due to the fact that the model is based on compari‑
sons between hot and cold tumors. The prognosis of patients 
with T1‑2N0M0 CRC was relatively good and the tumor 
sizes were somewhat small. The DEGs between cold and hot 
CRC tumors had little effect on the differences in clinical 
outcomes of patients with T1‑2N0M0 CRC. Conversely, the 
tumor sizes of patients with T3‑4 stage CRC were likely 
larger. Thus, the infiltration of immune cells contributed more 
significantly to the biological behaviors of these tumors, and 
this model may have better predictive efficacy. In the N‑ and 
M‑stage subgroup analysis, improved predictive efficacy was 
observed in the N0 or M0 subgroups. It is hypothesized that 
there are several risk factors for CRC prognosis. Lymph node 
metastasis or distant metastasis may exert a larger weighted 
effect; however, this model showed no significant differences 
between the N1‑2 or M1 subgroups. Taking the aforemen‑
tioned results together, it could be proposed that this model 
may have a better predictive effect on patients with stage II 
CRC (T3‑4N0M0). It is worth mentioning that the treatment 
modalities of chemotherapy or radiation therapy are very 
complex, and the treatment information provided in TCGA 
database was limited. There might be numerous types of 
treatment, such as neoadjuvant chemotherapy, adjuvant 
chemotherapy, palliative chemotherapy or concurrent radio‑
chemotherapy. Furthermore, the dosage, duration and timing 
of chemotherapy tended to vary between different patients, 
and the information was incomplete and ambiguous. Because 

of these confounding factors, the action of the risk score in 
assessing the predictive ability of the model stratified by 
therapy was not assessed.

Clinically, adjuvant chemotherapy is not routinely recom‑
mended for patients with stage II CRC as there is no evidence 
that adjuvant chemotherapy can improve survival for these 
patients. However, certain patients with stage II CRC may 
suffer from recurrence or distant metastasis, and thus have a 
poorer prognosis. At present, there are few prediction models 
for early‑stage CRC. Li et al (50) reported that monosaccharide 
composites of circulating glycans in peripheral blood may serve 
as a diagnostic biomarker for early‑stage detection of CRC. 
Additionally, based on gene expression profiles extracted from 
microarray datasets, immune‑related or autophagy‑related 
gene signatures were identified for the prognostic prediction 
of patients with early‑stage CRC (51,52). However, the predic‑
tive model established in the present study differed from these 
previous models in terms of the sources of data. MS and DSP 
are both proteomics‑based techniques used for detection and 
analysis. In almost every physiological process, proteins are 
the end products and functional molecules, and are thus more 
closely related to functional biological behaviors. In particular, 
the results of DSP show the protein expression levels in the 
stromal compartments, which is more accurate for the study 
of hot and cold tumors. Subsequently, data obtained from 
TCGA were used to construct and validate the prognostic 
model. Thus, the prognostic model developed was based on 
multi‑omics data, and it should more accurately reflect the 
biological reality and is thus a more comprehensive prediction 
model.

Based on the results of the present study, patients with 
stage II CRC can be divided into high‑risk and low‑risk 
groups. Close monitoring is required for high‑risk patients, 
and this may result in earlier detection of tumor recurrence 
and metastasis. Conversely, regular follow‑up surveillance 
is sufficient for low‑risk patients. This way, it is possible to 
treat patients with stage II CRC more accurately and in a more 
individualized manner.

Notably, it was revealed that the stromal score and immune 
score were markedly higher in the high‑risk group of patients 
with stage II CRC, and these patients exhibited higher macro‑
phage cell (both M1 and M2) and resting mast cell infiltrations, 
and lower CD4+ memory resting T‑cell and activated mast cell 
infiltrations in the tumors. The results demonstrated that the 
proportions of M1 and M2 macrophages were both positively 
associated with the risk score, and were both increased in the 
high‑risk group. Therefore, it was hypothesized that there may 
be a significant difference in macrophage infiltration between 
these two groups. This requires more direct and sufficient 
evidence, and we aim to further investigate this aspect in future 
studies. The present study revealed higher expression levels of 
several immunosuppressive checkpoint genes in the high‑risk 
group, including HAVCR2, CD274, CTLA4, PDCD1, TIGIT and 
LAG3. Meanwhile, certain immune‑activating genes were also 
upregulated in the high‑risk groups, such as TNFRSF9, CD27 
(TNFRSF7), CD28, ICOS, TNFRSF18 and TNFRSF4. These 
may form a balance between immune suppression and activa‑
tion. In addition, there was an association detected between the 
expression levels of certain genes in the risk score model and 
the expression of immune checkpoint genes. In particular, IDO1 
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and TMEM126A were positively associated with a number 
of immune checkpoint genes. All immune checkpoint genes 
were upregulated in the high‑IDO1 group, and most immune 
checkpoint genes, with the exception of TNFRSF18, were also 
upregulated in the high‑TMEM126A group.

In conclusion, the model established in the present study is 
based on the differences in protein expression profiles between 
hot and cold CRC tumors. The primary objective of this model 
was to improve the prediction of patient prognosis. CRC tumors 
can be classified into two different immune types, which have 
various immune microenvironments, and carry a different risk 
of recurrence and metastasis. The proposed model had the best 
predictive outcomes on patients with stage II CRC, and may 
be used to guide the appropriate use of adjuvant chemotherapy 
and determine a suitable follow‑up regime. As such, it provides 
important scientific value and carries potential clinical signifi‑
cance. Large‑scale multicenter studies are required to confirm 
the applicability of the model for the prediction of efficacy. 
In the present study, a hot and cold tumor‑related prognostic 
model for stage II colorectal cancer was mainly built. In the 
future, based on the results of the present study, we will select 
some genes from the present prognostic model for relevant 
functional validation and mechanism studies. 
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