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Leading edge maintenance in migrating 
cells is an emergent property of branched 
actin network growth
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Abstract Animal cell migration is predominantly driven by the coordinated, yet stochastic, 
polymerization of thousands of nanometer-scale actin filaments across micron-scale cell leading 
edges. It remains unclear how such inherently noisy processes generate robust cellular behavior. 
We employed high-speed imaging of migrating neutrophil-like HL-60 cells to explore the fine-scale 
shape fluctuations that emerge and relax throughout the process of leading edge maintenance. 
We then developed a minimal stochastic model of the leading edge that reproduces this stable 
relaxation behavior. Remarkably, we find lamellipodial stability naturally emerges from the interplay 
between branched actin network growth and leading edge shape – with no additional feedback 
required – based on a synergy between membrane-proximal branching and lateral spreading of 
filaments. These results thus demonstrate a novel biological noise-suppression mechanism based 
entirely on system geometry. Furthermore, our model suggests that the Arp2/3-mediated ~70–80° 
branching angle optimally smooths lamellipodial shape, addressing its long-mysterious conservation 
from protists to mammals.

Editor's evaluation
This paper describes analysis and modeling of leading edge fluctuations in migrating cells driven by 
a branched Arp2/3 lamellipodial network. A stochastic model shows how branching contributes to 
shape stability, and reproduces the measured spectrum and dynamics of leading edge fluctuations. 
Analysis of the model as a function of branching angle suggests that the Arp2/3 branching angle 
might be selected to smooth lamellipodial shape. This work provides new ideas to a big field of 
research, including Fourier analysis of leading edge fluctuations.

Introduction
Cell migration driven by actin polymerization plays an essential role in countless organisms spanning 
the eukaryotic tree of life (Pollard and Cooper, 2009; Fritz-Laylin et al., 2017a; Welch et al., 1997). 
Across this broad phylogeny, cells have been observed to form a dizzying array of protrusive actin 
structures, each exhibiting unique physical and biological properties (Svitkina, 2018). In all cases, the 
fundamental molecular unit of these micron-scale structures is the single actin filament, which polym-
erizes stochastically by addition of single monomers to push the leading edge membrane forward 
(Mogilner and Oster, 1996; Peskin et al., 1993; Theriot et al., 1992; Prass et al., 2006). Higher 
order actin structures, and the biological functions they robustly enable, are therefore mediated by 
the collective action of thousands of stochastically growing filaments (Svitkina, 2013). It remains an 
open question how cells control for – or leverage – this inherent stochasticity to maintain stable 
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leading edge protrusions over length and time scales more than three orders of magnitude larger than 
the scales of actin monomer addition (Rafelski and Theriot, 2004; Vavylonis et al., 2005).

Perhaps the archetype of dynamically stable actin structures is the lamellipodium, a flat ‘leaf-like’ 
protrusion that is ~200 nm tall, up to 100 µm wide, and filled with a dense network of dendritically 
branched actin filaments (Svitkina et al., 1997; Abraham et al., 1999; Laurent et al., 2005; Fritz-
Laylin et al., 2017b). Cell types that undergo lamellipodial migration (most notably fish epidermal 
keratocytes and vertebrate neutrophils) can maintain a single, stable lamellipodium for minutes to 
hours, allowing the cells to carry out their biological functions (Tsai et al., 2019; Lacayo et al., 2007). 
For example, in their in vivo role as first responders of the innate immune system, neutrophils must 
undergo persistent migration over millimeter-scale distances to reach sites of inflammation and infec-
tion (de Oliveira et al., 2016; Kolaczkowska and Kubes, 2013). Regardless of the cell type, the 
origins of this striking stability in the face of stochastic actin filament polymerization remain elusive. 
It has been widely been assumed for decades that some sort of regulatory or mechanical feedback 
mechanism must be required for lamellipodial shape stability, with extensive experimental efforts 
identifying membrane tension (Diz-Muñoz et al., 2016; Houk et al., 2012; Mueller et al., 2017; 
Gauthier et al., 2012; Tsujita et al., 2015; Batchelder et al., 2011; Sens and Plastino, 2015), plasma 
membrane curvature-sensing proteins (Tsujita et al., 2015; Pipathsouk et al., 2019), a competition 
for membrane-associated free monomers (Mullins et al., 2018), and force-feedback via directional 
filament branching (Risca et  al., 2012) as potential contributors. The stability of lamellipodia has 
also been theoretically proposed to depend on the dendritically branched structure of their actin 
networks, wherein filaments are oriented at an angle relative to the cell’s direction of migration, 
allowing growing filament tips to spread out laterally along the leading edge as they polymerize 
(Lacayo et al., 2007; Grimm et al., 2003). Although any acute angle would permit spreading, we 
note that filament orientation in cells has been experimentally observed to be highly stereotyped, 
averaging ±35° relative to the membrane normal (Maly and Borisy, 2001; Verkhovsky et al., 2003) 
– approximately one half of the highly evolutionarily-conserved ~70° branch angle mediated by the 
Arp2/3 complex (Mullins et al., 1998; Volkmann et al., 2001; Rouiller et al., 2008.) In contrast to 

eLife digest In every human cell, there are tens of millions of proteins which work together to 
control everything from the cell’s shape to its behavior. One of the most abundant proteins is actin, 
which organizes itself into filaments that mechanically support the cell and help it to move.

These filaments are very dynamic, with individual actin molecules constantly being added or 
removed. This allows the cell to build large structures with distinct shapes and properties. Many 
motile cells, for example, have a structure called a lamellipodium which protrudes at their ‘leading 
edge’ and pushes them forward. The lamellipodium has a very robust shape that does not vary much 
between different cell types, or change significantly as cells migrate. But how the tens of thousands 
of actin molecules inside the lamellipodium organize themselves into this large, stable structure is not 
fully understood.

To investigate, Garner and Theriot used high-speed video microscopy to track the shape of human 
cells cultured in the laboratory. As the cells crawled along a glass surface, their leading edge undu-
lated like strings being plucked on a guitar. A computer simulation showed that these ripples can be 
caused by filaments randomly adding and removing actin molecules.

While these random movements could destabilize the structure of the leading edge, the simulation 
suggests that another aspect of actin filament growth smooths out any fluctuations in the lamellipo-
dium’s shape. Actin networks in the lamellipodium have a branched configuration, with new strands 
emerging off each other at an angle like branches in a tree. Garner and Theriot found that the specific 
angle in which new filaments are added smooths out the lamellipodium’s shape, which may explain 
why this geometry has persisted throughout evolution.

These findings suggest that the way in which actin filaments join together helps to maintain the 
shape of large cellular structures. In the future, scientists could use this design principle to build 
molecular machines that can self-organize into microstructures. These engineered constructs could be 
used to modulate the activity of living cells that have been damaged by disease.

https://doi.org/10.7554/eLife.74389
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the proposed stabilizing role of spreading, several other features of lamellipodial actin are known to 
impart nonlinearities on network growth, which might amplify stochastic fluctuations. For instance, 
dendritic branching is an autocatalytic process which can lead to explosive growth (Mullins et al., 
2018; Carlsson, 2001). In addition, the growth rates of the actin network are dependent on the 
velocity of the flexible membrane surface it is pushing, in a manner which imparts hysteresis to the 
system (Mueller et al., 2017; Parekh et al., 2005). How spreading might interact with these complex-
ities – and the ultimate consequences for maintenance of a stable leading edge – remains unknown.

Seeking to dissect the origins of lamellipodial stability, we pursued complementary experimental 
and computational methodologies. First, we performed high-speed, high-resolution microscopy on 
migrating human neutrophil-like HL-60 cells to monitor their leading edge shape dynamics. In contrast 
to the remarkable overall lamellipodial stability observed over minutes, high-speed imaging revealed 
that the leading edge shape is extremely dynamic at shorter time and length scales, constantly under-
going fine-scale fluctuations around the average cell shape. We determined that these shape fluctu-
ations continually dissipate (thereby enabling long time scale lamellipodial maintenance) in a manner 
quantitatively consistent with viscous relaxation back to the time-averaged leading edge shape. We 
next developed a minimal stochastic model of branched actin network growth against a flexible 
membrane, broadly applicable to a wide variety of cell types, that was able to recapitulate the global 
leading edge stability and fine-scale fluctuation relaxation behavior observed in cells. Our model 
suggests that the suppression of stochastic fluctuations is an intrinsic, emergent property of collective 
actin dynamics at the leading edge, as branched network geometry alone is necessary and sufficient 
to generate lamellipodial stability. Moreover, we find that the evolutionarily-conserved geometry, 
the ~70° branching angle of the Arp2/3 complex, optimally quells shape fluctuations.

Results
Fine-scale leading edge shape fluctuations revealed at high 
spatiotemporal resolution
Neutrophils form lamellipodia that are intrinsically lamellar, maintaining a thin, locally flat sheet of 
actin even in the absence of support structures like the substrate surface (Fritz-Laylin et al., 2017b). 
Here, we study the migration of neutrophil-like HL-60 cells (Spellberg et al., 2005) within quasi-two-
dimensional confinement between a glass coverslip and an agarose pad overlay (Millius and Weiner, 
2009). In addition to serving as an excellent in vitro model for neutrophil surveillance of tissues, 
this assay allows for easy visualization and quantification of lamellipodial dynamics by restraining the 
lamellipodium to a single imaging plane. Cells in this type of confinement can migrate persistently, 
maintaining nearly-constant cell shape, for time scales on the order of minutes to hours (Tsai et al., 
2019; Garner et al., 2020). In order to capture leading edge dynamics on time scales more relevant to 
the stochastic growth of individual filaments, we performed high-speed (20 Hz) imaging of migrating 
HL-60 cells. These experiments revealed dynamic, fine-scale fluctuations around the average leading 
edge shape (Figure 1a–c, Video 1, Figure 1—figure supplements 1–2, Materials and methods), 
where local instabilities in the leading edge emerge, grow, and then relax. Notably, these previously-
unobserved lamellipodial dynamics are phenotypically distinct from – and almost 100-fold faster than 
– the oscillatory protrusion-retraction cycles seen in other, slower-moving cell types (e.g. fibroblasts) 
(Giannone et al., 2004; Ryan et al., 2012; Ma et al., 2018).

We estimate we were able to reliably measure fluctuations with wavelengths as small as ~650 nm, 
and amplitudes down to  ~65  nm, by fitting the phase contrast halo around the leading edge 
(Figure  1—figure supplements 1–2, Materials and methods). These values should approximately 
correspond to 25 actin filaments at physiological spacing (Svitkina et al., 1997) and 25 actin mono-
mers assembled into a filament lattice along the direction of motion. While our measurements of 
shape dynamics cannot resolve polymerization events of individual filaments, our results are consis-
tent with the hypothesis that stochasticity in actin growth at the level of monomer addition – occur-
ring throughout the leading edge actin network – ultimately manifests as the observed micron-scale 
leading edge fluctuations. In particular, kymograph analysis of curvature and velocity (Figure 1b–c) 
showed that relatively long-lived shape fluctuations are formed by the continual time-integration of 
seemingly uncorrelated and very short-lived (sub-second, sub-micron) velocity fluctuations. Because 
the average cell shape remains constant over time, there must be some form of feedback acting 

https://doi.org/10.7554/eLife.74389


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Garner and Theriot. eLife 2022;11:e74389. DOI: https://doi.org/10.7554/eLife.74389 � 4 of 37

on leading edge curvature to sustain stable lamellipodial growth. These rich, measurable fine-scale 
dynamics therefore provide a unique opportunity to directly observe the time-evolution of leading 
edge maintenance. Taking advantage of our high-precision measurements, we aimed to quantitatively 
investigate the properties of the observed fluctuations, with the goal of determining the mechanisms 
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Figure 1. High-speed, high-resolution imaging reveals fine-scale fluctuations in leading edge shape. (a–c) Example of leading edge fluctuations 
extracted from a representative migrating HL-60 cell. (a) Phase contrast microscopy image from the first frame of a movie, overlaid with segmented 
leading edge shapes from time points increasing from blue to red in 2 s intervals. Top Inset: Magnification of the segmented leading edge between t 
= 0–2 s increasing from blue to red in 50 ms intervals. Bottom Inset: A de-magnified image of the whole cell at the last time point. (b–c) Kymographs 
of curvature (b) and velocity (c). Note the velocity is always positive, so no part of the leading edge undergoes retraction. (d) Schematic demonstrating 
a commonly observed trend between fluctuation wavelength and relaxation time. (e) Autocorrelation amplitude (complex magnitude) of the spatial 
Fourier transform plotted as a function of time offset from a representative cell. Each line corresponds to a different spatial frequency in the range of 
0.22–0.62 µm–1 (corresponding to a wavelength in the range of 4.5–1.6 µm) in 0.056 µm–1 intervals. (f) Best fit of the autocorrelation data shown in (e) to 
an exponential decay, fitted out to a drop in amplitude of 2/e. (g–h) Fitted parameters of the autocorrelation averaged over 67 cells. Data from this 
figure can be found in Figure 1—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data corresponding to plots in Figure 1.

Figure supplement 1. Overview of cell segmentation analysis pipeline.

Figure supplement 2. Overview of analysis pipeline to extract fine-scale leading edge shape features.

Figure supplement 3. Control for analysis I.

Figure supplement 4. Control for analysis II.

Figure supplement 5. Control for analysis III.

Figure supplement 6. Leading edge fluctuation behavior is reproduced in fish epidermal keratocytes.

https://doi.org/10.7554/eLife.74389
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by which molecular machinery at the leading 
edge coordinates the stochastic polymerization 
of individual actin filaments.

Lamellipodial stability mediated 
by viscous relaxation of shape 
fluctuations
The relaxation of fine-scale shape fluctuations 

back to the steady-state leading edge shape is essential for the long time scale stability of lamelli-
podia. As for any physical system, the nature of this relaxation reflects the system’s underlying physical 
properties; in this case, the characteristics of – and interactions between – actin filaments and the 
membrane. To provide a framework for exploration of the physical mechanisms underlying stable 
lamellipodial protrusion, we quantified the relaxation dynamics by performing time-autocorrelation 
analysis on the leading edge shape (Materials and methods). Applied in this context, this analytical 
technique calculates the extent to which the lamellipodium contour loses similarity with the shape at 
previous time points as fluctuations emerge and relax. As most material systems (actively-driven or 
otherwise) exhibit relaxation behavior with a characteristic wavelength-dependence (e.g. Figure 1d), 
we performed Fourier decomposition on the leading edge shape to separate out fluctuations at 
different length scales, and then performed autocorrelation analysis separately on each Fourier mode. 
We validated our analytical methods using simulations of membrane dynamics, for which there exists a 
well-established analytical theory (Materials and methods, Figure 1—figure supplement 3), and show 
that our results are not sensitive to an extension of our analysis to longer length and time scales (Mate-
rials and methods, Figure 1—figure supplements 4–5). Further, the membrane simulation control 
nicely demonstrates how visual features of curvature kymographs (e.g. Figure 1b) can be misleading 
(Materials and methods, Figure 1—figure supplement 3), and motivates the necessity of our more 
comprehensive technique.

Autocorrelation analysis revealed a monotonic relaxation of shape fluctuations at each wavelength 
(Figure 1e–f); the decay at every spatial scale is well-fit by an exponential form (Figure 1f), consistent 
with overdamped viscous relaxation. Importantly, we do not detect any increase in the autocorrelation 
over time, which would have appeared if there were any sustained, correlated growth of the fluctua-
tions before they decay. This again suggests that the fluctuations arise from uncorrelated stochastic 
processes, such as fluctuations in actin density. A clear wavelength-dependence is observed, with 
shorter wavelengths decaying faster and having smaller amplitudes (Figure  1g–h). This general 
trend is shared by many physical systems with linear elastic constraints, such as idealized membranes 
(Brown, 2008) and polymers (De Gennes, 2002) freely fluctuating under Brownian motion, but can 
be contrasted with systems that have a dominant wavelength, as in the case of buckling or wrinkling 
of materials under compression (Cerda and Mahadevan, 2003). Importantly, these qualitative and 
quantitative properties of the leading edge fluctuations are not specific to cell type or experimental 

Video 2. Example fish epidermal keratocyte. Time 
lapse video corresponding to the data shown in 
Figure 1—figure supplement 6a-e.

https://elifesciences.org/articles/74389/figures#video2

Video 1. Segmentation overlaid onto migrating HL-60 
cell. Time lapse video representation of segmentation 
results shown in Figure 1a.

https://elifesciences.org/articles/74389/figures#video1

https://doi.org/10.7554/eLife.74389
https://elifesciences.org/articles/74389/figures#video2
https://elifesciences.org/articles/74389/figures#video1
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conditions (e.g. agarose overlay, ECM), as we also observe this phenomenon in fish epidermal kerato-
cytes (Figure 1—figure supplement 6, Video 2).

Leading edge stability as an emergent property of branched actin 
growth
The rich behavior and quantitative nature of our leading edge shape fluctuation data made them 
ideal for comparison with physical models. In order to understand how molecular-scale actin assembly 
and biomechanics might give rise to the observed micron-scale shape dynamics, we aimed to repro-
duce this behavior in a stochastic model of branched actin network growth against a membrane 
(Figure 2a–c, Video 3, Materials and methods). Previous stochastic models of protrusive actin-based 
forces largely focused on actin polymerization against rigid obstacles (e.g. the bacterial cell wall for the 
Listeria comet tail Carlsson, 2001; Carlsson, 2003 or a single, flat membrane segment in models of 
lamellipodia Mueller et al., 2017). Expanding on this general framework, and in an approach concep-
tually similar to previous work simulating small (< 2 µm) patches of a lamellipodium (Schaus et al., 
2007; Schaus and Borisy, 2008), we incorporated a two-dimensional leading edge with filaments 
polymerizing against a flexible membrane, which we modeled as a system of flat membrane segments 
coupled elastically to each other. The size of the membrane segments was comparable to the spatial 
resolution of our experimental measurements, allowing us to assay fluctuations over a similar dynamic 
range of wavelengths. Simulated filaments apply force to the membrane following the classic unteth-
ered Brownian ratchet formalism (Mogilner and Oster, 1996), consistent with recent experiments 
showing that cellular protrusions are formed by largely untethered actin networks (Bisaria et  al., 
2020). Designed to be as comparable as possible to our experimental data, the model incorporated 
experimentally measured values from the literature for the membrane tension, membrane bending 
modulus, and biochemical rate constants (Tables  1–2, Mogilner and Oster, 1996; Lieber et  al., 
2013). As we were specifically interested in identifying biophysical mechanisms regulating leading 
edge stability, we minimized the model’s biological complexity by including only the core biochem-
ical elements of actin network growth dynamics: polymerization, depolymerization, branching, and 
capping. All filament nucleation in the model occurs through dendritic branching observed in cells 
to be mediated by the Arp2/3 complex (Welch et al., 1997; Svitkina et al., 1997), which catalyzes 
the nucleation of new ‘daughter’ actin filaments as branches from the sides of pre-existing ‘mother’ 
filaments at a characteristic angle of ~70° (Mullins et al., 1998; Volkmann et al., 2001; Rouiller et al., 
2008). By simulating individual filament kinetics, the model captures the evolutionary dynamics of 
the filament network, allowing us to directly test hypothesized mechanisms for the interplay between 
actin network properties (e.g. filament orientation) and protrusion dynamics (Mogilner and Oster, 
1996; Lacayo et al., 2007; Mueller et al., 2017; Grimm et al., 2003; Maly and Borisy, 2001; Schaus 
et al., 2007; Figure 2b).

To our great surprise, this very simple model was able to recapitulate stable leading edge fluctua-
tions. Nascent leading edges reach steady state values for filament density, filament length, filament 
angle, membrane velocity, and (most importantly) membrane fluctuation amplitude within seconds, 
a biologically realistic time scale (Figure 2d–h). Furthermore, the steady state values obtained are 
in quantitative agreement with both our own experimental data and previously published measure-
ments, with the model yielding mean values of: 0.3 filaments/nm for filament density (~30 nm fila-
ment spacing for a lamellipodium that is 10 filaments tall) (Abraham et  al., 1999), ~150  nm for 
filament length, ~40° for filament angle (with respect to the direction of migration), ~0.35 nm/ms for 
membrane velocity, and ~50 nm for membrane fluctuation amplitude (Svitkina et al., 1997; Maly and 
Borisy, 2001; Verkhovsky et al., 2003).

As observed in the experimental measurements, simulated leading edge shape stability is medi-
ated by an exponential decay of shape fluctuations (Figure 2i–j). Furthermore, the minimal model 
correctly predicts the monotonic trends of fluctuation amplitude and decay time scale with wave-
length (Figure 2k–l) in a way that was not sensitive to our choices of simulation time step, membrane 
segment length, and overall length of the leading edge (Figure 2—figure supplements 1–3). It should 
be noted that the generation of the simulated data in Figure 2k–l did not involve any curve-fitting 
(and therefore no free parameters that could be fit) to the experimentally measured autocorrelation 
dynamics in order to parameterize the model. Rather, the simulated fluctuation relaxation behavior, 
qualitatively reproducing our experimental measurements, emerges directly from the molecular-scale 

https://doi.org/10.7554/eLife.74389
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Figure 2. Minimal model of branched actin growth recapitulates leading edge stability and shape fluctuation relaxation. (a–b) Model schematic. Black 
lines, membrane; green circles, actin; purple flowers, Arp2/3 complex; blue crescents, capping protein. Rates: kon, polymerization; koff, depolymerization; 
kbranch, branching; kcap, capping. θbranch, branching angle. dbranch, branching window. Physical parameters: Fspring, forces between membrane segments; FBR, 
force of filaments on the membrane (Brownian ratchet); Fdrag, viscous drag. (b) Schematic demonstrating filament angle evolution. Filaments growing 
perpendicular to the leading edge (I) outcompete their progeny (branches), leading to a reduction in filament density; filaments growing at an angle 
(II and III) make successful progeny. Filaments spreading down a membrane positional gradient (II) are more evolutionarily successful than those 
spreading up (III). (c) Simulation snapshot: Black lines, membrane; colored lines, filament equilibrium position and shape; gray dots, barbed ends; 
black dots, capped ends; filament color, x-position of membrane segment filament is pushing (increasing across the x-axis from blue to red). (d-h) For 
a representative simulation, mean (solid line) and standard deviation (shading) of various membrane and actin filament properties as a function of 
simulation time. Note for linear filament density (d) lamellipodia are ~10 filament stacks tall along the z-axis, giving mean filament spacing of 10/density, 
or ~30 nm. (i–l) Autocorrelation analysis and fitting for a representative simulation (i–j) as well as best fit parameters averaged over 40 simulations 
(k–l). Data from this figure can be found in Figure 2—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data corresponding to plots in Figure 2.

Figure supplement 1. Simulations are performed at sufficient temporal discretization.

Figure supplement 2. Simulations are performed at sufficient spatial discretization.

Figure supplement 3. Simulated leading edge behavior is not affected by leading edge length.

https://doi.org/10.7554/eLife.74389
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actin growth model, in which all biochemical 
parameters were estimated from measurements 
in the existing literature (Tables 1–2) – leaving no 
free simulation parameters.

Predicting effects of drug 
treatment with Latrunculin B
We were interested in further assaying the predic-
tive power of this minimal stochastic model by 
determining whether the output of the simula-
tions was congruent with experimental observa-
tions under conditions that had not been tested 
prior to model development. As an example, we 
elected to test whether the model could correctly 
predict the response of HL-60 cells to treatment 
with the drug Latrunculin B, which binds to and 
sequesters actin monomers. Qualitatively, cells 
treated with Latrunculin B (Video  4) present 
with enhanced bleb formation and more variable 
leading edge shapes, in comparison with cells 
treated with a DMSO vehicle control (Video 5). 

In our model, addition of this drug can be simulated by reducing the free monomer concentration, 
which consequently reduces both the polymerization rate and the branching rate. At low effective 
doses, subtle but measurable changes to leading edge fluctuations were predicted: specifically, an 
increase in the amplitudes at large wavelengths, and a decrease in the decay rates across all wave-
lengths (Figure 3a–b). Our experimental results were consistent with these quantitative predictions; 
Latrunculin B-treated cells exhibited increased fluctuation amplitudes and decreased fluctuation rates 
over the predicted ranges (Figure 3c–d).

Geometry as the core determinant of simulated leading edge stability
Given the success of the model in reproducing experimental results, we next wanted to determine 
which features of the simulation were responsible for leading edge stability and relaxation of fluctu-
ations. The simplicity of the model allowed us to determine the stability mechanism by process of 
elimination, selectively removing elements of the model (Materials and methods) and determining 
whether stability was retained. To assay the importance of membrane tension and bending rigidity, 
which has been suggested to be a key factor regulating lamellipodial organization (Batchelder et al., 
2011; Sens and Plastino, 2015), we simply removed the forces between the membrane segments 
(Figure 2a, Fspring) from the simulation (Materials and methods). Surprisingly, the coupling between the 
membrane segments (i.e. the effects of tension and bending at length scales larger than the size of an 
individual membrane segment) was completely dispensable for leading edge stability (Figure 4a–e).

Following a similar process of elimination, we determined that in fact only two elements were 
required for stability. First, as reported previously for dendritic actin network polymerization against a 
single stiff obstacle, it was necessary to constrain branching to occur only within a fixed distance from 
the leading edge membrane (Figure 2a–b) in order to maintain a steady state actin density (Carlsson, 
2001). The molecular motivation for this spatially limited ‘branching window’ is rooted in that fact that 
activators of the Arp2/3 complex, which render Arp2/3 competent for actin filament nucleation, are 
typically membrane-associated proteins (Suetsugu, 2013). Second, we found that stability is inher-
ently tied to the ability of filaments to spread laterally to neighboring membrane segments (Figure 2b 
II-III, Figure 4f–i). Recall that, because the branched actin network geometry causes filaments to grow, 
on average, at an angle relative to the membrane normal (Maly and Borisy, 2001; Verkhovsky et al., 
2003), polymerizing tips spread laterally along the leading edge (Lacayo et al., 2007; Grimm et al., 
2003). Removing filament spreading from the model by fixing filaments to remain associated with 
their nearest membrane segment at birth (Materials and methods) led to actin density divergence: 
network regions with low filament density eventually underwent complete depolymerization, while 
high-density regions continued to accumulate actin (Figure 4f–g).

Video 3. Example simulation. Time lapse video 
representation of simulation results shown in Figure 2c.

https://elifesciences.org/articles/74389/figures#video3

https://doi.org/10.7554/eLife.74389
https://elifesciences.org/articles/74389/figures#video3
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These findings lead us to a simple molecular feedback mechanism for leading edge stability, based 
on a synergy between filament spreading and membrane-proximal branching (Figure 4j): To begin 
with, regions with initially high filament density come to protrude beyond the average position of the 
rest of the membrane, representing the emergence of a leading edge shape fluctuation (Figure 4j, I, 
II). This induces asymmetric filament spreading, where filaments from high-density regions can spread 
productively into neighboring regions (Figure  2b, II), but filaments spreading from adjacent low-
density regions cannot keep up with the fast moving membrane segments (Figure 2b, III), and thus 
are unproductive (Figure 4j, II, III). In this way, the branched geometry inherent to dendritic actin 
polymerization, as well as its interaction with the shape of the membrane, naturally encodes leading 
edge stability (Figure  4j, IV). Thus our results directly demonstrate a ‘stability-through-spreading’ 
mechanism that has previously only been assumed in mean-field analytical theories (Lacayo et al., 
2007; Grimm et al., 2003). Remarkably, this means that leading edge maintenance is an intrinsic, 
emergent property of branched actin network growth against a membrane, without requiring any 
further regulatory governance. Geometrical constraints imposed simply by the nature of membrane-
proximal actin branching ensure that any small variations in either local actin filament density or growth 
rate are inherently self-correcting to regress toward the mean.

Of note, it has previously been shown that Arp2/3-mediated branching is required for lamellipo-
dial formation in a wide variety of cell types; cells with inhibited or depleted Arp2/3 complex exhibit 

Table 1. Actin network growth parameters.
Parameters listed are the default used for the simulations.

Notation Meaning Value Source

M Free monomer concentration 15 µM Cooper, 1991; Marchand et al., 1995

kon Polymerization rate 11∙10–3 monomers ms–1 µM–1 Pollard, 1986

koff Depolymerization rate 10–3 monomers ms–1 Pollard, 1986

kcap Capping rate 3∙10–3 ms–1
~3∙10–3 µM–1 ms-1 Schafer et al., 1996
at 1 µM capping protein Pollard et al., 2000

kbranch Branching rate
4.5∙10–5 branches ms–1 µM–1 
nm–1

50 nm branch spacing Svitkina et al., 1997; Svitkina and Borisy, 1999;
Branch rate approximated such that elongation rate / branch rate = 50 nm; kbranch = (kon∙M∙lm)/
(50 nm∙M∙ybranch)

ybranch Branching window length 15 nm ~3–5 protein diameters away from the membrane

θbranch Branching angle 70 ± 10°
Mullins et al., 1998; Volkmann et al., 2001; Rouiller et al., 2008; Blanchoin et al., 2000; 
Cai et al., 2008; Svitkina and Borisy, 1999

lp Actin filament persistence length 1 µm Käs et al., 1996

lm Actin monomer length 2.7 nm Pollard, 1986

Table 2. Physical parameters.
Parameters listed are the default used for the simulations.

Notation Meaning Value Source

kB Boltzmann constant 0.0183 pN nm K–1 –

T Temperature 310.15 K –

σ Membrane tension 0.03 pN nm–1 Lieber et al., 2013

κ Membrane bending modulus 140 pN nm Lieber et al., 2013

ηw Viscosity of water at 37 °C 7∙10–7 pN ns nm–2 –

η Effective viscosity at the leading edge 3000 ηw ~ effective viscosity of micron-scale beads in cytoplasm Wirtz, 2009

L Leading edge length 20 µm This work

h Leading edge height 200 nm Abraham et al., 1999; Laurent et al., 2005; Urban et al., 2010

Δx Membrane segment length 100 nm –

N Number of membrane segments 200 –

https://doi.org/10.7554/eLife.74389
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complete disruption of the lamellipodium shape 
and often switch to a different mode of migration 
altogether, such as filopodial motility (Fritz-Laylin 
et  al., 2017b; Henson et  al., 2015; Wu et  al., 
2012; Davidson et  al., 2018). Indeed, HL-60s 
treated with the Arp2/3 inhibitor CK-666 have 
extremely variable leading edge shapes, char-
acterized by long, thin filopodia-like protrusions 
(Video 6). Our theoretical results provide a mech-
anistic interpretation for this striking phenom-
enon, suggesting that the vital lamellipodial 
maintenance role of Arp2/3-mediated branching 
stems from its ability to mediate efficient filament 
spreading and equilibration of actin density fluc-
tuations, purely because the daughter filament 
always grows at an angle distinct from its mother.

Optimal suppression of 
fluctuations by the highly 
conserved ~70° branching angle
Given the essential contribution of branched 

network geometry to the stability of the simulated leading edges, we reasoned that variations in the 
branching geometry alone might have a significant effect on leading edge fluctuations. We there-
fore performed simulations to determine the effects of changing the average branching angle and 
branching angle variability on filament orientation, filament density, and leading edge fluctuation fit 
parameters (Figure 5). In this context, we highlight the distinction between the branching angle, θbr 
(i.e. the angle of a daughter filament relative to its mother), and the filament angle or orientation, θf 
(i.e. the angle of a filament relative to the direction of migration) (Figure 5a, inset). Due to the stero-
typical branching angle, θbr, there is a direct correspondence between the orientation, θf

mother, of a 
mother filament and the orientation, θf

daughter, she passes on to her daughter branches. Our simulations 
are thus, in effect, selection assays, as mother filaments compete to stay within the fixed branching 
window, spawn daughter branches, and thus pass down their angle to their progeny (Maly and Borisy, 
2001; Schaus et al., 2007). For example, when filaments are initialized with a random orientation, and 
the branching angle is fixed (i.e. there is no variability in the branching angle), only a handful of the 
initial filament angles (θf) survive until the end of the simulation (Figure 5a). The surviving, successful 
filament angles are narrowly and symmetrically distributed around one half of the branching angle 
(Figure 5a–c). This optimal filament angle allows mother and daughter filaments to branch back and 

forth symmetrically about the membrane normal, 
such that mother filaments do not out-compete 
their progeny (as has been described previously) 
(Maly and Borisy, 2001; Schaus et  al., 2007; 
Schaus and Borisy, 2008; Figure 2b).

In living cells, branching is mediated by the 
Arp2/3 complex, which has been experimentally 
measured to form highly regular and sterotyped 
branches at  ~70° (Mullins et  al., 1998; Volk-
mann et al., 2001; Rouiller et al., 2008). Intrigu-
ingly, this protein complex is highly conserved 
(Welch et  al., 1997), with measurements of the 
branching angle in a wide variety of species, 
including protists (Mullins et  al., 1998; Volk-
mann et  al., 2001; Rouiller et  al., 2008; Blan-
choin et al., 2000), yeast (Rouiller et al., 2008), 
mammals (Rouiller et al., 2008; Blanchoin et al., 

Video 4. Example HL-60 cell treated with 30 nM 
latrunculin B.

https://elifesciences.org/articles/74389/figures#video4

Video 5. Example HL-60 cell treated with 0.1% DMSO 
vehicle control.

https://elifesciences.org/articles/74389/figures#video5

https://doi.org/10.7554/eLife.74389
https://elifesciences.org/articles/74389/figures#video4
https://elifesciences.org/articles/74389/figures#video5
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2000; Cai et al., 2008), and amphibians (Svitkina and Borisy, 1999), using various experimental tech-
niques (platinum replica electron microscopy, cryo-electron microscopy, and total internal reflection 
microscopy), all falling within the range of 67–78° (± 2–13°). The high degree of conservation hints 
that this specific angle might carry some functional optimality, but the question has not been address-
able experimentally; due to the lack of naturally occuring Arp2/3 variants with a substantially different 
branching angle, an alternative branching structure would hypothetically have to be designed do novo, 
presumably by altering the protein interaction interface by which the Arp2/3 complex binds to the 
side of a mother filament (Volkmann et al., 2001). We thus sought to explore the possible functional 
significance of this conserved angle using our minimal stochastic model. Excitingly, we found that in 
simulations with no branch angle variability, a 70–80° branching angle was optimal for minimizing both 
actin density fluctuations (Figure 5d and i) and leading edge fluctuation amplitudes for wavelengths 
smaller than ~2 µm (Figure 5f and h). These smoothing effects are therefore predicted to be relevant 
within the experimentally-measurable range of wavelengths (between ~0.7 µm and ~2 µm), but are 
most beneficial for the smallest wavelengths resolved by our simulations (down to ~0.3 µm) – closest 
to the length scales of individual filament polymerization. Overall, these results provide tantalizing 
mechanistic insight into the long-standing question of why the characteristic branching angle is so 
ubiquitous.

Heritability of filament orientation (i.e., the extent to which mother filament orientation deter-
mines the orientation of the daughters) is set by the degree of variability in the branching angle 
(which, in turn, reflects the influence of thermal fluctuations). Perhaps unsurprisingly, decreasing this 
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Figure 3. Minimal model correctly predicts response of HL-60 cells to drug treatment. Predicted and 
experimentally-measured response of the autocorrelation decay fit parameters to drug treatment with Latrunculin 
B, plotted as in Figure 1g–h. (a–b) Predicted response to a reduction in the free monomer concentration (green, 
10 µM G-actin) compared to the standard concentration used in this work (black, 15 µM G-actin) – medians over 
40 simulations for each condition. (c–d) Experimentally measured behavior: DMSO control – medians over 67 cells 
(same data as plotted in Figure 1g–h). 30 nM Latrunculin B – medians over 34 cells. Data from this figure can be 
found in Figure 3—source data 1.

The online version of this article includes the following source data for figure 3:

Source data 1. Source data corresponding to plots in Figure 3.

https://doi.org/10.7554/eLife.74389
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orientational heritability significantly reduces the dependence of fluctuation amplitude and filament 
density variability on the branching angle (Figure 5j–q), and thereby counteracts the beneficial effect 
of the optimal angle on leading edge fluctuations. Introducing a branch angle variability of ±2° (on 
the lower end of the experimentally-measured values) broadens the range of near-optimal branch 
angles but maintains the optimum at ~70–80° (Figure 5j and l), while introducing a variability of ±10° 
(on the higher end of the measured range) completely removes the optimum (Figure 5n and p). In 
both cases, increasing the branch angle variability increases the minimum possible fluctuation ampli-
tude (Figure 5h, l and p – insets) and filament density variability (Figure 5i, m and q), representing 
a decrease in the noise-suppression capabilities of the system. Overall, these results provide strong 
support for the idea that actin network geometry is not only essential for leading edge stability, but 
also plays a major role in determining the fundamental limits of smoothness in lamellipodial shape.

Discussion
The emergence of robust collective behaviors from stochastic elements is an enduring biological 
mystery which we are only beginning to unravel (Huang et al., 2016; Battich et al., 2015; Chang 
and Marshall, 2017; Mohapatra et al., 2016; Raj and van Oudenaarden, 2008; Gray et al., 2019; 
Oates, 2011). The apparent dichotomy in actin-based motility between the random elongation of 

. . .. . .
I

II

. . .. . .

III

. . .. . .

j

a b c d e

-100

-50

0

50

100

0

0.2

0.4

0.6

0.8

1

Membrane position
variability

Linear 
filament density

M
em

br
an

e 
po

si
tio

n 
(n

m
)

(d
iff

er
en

ce
 fr

om
 a

ve
ra

ge
)

D
en

si
ty

 (f
ila

m
en

ts
/n

m
)

f ihg

collapse

0 20 40 60 80 100
-100

-50

0

50

100

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
0

50

100

150

200

250

300

350

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Membrane position
variability

Linear 
filament density Filament length Filament angle Membrane velocity

M
em

br
an

e 
po

si
tio

n 
(n

m
)

(d
iff

er
en

ce
 fr

om
 a

ve
ra

ge
)

Time (sec)

D
en

si
ty

 (f
ila

m
en

ts
/n

m
)

Time (sec)

Fi
la

m
en

t l
en

gt
h 

(n
m

)

Time (sec)

Fi
la

m
en

t a
ng

le
 (°

)

Time (sec)

Ve
lo

ci
ty

 (n
m

/m
s)

Time (sec)

0 20 40 60 80 1000 20 40 60 80 1000

Time (sec) Time (sec)

Complete model
Membrane segment
coupling removed

Time at simulated 
network collapse

10 11
Time at collapse (s)

0

2

4

6

8

10

12

C
ou

nt
s

7 8 96 12
0

0.4

0.8

1.2

1.6

Y-
po

si
tio

n 
(µ

m
)

Example of actin network collapse
 without spreading

X-position (µm)
0 0.5 1 1.5 2 2.5 3 3.5 4

Actin network
collapse

Complete model
Filament spreading 
removed

IV
. . .. . .

Figure 4. Simulated lamellipodial stability is governed by leading edge geometry. (a–e) Comparison of leading edge properties with and without the 
coupling of the membrane segments by tension and bending rigidity (no coupling: Fspring = 0 in Figure 2a), plotted as in Figure 2d–h. (f–i) Comparison 
of leading edge properties with and without the ability of filaments to spread between neighboring membrane segments. (g) A snapshot of the 
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made from the same simulation. (h) A histogram of the average time to network collapse over 40 simulations. (j) Schematic representing the proposed 
molecular mechanism underlying the stability of leading edge shape, with time increasing from I-IV. Data from this figure can be found in Figure 4—
source data 1.

The online version of this article includes the following source data for figure 4:

Source data 1. Source data corresponding to plots in Figure 4.

https://doi.org/10.7554/eLife.74389
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individual filaments and the stable formation 
of smooth and persistent higher order actin 
structures such as lamellipodia exemplifies this 
enigma, and provides an avenue toward under-
standing general strategies for noise suppression 
in biological systems.

In recent years it has become clear that 
perturbation-free experiments which examine 
fluctuations around the mean at steady state 
(in contrast to probing the change in the mean 
due to a perturbation) can be a powerful tool for 
understanding noisy systems (Welf and Danuser, 
2014). In this work, application of that principle in 
combination with high-precision measurements, 
quantitative analytical techniques, and physical 
modeling led to the surprising revelation that 
the suppression of stochastic fluctuations natu-
rally emerges from the interactions between a 
growing actin network and the leading edge 
membrane, with no additional feedback required. 
Our insights into the molecular mechanisms medi-
ating lamellipodial stability were largely enabled 
by experimentally measuring micron-scale leading 
edge shape dynamics and comparing them to a 
molecular-scale actin network growth model that 
correctly predicts this emergent behavior (as well 
as many other experimentally-measured features 
of lamellipodial actin networks). Ultimately, we 
hope our results inspire future experimental work 
to directly measure the nanometer-scale interac-
tions predicted by our simulations, which may be 
accomplished using super-resolution imaging of 
actin dynamics in vivo or in an in vitro reconsti-
tution of lamellipodial protrusion (i.e. branched 

polymerization of actin driving the motion of a flexible barrier).
The model developed in this work provides an understanding of the basic biophysical mechanisms 

underlying lamellipodial migration. Of course, living cells are home to array of additional complexi-
ties which are likely to further modulate leading edge fluctuations and stability, and our model may 
provide a framework for future exploration of such effects across diverse cell types and experimental 
conditions. Cells migrating in vivo inevitably experience a much more challenging and dynamic envi-
ronment, in which additional feedback mechanisms will almost certainly be required for the main-
tenance of polarized migration. The simplicity and biophysical realism of our modeling framework 
should make it particularly well-suited for future studies focused on predicting and understanding the 
effects of additional potential feedback mechanisms, including tethering (Mogilner and Oster, 2003; 
Soo and Theriot, 2005; Alberts and Odell, 2004; Kuo and McGrath, 2000), a limiting monomer 
concentration (Mullins et al., 2018), force-dependent branching (Risca et al., 2012; Parekh et al., 
2005; Chaudhuri et al., 2007), and regulation by curvature-sensing proteins (Tsujita et al., 2015; 
Zhao et al., 2011). Further, this computational model might be useful for exploring the effects of 
various extracellular forces, such as those produced by obstacles or variations in matrix density, 
or intracellular forces, such as those produced by hydrostatics. We also note that a certain degree 
of biochemical signaling is implicit in our model in the form of biochemical rate constants that are 
invariant in time and space; this property relies on signaling networks to maintain uniform gradients of 
actin-associated molecules (Devreotes et al., 2017). How local biochemical control (or lack thereof) 
over these rate constants might affect leading edge fluctuations remains an interesting avenue for 
future investigation, both theoretically and experimentally.

Video 6. Example HL-60 cell treated with 100 μM CK-
666.

https://elifesciences.org/articles/74389/figures#video6

https://doi.org/10.7554/eLife.74389
https://elifesciences.org/articles/74389/figures#video6
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Figure 5. The genetically-encoded Arp2/3-mediated branching angle is optimal for suppressing leading edge fluctuations. (a–c) Time course (a) and 
steady state distribution (b–c) of the filament angle (θf) for simulations with various branching angle standard deviations (Δθbr), (a–b) and means (θbr), 
(c). Dashed lines represent θbr/2 plus integer multiples of θbr. (d–e) Steady state filament density distribution as a function of the mean branching 
angle in the context of Δθbr=0° (d) and Δθbr=10° (e). (a–b, d–e) Results from a representative simulation for each condition. (c) Data integrated over 
40 simulations. (f–q) Predicted response of leading edge fluctuations and filament density variability to changes in the branch angle and branch angle 
variability, medians over 40 simulations for each condition. Red error bars – standard error. Color map is identical for panels c-q. (h,l,p) Fitted amplitude 
as a function of branch angle, where each line represents a different spatial frequency, increasing from 0.2 to 3.2 µm–1 in intervals of 0.5 µm–1. Insets have 
identical x-axes to main panels. (i,m,q) Standard deviation of the filament density at steady state plotted as a function of branch angle. Note the x- and 
y-axes limits in (f–g, j–k, n–o) are expanded compared to the equivalent panels in Figures 1–3. Data from this figure can be found in Figure 5—source 
data 1.

The online version of this article includes the following source data for figure 5:

Source data 1. Source data corresponding to plots in Figure 5.

https://doi.org/10.7554/eLife.74389
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The defining characteristic and major advance of our model was the explicit inclusion of both the 
evolutionary dynamics of the actin network and its interaction with the two-dimensional geometry of 
the leading edge. By selectively removing elements of the model, we determined that lateral filament 
spreading, combined with a fixed branching window, is indispensable for leading edge stability. This 
highlights the crucial role in lamellipodial maintenance of the branched structure of actin networks, 
wherein each daughter filament inherits angular information from its mother. Our further investiga-
tions into the evolutionary properties of actin network growth revealed that a ~70–80° branch angle 
maximally suppresses fine-scale actin density and leading edge shape fluctuations, showing for the 
first time that Arp2/3-mediated branching imparts optimal functionality, as was long hypothesized 
based on strong sequence, structural, and functional conservation throughout the eukaryotic tree of 
life. It is interesting to note that the evolutionarily-conserved branching angle that we find maximally 
suppresses leading edge fluctuations appears not to be the same angle that optimizes the polym-
erization velocity of single filaments – predicted to be a broad angle closer to ~90–100° (and quite 
load-dependent) in the low-load regime (Mogilner and Oster, 1996). This contrast suggests that 
evolutionary selection acts at the level of actin network properties, rather than force production by 
individual filaments.

Returning to the broader question of how noisy biological systems control for stochasticity, we find 
that stability in the case of lamellipodial dynamics is inherently encoded by the geometry of branched 
actin network growth. It will be interesting to see whether similar principles hold for other cytoskeletal 
structures with clear geometric constraints, such as endocytic pits, the cytokinetic ring, and the mitotic 
spindle.

Materials and methods
HL-60 cell culture and differentiation
HL-60 cells were cultured as described previously (Millius and Weiner, 2009; Garner et al., 2020). 
In brief, cells were maintained at a density of 0.1–1 x 105 cells/mL by passaging every 2–3 days into 
fresh RPMI media supplemented with 10% heat-inactivated fetal bovine serum and antibiotics/anti-
mycotics. Supplementation with 1.57% DMSO was used to differentiate the cells into a neutrophil-like 
state. Cells were subsequently extracted for experiments at 6 days post-differentiation. Our HL-60 cell 
line was obtained from Orion Weiner’s lab at UCSF, who originally received them from Henry Bourne’s 
lab at UCSF. The identity of this suspension cell line was confirmed based on the behavior of the cells, 
including differentiating into a neutrophil-like state upon exposure to DMSO that exhibits character-
istic phenotypes for substrate adhesion, rapid migration, and elongated morphology. HL-60s are not 
listed as a misidentified cell line on the Register of Misidentified Cell Lines. The cell line tested nega-
tive to mycoplasma contamination.

Under-agarose motility assays with HL-60s
Differentiated HL-60 cells were plated on fibronectin-coated coverslips and then overlaid with a 1% 
agarose pad containing 1 nM fMLP (to enhance migratory behavior), as described previously (Garner 
et al., 2020). Microscopy of the migrating cells was performed at 37 °C, using transmitted light to 
image phase contrast on an epifluorescence microscope at ×100 magnification (100 × 1.45 NA Plan 
Apo oil objective, Nikon MRD31905). A more detailed description of our microscopy system can be 
found in previous publications (Garner et al., 2020). For treatment with Latrunculin B or CK-666, the 
drug was embedded into the agarose pad by adding the drug to the unpolymerized agarose pad 
solution before gelling (at the same time as adding fMLP), such that drug treatment begins when 
cells are overlaid with the agarose pad and is maintained throughout imaging. Cells were imaged at 
45 min post-plating. Drugs were first diluted down to 1000 X in DMSO, then added to the agarose 
solution at a dilution of 1:1,000 (for a final concentration of 30 nM for Latrunculin B and 100 μM for 
CK-666), giving a final DMSO concentration in the pad of 0.1%. Controls were performed by adding 
0.1% DMSO to the agarose pad alone.

Keratocyte isolation and motility assays
Keratocytes were cultured from wild-type zebrafish embryos at 2 days post-fertilization as described 
previously (Lou et al., 2015). Briefly, zebrafish embryos were collected at 2 days post-fertilization, 

https://doi.org/10.7554/eLife.74389
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dechorionated, and anesthetized using tricaine. To dissociate the keratocytes, dechorionated fish 
were then washed in PBS, incubated in Cell Dissociation Buffer for 30 min at 4 °C, incubated in a 
solution of 0.25% trypsin and 1 mM EDTA for ~15 min at 28 °C, and then incubated in fetal bovine 
serum to quench the trypsin. From this point on, cells were maintained in antibiotic and antimycotic 
to deter microbial growth. The keratocyte-rich supernatant was then concentrated by centrifugation 
at 500 g for 3 min. Keratocytes were then plated on collagen-coated coverslips and incubated at 
room temperature for ~1 hr to allow cells to adhere. Once adherent, the supernatant was exchanged 
for imaging media (10% fetal bovine serum in L-15) and allowed to incubate another 15 min at room 
temperature before imaging. The keratocytes were imaged at 28 °C under similar conditions as those 
used for HL-60 cells. Data included in Figure 1—figure supplement 6 represent cells from a single 
coverslip. Experiments were approved by University of Washington Institutional Animal Care and Use 
Committee (protocol 4427–01).

Image segmentation
Most segmentation algorithms penalize curvature in the contour in order to reduce the noise in the 
fitting algorithm (Seroussi et al., 2012). However, this runs the risk of introducing artificial correla-
tions and structure into the data. For example, a spring-like curvature penalty would artificially make 
fluctuations appear to be stretch-dominated. Therefore, we performed the following custom segmen-
tation algorithm to avoid these potential artifacts (Figure 1—figure supplement 1). Phase contrast 
time-lapse videos were manually aligned to the direction of motion of the cell, such that each cell 
migrates up the y-axis on an x-y coordinate system (Figure 1—figure supplement 1a, b). The videos 
were then cropped to isolate the cell leading edges and exclude the cell body, for easier segmenta-
tion. If the cell migrates up the y-axis, this means every image pixel along the x-axis has an associated 
leading edge position along the y-axis. A leading edge y-position was assigned to each x-axis pixel 
independently of knowledge about neighboring x-axis pixels, to avoid injecting the artifacts discussed 
above. A manual segmentation was performed for the first time point in each movie. A custom, auto-
mated segmentation algorithm written in MATLAB then performed a line scan of the phase contrast 
intensity along the y-axis separately for each pixel along the x-axis. For each line scan, the algorithm 
performs a local search for the leading edge position, constrained to be within a fixed number of 
pixels from either the manual segmentation (for the first time point) or the previous time point (for 
subsequent timepoints). The leading edge position is defined as the midpoint between the brightest 
phase intensity (phase halo) and the point of steepest intensity gradient (transition from phase halo 
to phase-dense cytoplasm).

Preparation of the curvature and velocity kymographs
The curvature and velocity kymographs (Figure 1b–c, Figure 1—figure supplement 3) were prepared 
using custom MATLAB code. Curvatures are calculated as the inverse radius of the best-fit circle corre-
sponding to a 30 pixel-wide (~1.5 µm) region about each position. The most prominent fluctuation 
events seen in the curvature kymographs (Figure 1b, Figure 1—figure supplement 3) somewhat 
correspond to (but do not exactly match) the length of the fitting window. For example, the simulated 
and experimental data shown in Figure 1—figure supplement 3 were fit using the same ~1.5 µm 
fitting window and have similar apparent ‘dominant wavemodes’ of  ~3  μm, or twice the fitting 
window. However, despite being fit with the same fitting window, the simulated data has an observ-
ably smaller apparent ‘dominant wavemode’ than the experimental data. Velocities were calculated as 
the distance traveled over 250ms (five 50ms timepoints) non-overlapping windows.

Processing of segmented cell shapes for autocorrelation analysis
Kymographs of curvature and velocity such as those shown in Figure 1b–c, while helpful to obtain a 
qualitative sense of the fluctuation data, are visually dominated by the largest size-scale features of the 
leading edge. They thus offer an incomplete description of the shape fluctuations (Ma et al., 2018) 
– notably de-emphasizing the fine-scale features that are the subject of this study. Further, curvature 
kymographs emphasize features that are approximately the same size as the fitting window, and 
fail to pick up fluctuations at different size scales. To perform a quantitative analysis which faithfully 
captures fluctuations at all size scales, we choose to perform Fourier decomposition on the leading 
edge shape, and analyze the dynamics of each wavemode separately. As cells migrate, their global 
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leading edge shape undergoes long timescale changes, such as variations in width, large-scale curva-
ture, or slight turning of the cell, which can dominate the Fourier amplitudes and the subsequent auto-
correlation signal. As we are most interested in extracting the fine-scale fluctuations, we performed 
background subtraction on the segmented leading edge shapes (Figure 1—figure supplement 2). 
To do this, we defined the ‘background’ leading edge shape as the contour after smoothing (by the 
lowess method, using a span of 7 μm). This rather large smoothing window was chosen specifically 
to preserve fine-scale features. The background-subtracted y-position is thus defined as the differ-
ence between the segmented leading edge and its smoothed counterpart. This process removed 
the large-scale features of the leading edge. We next wanted to remove the long-timescale features 
of the leading edge, so we also subtracted the time-averaged background-subtracted y-position for 
each x-pixel. Altogether, these pre-processing steps maintained the features of interest in the curva-
ture kymograph (Figure 1—figure supplement 3). After performing background subtraction, we still 
needed to control for changes in leading edge width over time. The wavelengths represented in the 
Fourier transform are defined as λ = L/n, where L is the length of the leading edge, and n is an integer 
from 0 to one half the number of pixels. If the leading edge length were to vary over time, then so 
would the wavelengths, making it impossible to track the behavior of a single wavelength fluctuation 
over time. We thus cropped the dataset along the x-axis to include only pixels which contain the 
cell for all timepoints in the video, thereby extracting a fixed-length leading edge subset for further 
analyses.

Autocorrelation analysis and fitting
Autocorrelation analysis and fitting were performed separately for each cell and simulation. For exper-
imental data, the entire video was analyzed. For simulated data, analysis was only performed on the 
time points after the simulation had reached steady state, for which we used a conservative cut-off 
of 10 s (see Figure 2d–h). To separate out fluctuations at different length scales, we first performed 
a spatial Fourier transform on the leading edge shape. Referencing the coordinate system defined 
in Figure 2a, the pixels (experiments) or membrane segments (simulations) are equally spaced in the 
x-direction, allowing us to perform a one-dimensional Fourier transform (MATLAB fft() function, which 
assumes periodic boundary conditions) on the y-positions of a segmented leading edge for each time 
point. We then normalize the Fourier transform by a factor of dx/‍

√
L‍, where dx is the pixel/membrane 

segment size and L is leading edge length. This normalization preserves the variance and accounts for 
the pixel size. To measure the fluctuation relaxation, we calculated the time-averaged autocorrelation 
(An(τ) = < Yn(t+τ)∙Yn*(t) > t, using non-overlapping windows in t) of each Fourier mode amplitude. The 
autocorrelation function extracted from this analysis contains complex elements of the form A = a + 
ib. We performed all plotting and fitting on the complex magnitude (sqrt (a2 + b2)) of the autocorrela-
tion function, which is most representative of the total autocorrelation.

Note that because we are plotting the complex magnitude (which is always positive), the auto-
correlation plots shown in Figures 1e–f , and 2i–j are expected to decay to some non-zero back-
ground noise window, rather than to zero. Indeed, the membrane simulation control (see Validation of 
autocorrelation analysis implementation), which is predicted to have a purely exponentially-decaying 
autocorrelation function, also shows a decay to a noise window at long times (Figure  1—figure 
supplement 4). We fit each Fourier mode time-autocorrelation to the exponential decay function 
described in the main text (Figure 1f), fitting ln(|An(τ)|) vs τ to a line using MATLAB’s polyfit function, 
to extract fit parameters for each cell and simulation. Each curve was fit out to a drop in the amplitude 
by a factor of e/2, or at least 10 points. To average fit parameters over many cells, we controlled for 
cell-to-cell variability in leading edge length by binning the parameters by spatial frequency, and then 
calculating summary statistics separately for each bin.

The spatial background subtraction performed on the leading edge shape (discussed in Materials 
and methods: Processing of segmented cell shapes for autocorrelation analysis) was necessary to 
extract the fine-scale shape fluctuations studied in this work. This background subtraction is expected 
to remove fluctuations with wavelengths larger than ~7 µm (i.e. reduce their amplitude to zero). For 
this reason, only wavelengths less than 7 µm are plotted in Figure 1e–h. We note that it is possible 
that fluctuations with wavelengths less than, but near 7 µm might also have slightly reduced measured 
amplitudes (i.e. the shape of the curve in Figure 1g may artificially level off at low spatial frequency). 
However, any such effect would be performed uniformly in time, and therefore is not expected to 
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affect the measured temporal dynamics (Figure 1h). Indeed, when we extend the span of our back-
ground subtraction by ~50% (up to 10 μm), we find that only the amplitude of the largest mode is 
altered (slightly increased) and the measured relaxation timescales are not affected (Figure 1—figure 
supplement 5).

Validation of autocorrelation analysis implementation
To validate our autocorrelation method, we analyzed control simulations of a membrane freely fluc-
tuating under Brownian motion in the absence of actin, and showed it recapitulates predictions from 
analytical theory for this system (Figure 1—figure supplement 3). These simulations were performed 
exactly as in the leading edge simulations, using the same parameters, but without actin. The equa-
tion of motion used for membrane segments in the control simulations, as well as a derivation of the 
associated autocorrelation function, can be found in Appendix 2.4.4: Choice of timestep. Interestingly, 
the curvature kymographs of these control simulations exhibit striking visual features reminiscent of 
instabilities, dominant wavemodes, or oscillations – and yet such effects are absent from this system 
by definition (which we confirm quantitatively using our autocorrelation method, Figure 1—figure 
supplement 3). This suggests that similar features in the experimentally-measured curvature kymo-
graph are also not indicative of instabilities, dominant wavemodes, or oscillations, which we confirmed 
by autocorrelation analysis.

Modeling
Here, we briefly describe the geometry and major elements of the model. Please see the Appendix 
for a detailed description of the model and Tables 1 and 2 for a list of the chosen parameters. A 
simulated patch of leading edge was modeled by a branched network of actin filaments stochas-
tically polymerizing towards a 2D strip of membrane, subject to periodic boundary conditions. 
The 2D strip was discretized as membrane segments that are fixed in position along one axis and 
move only along the direction of motion of the simulated cell. Stochastic, fixed time step Brownian 
dynamics simulations, implemented with custom MATLAB code, were performed to update the 
membrane position and actin network properties. Actin network growth evolved from constant rate 
Poisson processes for polymerization, depolymerization, branching, and capping. Once polymer-
ized, filaments were fixed in position at their branch point of origin (in the lab frame of reference), 
and did not undergo retrograde flow (i.e. translation of the filament position opposite the direction 
of migration) or translational diffusion. The membrane strip was subject to forces of bending and 
stretching, drag from fluid viscosity, as well as the force of actin (Mogilner and Oster, 1996; Peskin 
et al., 1993; Carlsson, 2001). Filaments apply force to the membrane segments according to the 
untethered Brownian ratchet formalism (Mogilner and Oster, 1996), in which filament pointed end 
positions are assumed to be rigidly connected to the network (via their branch point of origin) and 
their barbed end positions are able to freely fluctuate. As previously, we ignore the possibility of 
filament buckling due to the fact that lamellipodial filaments exist in a sufficiently low-load, high 
branch density regime (Mogilner and Oster, 1996), and experimental evidence shows no indication 
of buckling (Svitkina et al., 1997). We expanded this formalism (which previously only considered 
filament fluctuations perpendicular to the filament’s long axis) to include all fluctuations of the 
filament along the filament’s short and long axes. Each filament pushes the membrane segment 
that spans the growing tip’s x-position. We note that the filament angles used to determine the 
filament forces on the membrane and presented throughout this work are always calculated rela-
tive to the global average direction of motion of the leading edge, rather than the local average 
membrane normal (a simplifying approximation necessitated by the discrete geometry and moti-
vated by the shallow curvatures exhibited by cell leading edges). Control simulations were run to 
verify that the leading edge fluctuation behavior described in this work was not dependent on the 
temporal discretization (i.e. simulations were run with sufficiently small timesteps to resolve the 
fastest dynamics, Figure 2—figure supplement 1), spatial discretization (i.e. simulations were run 
with sufficiently short membrane segments to resolve the smallest length scales at which there is 
significant bending, Figure  2—figure supplement 2), or leading edge length (i.e. the periodic 
boundary conditions were implemented correctly, such that a simulated small patch of leading edge 
behaves identically to an equivalently sized portion of a larger simulated patch of leading edge, 
Figure  2—figure supplement 3). In cases where membrane tension and bending rigidity were 
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removed, these forces were simply not calculated in the simulation (Figure 4a–e). To remove fila-
ment spreading, we modified how the filament position was updated upon addition of a monomer 
in order to maintain the growing filament tip’s x-position. Addition of monomers contributed only 
to changes in the barbed-end y-position, leaving the x-position intact, while updating the filament 
length correctly (effectively sliding the pointed end x-position backwards, rather than advancing the 
barbed end x-position forwards, Figure 4f–i).
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network-growth> under the MIT license. Figure data are available in the Source Data files. The large 
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an_ emergent_property_of_branched_actin_network_growth/132878>. Code to analyze this data are 
publicly available on Gitlab as noted above. Requests for additional raw or analyzed data should be 
sent to the corresponding author by email. Data will be made available in the form of a hard drive 
shipped by mail. There are no restrictions on who may access the data.

References
Abraham VC, Krishnamurthi V, Taylor DL, Lanni F. 1999. The Actin-Based Nanomachine at the Leading Edge of 

Migrating Cells. Biophysical Journal 77:1721–1732. DOI: https://doi.org/10.1016/S0006-3495(99)77018-9, 
PMID: 10465781

Alberts JB, Odell GM. 2004. In silico reconstitution of Listeria propulsion exhibits nano-saltation. PLOS Biology 
2:e412. DOI: https://doi.org/10.1371/journal.pbio.0020412, PMID: 15562315

Batchelder EL, Hollopeter G, Campillo C, Mezanges X, Jorgensen EM, Nassoy P, Sens P, Plastino J. 2011. 
Membrane tension regulates motility by controlling lamellipodium organization. PNAS 108:11429–11434. DOI: 
https://doi.org/10.1073/pnas.1010481108, PMID: 21709265

Battich N, Stoeger T, Pelkmans L. 2015. Control of Transcript Variability in Single Mammalian Cells. Cell 
163:1596–1610. DOI: https://doi.org/10.1016/j.cell.2015.11.018, PMID: 26687353

Bisaria A, Hayer A, Garbett D, Cohen D, Meyer T. 2020. Membrane-proximal F-actin restricts local membrane 
protrusions and directs cell migration. Science (New York, N.Y.) 368:1205–1210. DOI: https://doi.org/10.1126/​
science.aay7794, PMID: 32527825

Blanchoin L, Amann KJ, Higgs HN, Marchand JB, Kaiser DA, Pollard TD. 2000. Direct observation of dendritic 
actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404:1007–1011. DOI: 
https://doi.org/10.1038/35010008, PMID: 10801131

Brown FLH. 2008. Elastic Modeling of Biomembranes and Lipid Bilayers. Annual Review of Physical Chemistry 
59:685–712. DOI: https://doi.org/10.1146/annurev.physchem.59.032607.093550, PMID: 18173377

Cai L, Makhov AM, Schafer DA, Bear JE. 2008. Coronin 1B antagonizes cortactin and remodels Arp2/3-
containing actin branches in lamellipodia. Cell 134:828–842. DOI: https://doi.org/10.1016/j.cell.2008.06.054, 
PMID: 18775315

Carlsson AE. 2001. Growth of Branched Actin Networks against Obstacles. Biophysical Journal 81:1907–1923. 
DOI: https://doi.org/10.1016/S0006-3495(01)75842-0, PMID: 11566765

Carlsson AE. 2003. Growth Velocities of Branched Actin Networks. Biophysical Journal 84:2907–2918. DOI: 
https://doi.org/10.1016/S0006-3495(03)70018-6, PMID: 12719223

Cerda E, Mahadevan L. 2003. Geometry and Physics of Wrinkling. Physical Review Letters 90:074302. DOI: 
https://doi.org/10.1103/PhysRevLett.90.074302, PMID: 12633231

Chang AY, Marshall WF. 2017. Organelles - Understanding noise and heterogeneity in cell biology at an 
intermediate scale. Journal of Cell Science 130:819–826. DOI: https://doi.org/10.1242/jcs.181024, PMID: 
28183729

Chaudhuri O, Parekh SH, Fletcher DA. 2007. Reversible stress softening of actin networks. Nature 445:295–298. 
DOI: https://doi.org/10.1038/nature05459, PMID: 17230186

Cooper JA. 1991. The Role of Actin Polymerization in Cell Motility. Annual Review of Physiology 53:585–605. 
DOI: https://doi.org/10.1146/annurev.ph.53.030191.003101, PMID: 2042972

Davidson AJ, Amato C, Thomason PA, Insall RH. 2018. WASP family proteins and formins compete in 
pseudopod- and bleb-based migration. The Journal of Cell Biology 217:701–714. DOI: https://doi.org/10.​
1083/jcb.201705160, PMID: 29191847

De Gennes PG. 2002. Dynamics of Entangled Polymer Solutions. Macromolecules 9:587–593. DOI: https://doi.​
org/10.1021/ma60052a011

de Oliveira S, Rosowski EE, Huttenlocher A. 2016. Neutrophil migration in infection and wound repair: Going 
forward in reverse. Nature Reviews. Immunology 16:378–391. DOI: https://doi.org/10.1038/nri.2016.49, PMID: 
27231052

Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y. 2017. Excitable Signal Transduction 
Networks in Directed Cell Migration. Annual Review of Cell and Developmental Biology 33:103–125. DOI: 
https://doi.org/10.1146/annurev-cellbio-100616-060739, PMID: 28793794

Diz-Muñoz A, Thurley K, Chintamen S, Altschuler SJ, Wu LF, Fletcher DA, Weiner OD. 2016. Membrane Tension 
Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration. PLOS Biology 
14:e1002474. DOI: https://doi.org/10.1371/journal.pbio.1002474, PMID: 27280401

https://doi.org/10.7554/eLife.74389
https://gitlab.com/theriot_lab/leading-edge-stability-in-motile-cells-is-an-emergent-property-of-branched-actin-network-growth
https://gitlab.com/theriot_lab/leading-edge-stability-in-motile-cells-is-an-emergent-property-of-branched-actin-network-growth
https://gitlab.com/theriot_lab/leading-edge-stability-in-motile-cells-is-an-emergent-property-of-branched-actin-network-growth
https://figshare.com/projects/Leading_edge_stability_in_motile_cells_is_an_emergent_property_of_branched_actin_network_growth/132878
https://figshare.com/projects/Leading_edge_stability_in_motile_cells_is_an_emergent_property_of_branched_actin_network_growth/132878
https://doi.org/10.1016/S0006-3495(99)77018-9
http://www.ncbi.nlm.nih.gov/pubmed/10465781
https://doi.org/10.1371/journal.pbio.0020412
http://www.ncbi.nlm.nih.gov/pubmed/15562315
https://doi.org/10.1073/pnas.1010481108
http://www.ncbi.nlm.nih.gov/pubmed/21709265
https://doi.org/10.1016/j.cell.2015.11.018
http://www.ncbi.nlm.nih.gov/pubmed/26687353
https://doi.org/10.1126/science.aay7794
https://doi.org/10.1126/science.aay7794
http://www.ncbi.nlm.nih.gov/pubmed/32527825
https://doi.org/10.1038/35010008
http://www.ncbi.nlm.nih.gov/pubmed/10801131
https://doi.org/10.1146/annurev.physchem.59.032607.093550
http://www.ncbi.nlm.nih.gov/pubmed/18173377
https://doi.org/10.1016/j.cell.2008.06.054
http://www.ncbi.nlm.nih.gov/pubmed/18775315
https://doi.org/10.1016/S0006-3495(01)75842-0
http://www.ncbi.nlm.nih.gov/pubmed/11566765
https://doi.org/10.1016/S0006-3495(03)70018-6
http://www.ncbi.nlm.nih.gov/pubmed/12719223
https://doi.org/10.1103/PhysRevLett.90.074302
http://www.ncbi.nlm.nih.gov/pubmed/12633231
https://doi.org/10.1242/jcs.181024
http://www.ncbi.nlm.nih.gov/pubmed/28183729
https://doi.org/10.1038/nature05459
http://www.ncbi.nlm.nih.gov/pubmed/17230186
https://doi.org/10.1146/annurev.ph.53.030191.003101
http://www.ncbi.nlm.nih.gov/pubmed/2042972
https://doi.org/10.1083/jcb.201705160
https://doi.org/10.1083/jcb.201705160
http://www.ncbi.nlm.nih.gov/pubmed/29191847
https://doi.org/10.1021/ma60052a011
https://doi.org/10.1021/ma60052a011
https://doi.org/10.1038/nri.2016.49
http://www.ncbi.nlm.nih.gov/pubmed/27231052
https://doi.org/10.1146/annurev-cellbio-100616-060739
http://www.ncbi.nlm.nih.gov/pubmed/28793794
https://doi.org/10.1371/journal.pbio.1002474
http://www.ncbi.nlm.nih.gov/pubmed/27280401


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Garner and Theriot. eLife 2022;11:e74389. DOI: https://doi.org/10.7554/eLife.74389 � 21 of 37

Fritz-Laylin LK, Lord SJ, Mullins RD. 2017a. WASP and SCAR are evolutionarily conserved in actin-filled 
pseudopod-based motility. The Journal of Cell Biology 216:1673–1688. DOI: https://doi.org/10.1083/jcb.​
201701074, PMID: 28473602

Fritz-Laylin LK, Riel-Mehan M, Chen BC, Lord SJ, Goddard TD, Ferrin TE, Nicholson-Dykstra SM, Higgs H, 
Johnson GT, Betzig E, Mullins RD. 2017b. Actin-based protrusions of migrating neutrophils are intrinsically 
lamellar and facilitate direction changes. eLife 6:e26990. DOI: https://doi.org/10.7554/eLife.26990

Garner RM, Skariah G, Hadjitheodorou A, Belliveau NM, Savinov A, Footer MJ, Theriot JA. 2020. Neutrophil‐like 
HL‐60 cells expressing only GFP‐tagged β‐actin exhibit nearly normal motility. Cytoskeleton (Hoboken, N.J.) 
77:181–196. DOI: https://doi.org/10.1002/cm.21603, PMID: 32072765

Gauthier NC, Masters TA, Sheetz MP. 2012. Mechanical feedback between membrane tension and dynamics. 
Trends in Cell Biology 22:527–535. DOI: https://doi.org/10.1016/j.tcb.2012.07.005, PMID: 22921414

Giannone G, Dubin-Thaler BJ, Döbereiner H-G, Kieffer N, Bresnick AR, Sheetz MP. 2004. Periodic lamellipodial 
contractions correlate with rearward actin waves. Cell 116:431–443. DOI: https://doi.org/10.1016/s0092-8674(​
04)00058-3, PMID: 15016377

Gray WT, Govers SK, Xiang Y, Parry BR, Campos M, Kim S, Jacobs-Wagner C. 2019. Nucleoid Size Scaling and 
Intracellular Organization of Translation across Bacteria. Cell 177:1632–1648. DOI: https://doi.org/10.1016/j.​
cell.2019.05.017, PMID: 31150626

Grimm HP, Verkhovsky AB, Mogilner A, Meister JJ. 2003. Analysis of actin dynamics at the leading edge of 
crawling cells: implications for the shape of keratocyte lamellipodia. European Biophysics Journal 32:563–577. 
DOI: https://doi.org/10.1007/s00249-003-0300-4, PMID: 12739072

Henson JH, Yeterian M, Weeks RM, Medrano AE, Brown BL, Geist HL, Pais MD, Oldenbourg R, Shuster CB. 
2015. Arp2/3 Complex Inhibition Radically Alters Lamellipodial Actin Architecture, Suspended Cell Shape, and 
the Cell Spreading Process. Molecular Biology of the Cell 26:887–900. DOI: https://doi.org/10.1091/mbc.​
E14-07-1244, PMID: 25568343

Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER, Angenent SB, Altschuler SJ, Wu LF, Weiner OD. 
2012. Membrane Tension Maintains Cell Polarity by Confining Signals to the Leading Edge during Neutrophil 
Migration. Cell 148:175–188. DOI: https://doi.org/10.1016/j.cell.2011.10.050, PMID: 22265410

Huang WYC, Yan Q, Lin WC, Chung JK, Hansen SD, Christensen SM, Tu HL, Kuriyan J, Groves JT. 2016. 
Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of 
the Ras activator SOS. PNAS 113:8218–8223. DOI: https://doi.org/10.1073/pnas.1602602113, PMID: 
27370798

Käs J, Strey H, Tang JX, Finger D, Ezzell R, Sackmann E, Janmey PA. 1996. F-actin, a model polymer for 
semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophysical Journal 70:609–625. DOI: 
https://doi.org/10.1016/S0006-3495(96)79630-3, PMID: 8789080

Kolaczkowska E, Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nature 
Reviews. Immunology 13:159–175. DOI: https://doi.org/10.1038/nri3399, PMID: 23435331

Kuo SC, McGrath JL. 2000. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 
407:1026–1029. DOI: https://doi.org/10.1038/35039544, PMID: 11069185

Lacayo CI, Pincus Z, VanDuijn MM, Wilson CA, Fletcher DA, Gertler FB, Mogilner A, Theriot JA. 2007. 
Emergence of Large-Scale Cell Morphology and Movement from Local Actin Filament Growth Dynamics. PLOS 
Biology 5:e233. DOI: https://doi.org/10.1371/journal.pbio.0050233, PMID: 17760506

Laurent VM, Kasas S, Yersin A, Schäffer TE, Catsicas S, Dietler G, Verkhovsky AB, Meister J-J. 2005. Gradient of 
rigidity in the lamellipodia of migrating cells revealed by atomic force microscopy. Biophysical Journal 
89:667–675. DOI: https://doi.org/10.1529/biophysj.104.052316, PMID: 15849253

Lieber AD, Yehudai-Resheff S, Barnhart EL, Theriot JA, Keren K. 2013. Membrane tension in rapidly moving cells 
is determined by cytoskeletal forces. Current Biology 23:1409–1417. DOI: https://doi.org/10.1016/j.cub.2013.​
05.063, PMID: 23831292

Lou SS, Diz-Muñoz A, Weiner OD, Fletcher DA, Theriot JA. 2015. Myosin light chain kinase regulates cell 
polarization independently of membrane tension or Rho kinase. The Journal of Cell Biology 209:275–288. DOI: 
https://doi.org/10.1083/jcb.201409001, PMID: 25918227

Ma X, Dagliyan O, Hahn KM, Danuser G, Asthagiri AR. 2018. Profiling cellular morphodynamics by 
spatiotemporal spectrum decomposition. PLOS Computational Biology 14:e1006321. DOI: https://doi.org/10.​
1371/journal.pcbi.1006321

Maly IV, Borisy GG. 2001. Self-organization of a propulsive actin network as an evolutionary process. PNAS 
98:11324–11329. DOI: https://doi.org/10.1073/pnas.181338798

Marchand JB, Moreau P, Paoletti A, Cossart P, Carlier MF, Pantaloni D. 1995. Actin-based movement of listeria 
monocytogenes: Actin assembly results from the local maintenance of uncapped filament barbed ends at the 
bacterium surface. The Journal of Cell Biology 130:331–343. DOI: https://doi.org/10.1083/jcb.130.2.331, 
PMID: 7615635

Millius A, Weiner OD. 2009. Chemotaxis in neutrophil-like HL-60 cells. Methods in Molecular Biology (Clifton, 
N.J.) 571:167–177. DOI: https://doi.org/10.1007/978-1-60761-198-1_11, PMID: 19763966

Mogilner A, Oster G. 1996. Cell motility driven by actin polymerization. Biophysical Journal 71:3030–3045. DOI: 
https://doi.org/10.1016/S0006-3495(96)79496-1, PMID: 8968574

Mogilner A, Oster G. 2003. Force generation by actin polymerization II: The elastic ratchet and tethered 
filaments. Biophysical Journal 84:1591–1605. DOI: https://doi.org/10.1016/S0006-3495(03)74969-8, PMID: 
12609863

https://doi.org/10.7554/eLife.74389
https://doi.org/10.1083/jcb.201701074
https://doi.org/10.1083/jcb.201701074
http://www.ncbi.nlm.nih.gov/pubmed/28473602
https://doi.org/10.7554/eLife.26990
https://doi.org/10.1002/cm.21603
http://www.ncbi.nlm.nih.gov/pubmed/32072765
https://doi.org/10.1016/j.tcb.2012.07.005
http://www.ncbi.nlm.nih.gov/pubmed/22921414
https://doi.org/10.1016/s0092-8674(04)00058-3
https://doi.org/10.1016/s0092-8674(04)00058-3
http://www.ncbi.nlm.nih.gov/pubmed/15016377
https://doi.org/10.1016/j.cell.2019.05.017
https://doi.org/10.1016/j.cell.2019.05.017
http://www.ncbi.nlm.nih.gov/pubmed/31150626
https://doi.org/10.1007/s00249-003-0300-4
http://www.ncbi.nlm.nih.gov/pubmed/12739072
https://doi.org/10.1091/mbc.E14-07-1244
https://doi.org/10.1091/mbc.E14-07-1244
http://www.ncbi.nlm.nih.gov/pubmed/25568343
https://doi.org/10.1016/j.cell.2011.10.050
http://www.ncbi.nlm.nih.gov/pubmed/22265410
https://doi.org/10.1073/pnas.1602602113
http://www.ncbi.nlm.nih.gov/pubmed/27370798
https://doi.org/10.1016/S0006-3495(96)79630-3
http://www.ncbi.nlm.nih.gov/pubmed/8789080
https://doi.org/10.1038/nri3399
http://www.ncbi.nlm.nih.gov/pubmed/23435331
https://doi.org/10.1038/35039544
http://www.ncbi.nlm.nih.gov/pubmed/11069185
https://doi.org/10.1371/journal.pbio.0050233
http://www.ncbi.nlm.nih.gov/pubmed/17760506
https://doi.org/10.1529/biophysj.104.052316
http://www.ncbi.nlm.nih.gov/pubmed/15849253
https://doi.org/10.1016/j.cub.2013.05.063
https://doi.org/10.1016/j.cub.2013.05.063
http://www.ncbi.nlm.nih.gov/pubmed/23831292
https://doi.org/10.1083/jcb.201409001
http://www.ncbi.nlm.nih.gov/pubmed/25918227
https://doi.org/10.1371/journal.pcbi.1006321
https://doi.org/10.1371/journal.pcbi.1006321
https://doi.org/10.1073/pnas.181338798
https://doi.org/10.1083/jcb.130.2.331
http://www.ncbi.nlm.nih.gov/pubmed/7615635
https://doi.org/10.1007/978-1-60761-198-1_11
http://www.ncbi.nlm.nih.gov/pubmed/19763966
https://doi.org/10.1016/S0006-3495(96)79496-1
http://www.ncbi.nlm.nih.gov/pubmed/8968574
https://doi.org/10.1016/S0006-3495(03)74969-8
http://www.ncbi.nlm.nih.gov/pubmed/12609863


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Garner and Theriot. eLife 2022;11:e74389. DOI: https://doi.org/10.7554/eLife.74389 � 22 of 37

Mohapatra L, Goode BL, Jelenkovic P, Phillips R, Kondev J. 2016. Design Principles of Length Control of 
Cytoskeletal Structures. Annual Review of Biophysics 45:85–116. DOI: https://doi.org/10.1146/annurev-​
biophys-070915-094206, PMID: 27145876

Mueller J, Szep G, Nemethova M, de Vries I, Lieber AD, Winkler C, Kruse K, Small JV, Schmeiser C, Keren K, 
Hauschild R, Sixt M. 2017. Load Adaptation of Lamellipodial Actin Networks. Cell 171:188-200.. DOI: https://​
doi.org/10.1016/j.cell.2017.07.051, PMID: 28867286

Mullins RD, Heuser JA, Pollard TD. 1998. The interaction of Arp2/3 complex with actin: Nucleation, high affinity 
pointed end capping, and formation of branching networks of filaments. PNAS 95:6181–6186. DOI: https://​
doi.org/10.1073/pnas.95.11.6181

Mullins RD, Bieling P, Fletcher DA. 2018. From solution to surface to filament: actin flux into branched networks. 
Biophysical Reviews 10:1537–1551. DOI: https://doi.org/10.1007/s12551-018-0469-5, PMID: 30470968

Oates AC. 2011. What’s all the noise about developmental stochasticity Development (Cambridge, England) 
138:601–607. DOI: https://doi.org/10.1242/dev.059923, PMID: 21266404

Parekh SH, Chaudhuri O, Theriot JA, Fletcher DA. 2005. Loading history determines the velocity of actin-
network growth. Nature Cell Biology 7:1219–1223. DOI: https://doi.org/10.1038/ncb1336, PMID: 16299496

Peskin CS, Odell GM, Oster GF. 1993. Cellular motions and thermal fluctuations: the Brownian ratchet. 
Biophysical Journal 65:316–324. DOI: https://doi.org/10.1016/S0006-3495(93)81035-X, PMID: 8369439

Pipathsouk A, Brunetti RM, Town JP, Breuer A, Pellett PA, Marchuk K, Tran NHT, Krummel MF, Stamou D, 
Weiner OD. 2019. WAVE Complex Self-Organization Templates Lamellipodial Formation. [bioRxiv]. DOI: 
https://doi.org/10.1101/836585

Pollard TD. 1986. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. The 
Journal of Cell Biology 103:2747–2754. DOI: https://doi.org/10.1083/jcb.103.6.2747, PMID: 3793756

Pollard TD, Blanchoin L, Mullins RD. 2000. Molecular Mechanisms Controlling Actin Filament Dynamics in 
Nonmuscle Cells. Annual Review of Biophysics and Biomolecular Structure 29:545–576. DOI: https://doi.org/​
10.1146/annurev.biophys.29.1.545, PMID: 10940259

Pollard TD, Cooper JA. 2009. Actin, a Central Player in Cell Shape and Movement. Science (New York, N.Y.) 
326:1208–1212. DOI: https://doi.org/10.1126/science.1175862, PMID: 19965462

Prass M, Jacobson K, Mogilner A, Radmacher M. 2006. Direct measurement of the lamellipodial protrusive force 
in a migrating cell. The Journal of Cell Biology 174:767–772. DOI: https://doi.org/10.1083/jcb.200601159, 
PMID: 16966418

Rafelski SM, Theriot JA. 2004. Crawling Toward a Unified Model of Cell Motility: Spatial and Temporal 
Regulation of Actin Dynamics. Annual Review of Biochemistry 73:209–239. DOI: https://doi.org/10.1146/​
annurev.biochem.73.011303.073844, PMID: 15189141

Raj A, van Oudenaarden A. 2008. Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell 
135:216–226. DOI: https://doi.org/10.1016/j.cell.2008.09.050, PMID: 18957198

Risca VI, Wang EB, Chaudhuri O, Chia JJ, Geissler PL, Fletcher DA. 2012. Actin filament curvature biases 
branching direction. PNAS 109:2913–2918. DOI: https://doi.org/10.1073/pnas.1114292109, PMID: 22308368

Rouiller I, Xu X-P, Amann KJ, Egile C, Nickell S, Nicastro D, Li R, Pollard TD, Volkmann N, Hanein D. 2008. The 
structural basis of actin filament branching by the Arp2/3 complex. The Journal of Cell Biology 180:887–895. 
DOI: https://doi.org/10.1083/jcb.200709092, PMID: 18316411

Ryan GL, Watanabe N, Vavylonis D. 2012. A review of models of fluctuating protrusion and retraction patterns at 
the leading edge of motile cells. Cytoskeleton (Hoboken, N.J.) 69:195–206. DOI: https://doi.org/10.1002/cm.​
21017, PMID: 22354870

Schafer DA, Jennings PB, Cooper JA. 1996. Dynamics of capping protein and actin assembly in vitro: Uncapping 
barbed ends by polyphosphoinositides. The Journal of Cell Biology 135:169–179. DOI: https://doi.org/10.​
1083/jcb.135.1.169, PMID: 8858171

Schaus TE, Taylor EW, Borisy GG. 2007. Self-organization of actin filament orientation in the dendritic- 
nucleation/array-treadmilling model. PNAS 104:7086–7091. DOI: https://doi.org/10.1073/pnas.0701943104, 
PMID: 17440042

Schaus TE, Borisy GG. 2008. Performance of a population of independent filaments in lamellipodial protrusion. 
Biophysical Journal 95:1393–1411. DOI: https://doi.org/10.1529/biophysj.107.125005, PMID: 18390606

Sens P, Plastino J. 2015. Membrane tension and cytoskeleton organization in cell motility. Journal of Physics. 
Condensed Matter 27:273103. DOI: https://doi.org/10.1088/0953-8984/27/27/273103, PMID: 26061624

Seroussi I, Veikherman D, Ofer N, Yehudai-Resheff S, Keren K. 2012. Segmentation and tracking of live cells in 
phase-contrast images using directional gradient vector flow for snakes. Journal of Microscopy 247:137–146. 
DOI: https://doi.org/10.1111/j.1365-2818.2012.03624.x, PMID: 22591174

Soo FS, Theriot JA. 2005. Adhesion controls bacterial actin polymerization-based movement. PNAS 102:16233–
16238. DOI: https://doi.org/10.1073/pnas.0507022102, PMID: 16251274

Spellberg BJ, Collins M, French SW, Edwards JE Jr, Fu Y, Ibrahim AS. 2005. A phagocytic cell line markedly 
improves survival of infected neutropenic mice. Journal of Leukocyte Biology 78:338–344. DOI: https://doi.org/​
10.1189/jlb.0205072, PMID: 15857941

Suetsugu S. 2013. Activation of nucleation promoting factors for directional actin filament elongation: Allosteric 
regulation and multimerization on the membrane. Seminars in Cell & Developmental Biology 24:267–271. DOI: 
https://doi.org/10.1016/j.semcdb.2013.01.006, PMID: 23380397

Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG. 1997. Analysis of the actin-myosin II system in fish 
epidermal keratocytes: Mechanism of cell body translocation. The Journal of Cell Biology 139:397–415. DOI: 
https://doi.org/10.1083/jcb.139.2.397, PMID: 9334344

https://doi.org/10.7554/eLife.74389
https://doi.org/10.1146/annurev-biophys-070915-094206
https://doi.org/10.1146/annurev-biophys-070915-094206
http://www.ncbi.nlm.nih.gov/pubmed/27145876
https://doi.org/10.1016/j.cell.2017.07.051
https://doi.org/10.1016/j.cell.2017.07.051
http://www.ncbi.nlm.nih.gov/pubmed/28867286
https://doi.org/10.1073/pnas.95.11.6181
https://doi.org/10.1073/pnas.95.11.6181
https://doi.org/10.1007/s12551-018-0469-5
http://www.ncbi.nlm.nih.gov/pubmed/30470968
https://doi.org/10.1242/dev.059923
http://www.ncbi.nlm.nih.gov/pubmed/21266404
https://doi.org/10.1038/ncb1336
http://www.ncbi.nlm.nih.gov/pubmed/16299496
https://doi.org/10.1016/S0006-3495(93)81035-X
http://www.ncbi.nlm.nih.gov/pubmed/8369439
https://doi.org/10.1101/836585
https://doi.org/10.1083/jcb.103.6.2747
http://www.ncbi.nlm.nih.gov/pubmed/3793756
https://doi.org/10.1146/annurev.biophys.29.1.545
https://doi.org/10.1146/annurev.biophys.29.1.545
http://www.ncbi.nlm.nih.gov/pubmed/10940259
https://doi.org/10.1126/science.1175862
http://www.ncbi.nlm.nih.gov/pubmed/19965462
https://doi.org/10.1083/jcb.200601159
http://www.ncbi.nlm.nih.gov/pubmed/16966418
https://doi.org/10.1146/annurev.biochem.73.011303.073844
https://doi.org/10.1146/annurev.biochem.73.011303.073844
http://www.ncbi.nlm.nih.gov/pubmed/15189141
https://doi.org/10.1016/j.cell.2008.09.050
http://www.ncbi.nlm.nih.gov/pubmed/18957198
https://doi.org/10.1073/pnas.1114292109
http://www.ncbi.nlm.nih.gov/pubmed/22308368
https://doi.org/10.1083/jcb.200709092
http://www.ncbi.nlm.nih.gov/pubmed/18316411
https://doi.org/10.1002/cm.21017
https://doi.org/10.1002/cm.21017
http://www.ncbi.nlm.nih.gov/pubmed/22354870
https://doi.org/10.1083/jcb.135.1.169
https://doi.org/10.1083/jcb.135.1.169
http://www.ncbi.nlm.nih.gov/pubmed/8858171
https://doi.org/10.1073/pnas.0701943104
http://www.ncbi.nlm.nih.gov/pubmed/17440042
https://doi.org/10.1529/biophysj.107.125005
http://www.ncbi.nlm.nih.gov/pubmed/18390606
https://doi.org/10.1088/0953-8984/27/27/273103
http://www.ncbi.nlm.nih.gov/pubmed/26061624
https://doi.org/10.1111/j.1365-2818.2012.03624.x
http://www.ncbi.nlm.nih.gov/pubmed/22591174
https://doi.org/10.1073/pnas.0507022102
http://www.ncbi.nlm.nih.gov/pubmed/16251274
https://doi.org/10.1189/jlb.0205072
https://doi.org/10.1189/jlb.0205072
http://www.ncbi.nlm.nih.gov/pubmed/15857941
https://doi.org/10.1016/j.semcdb.2013.01.006
http://www.ncbi.nlm.nih.gov/pubmed/23380397
https://doi.org/10.1083/jcb.139.2.397
http://www.ncbi.nlm.nih.gov/pubmed/9334344


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Garner and Theriot. eLife 2022;11:e74389. DOI: https://doi.org/10.7554/eLife.74389 � 23 of 37

Svitkina TM, Borisy GG. 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization 
and treadmilling of actin filament array in lamellipodia. The Journal of Cell Biology 145:1009–1026. DOI: 
https://doi.org/10.1083/jcb.145.5.1009, PMID: 10352018

Svitkina TM. 2013. Ultrastructure of protrusive actin filament arrays. Current Opinion in Cell Biology 25:574–581. 
DOI: https://doi.org/10.1016/j.ceb.2013.04.003, PMID: 23639311

Svitkina T. 2018. The actin cytoskeleton and actin-based motility. Cold Spring Harbor Perspectives in Biology 
10:1–21. DOI: https://doi.org/10.1101/cshperspect.a018267, PMID: 29295889

Theriot JA, Mitchison TJ, Tilney LG, Portnoy DA. 1992. The rate of actin-based motility of intracellular Listeria 
monocytogenes equals the rate of actin polymerization. Nature 357:257–260. DOI: https://doi.org/10.1038/​
357257a0, PMID: 1589024

Tsai TY-C, Collins SR, Chan CK, Hadjitheodorou A, Lam P-Y, Lou SS, Yang HW, Jorgensen J, Ellett F, Irimia D, 
Davidson MW, Fischer RS, Huttenlocher A, Meyer T, Ferrell JE Jr, Theriot JA. 2019. Efficient Front-Rear 
Coupling in Neutrophil Chemotaxis by Dynamic Myosin II Localization. Developmental Cell 49:189-205.. DOI: 
https://doi.org/10.1016/j.devcel.2019.03.025, PMID: 31014479

Tsujita K, Takenawa T, Itoh T. 2015. Feedback regulation between plasma membrane tension and membrane-
bending proteins organizes cell polarity during leading edge formation. Nature Cell Biology 17:749–758. DOI: 
https://doi.org/10.1038/ncb3162, PMID: 25938814

Urban E, Jacob S, Nemethova M, Resch GP, Small JV. 2010. Electron tomography reveals unbranched networks 
of actin filaments in lamellipodia. Nature Cell Biology 12:429–435. DOI: https://doi.org/10.1038/ncb2044, 
PMID: 20418872

Vavylonis D, Yang Q, O’Shaughnessy B. 2005. Actin polymerization kinetics, cap structure, and fluctuations. 
PNAS 102:8543–8548. DOI: https://doi.org/10.1073/pnas.0501435102, PMID: 15939882

Verkhovsky AB, Chaga OY, Schaub S, Svitkina TM, Meister J-J, Borisy GG. 2003. Orientational Order of the 
Lamellipodial Actin Network as Demonstrated in Living Motile Cells. Molecular Biology of the Cell 14:4667–
4675. DOI: https://doi.org/10.1091/mbc.e02-10-0630

Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC, Hazelwood L, Heuser JE, Li R, Pollard TD, 
Hanein D. 2001. Structure of arp2/3 complex in its activated state and in actin filament branch junctions. 
Science (New York, N.Y.) 293:2456–2459. DOI: https://doi.org/10.1126/science.1063025, PMID: 11533442

Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ. 1997. The Human Arp2/3 Complex Is Composed of 
Evolutionarily Conserved Subunits and Is Localized to Cellular Regions of Dynamic Actin Filament Assembly. 
The Journal of Cell Biology 138:375–384. DOI: https://doi.org/10.1083/jcb.138.2.375, PMID: 9230079

Welf ES, Danuser G. 2014. Using fluctuation analysis to establish causal relations between cellular events without 
experimental perturbation. Biophysical Journal 107:2492–2498. DOI: https://doi.org/10.1016/j.bpj.2014.10.​
032, PMID: 25468328

Wirtz D. 2009. Particle-Tracking Microrheology of Living Cells: Principles and Applications. Annual Review of 
Biophysics 38:301–326. DOI: https://doi.org/10.1146/annurev.biophys.050708.133724, PMID: 19416071

Wu C, Asokan SB, Berginski ME, Haynes EM, Sharpless NE, Griffith JD, Gomez SM, Bear JE. 2012. Arp2/3 is 
critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 
148:973–987. DOI: https://doi.org/10.1016/j.cell.2011.12.034, PMID: 22385962

Zhao H, Pykäläinen A, Lappalainen P. 2011. I-BAR domain proteins: linking actin and plasma membrane 
dynamics. Current Opinion in Cell Biology 23:14–21. DOI: https://doi.org/10.1016/j.ceb.2010.10.005, PMID: 
21093245

https://doi.org/10.7554/eLife.74389
https://doi.org/10.1083/jcb.145.5.1009
http://www.ncbi.nlm.nih.gov/pubmed/10352018
https://doi.org/10.1016/j.ceb.2013.04.003
http://www.ncbi.nlm.nih.gov/pubmed/23639311
https://doi.org/10.1101/cshperspect.a018267
http://www.ncbi.nlm.nih.gov/pubmed/29295889
https://doi.org/10.1038/357257a0
https://doi.org/10.1038/357257a0
http://www.ncbi.nlm.nih.gov/pubmed/1589024
https://doi.org/10.1016/j.devcel.2019.03.025
http://www.ncbi.nlm.nih.gov/pubmed/31014479
https://doi.org/10.1038/ncb3162
http://www.ncbi.nlm.nih.gov/pubmed/25938814
https://doi.org/10.1038/ncb2044
http://www.ncbi.nlm.nih.gov/pubmed/20418872
https://doi.org/10.1073/pnas.0501435102
http://www.ncbi.nlm.nih.gov/pubmed/15939882
https://doi.org/10.1091/mbc.e02-10-0630
https://doi.org/10.1126/science.1063025
http://www.ncbi.nlm.nih.gov/pubmed/11533442
https://doi.org/10.1083/jcb.138.2.375
http://www.ncbi.nlm.nih.gov/pubmed/9230079
https://doi.org/10.1016/j.bpj.2014.10.032
https://doi.org/10.1016/j.bpj.2014.10.032
http://www.ncbi.nlm.nih.gov/pubmed/25468328
https://doi.org/10.1146/annurev.biophys.050708.133724
http://www.ncbi.nlm.nih.gov/pubmed/19416071
https://doi.org/10.1016/j.cell.2011.12.034
http://www.ncbi.nlm.nih.gov/pubmed/22385962
https://doi.org/10.1016/j.ceb.2010.10.005
http://www.ncbi.nlm.nih.gov/pubmed/21093245


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Garner and Theriot. eLife 2022;11:e74389. DOI: https://doi.org/10.7554/eLife.74389 � 24 of 37

Appendix 1
Detailed description of the model
In this section, we outline the main features of the model and reference the Detailed Derivations for 
more detailed derivations.

Model geometry
Given the flat structure of lamellipodial protrusions, we considered leading edge dynamics in two 
dimensions. In cartesian coordinates, the cell migrates in the x-y plane along the y-axis and maintains 
a fixed leading edge height of 200 nm along the z-axis. The leading edge membrane was modeled 
as a 2D strip that restricts bending and stretching in the x-y plane and is perfectly flat along the z-
axis. We discretized the membrane such that a 20 μm leading edge membrane was modeled as 200 
flat, rectangular segments (each 100 nm in length along the x-axis and 200 nm in height along z-axis) 
whose surface normal is fixed to lie along the y-axis. The membrane is implented using a Monge 
parameterization, such that these membrane segments are fixed in position along the x- and z-axes 
and move only along the y-axis (the direction of motion of the simulated cell).

Updating the membrane position
The membrane segments are assumed to move in a viscous medium at low Reynolds number, with 
drag force ‍Fdrag = −γ ∂y

∂t ‍ and Stoke’s drag coefficient ‍γ = 6πηr‍, where r is the membrane segment 
length (x-axis) and ‍η‍ is the dynamic viscosity of water. The membrane also acts under the forces of 
membrane bending and stretching (‍FS/B‍, see Appendix section 1.3), and Brownian ratchet forces by 
the actin filaments (‍FBR‍, see Appendix section 1.4). This gives us the following equation of motion.

	﻿‍

∑
F = 0 = −γ

∂y
∂t

+ FS/B +
Nfil∑
n=1

Fn
actin

‍�
(1)

Brownian dynamics simulations, implemented with a 4th order Runge-Kutta algorithm, were 
performed to update the membrane segment positions. Thermal fluctuations of the membrane were 
ignored in this implementation, as thermal fluctuations of the (much stiffer) actin filaments dominate 
the membrane’s motion as well as monomer incorporation into the actin network (Mogilner and 
Oster, 1996). See Appendix Detailed Derivations IV for a discussion of the numerical approximations 
included in the simulations.

Forces of membrane bending and stretching
The simulated leading edge membrane acts under the energetic constrains of stretching and 
bending, characterized by the experimentally measurable parameters of membrane tension (‍σ‍, 
‍pN · nm−1

‍) and bending modulus (‍κ‍, ‍pN · nm‍), and using the following energy functional:

	﻿‍

ES/B =
´ ´

σ
2

(
∂y
∂x

)2
+ κ

2

(
∂2y
∂x2

)2
dx dz

= h
´

σ
2

(
∂y
∂x

)2
+ κ

2

(
∂2y
∂x2

)2
dx

‍�

(2)

where ‍h‍ is the height of the leading edge in the z-dimension,‍
∂y
∂x‍ is extension of the membrane 

(i.e. an increase in contour length), and ‍
∂2y
∂x2 ‍ is curvature in (bending of) the membrane. The force 

of membrane stretching and bending on a single membrane segment (‍FS/B‍) is defined as the free 
energy gained by movement of the segment (‍seg‍), and takes the following form… (See Detailed 
Derivations I for a derivation of the functional derivative and resulting force.)

	﻿‍

FS/B = −
´

s eg δES/B
δy dx

= σeff
∂2y
∂x2 − κeff

∂4y
∂x4 ‍�

(3)

Actin filament Brownian ratchet forces
Actin filaments constantly undulate due to thermal fluctuations, bending and stretching to sample 
their conformational space. The presence of the membrane restricts fluctuations of the filament past 
the membrane, presenting an entropic cost and a reduction in the free energy of the filament. The 
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force of the filament exerted on the membrane segment, ‍Factin‍, can therefore be calculated as the 
gain in free energy, G, by an infinitesmal movement of the membrane position, ‍ξ‍:

	﻿‍ G = −kBT log Zconf ‍� (4)

	﻿‍
Factin = ∂G

∂ξ

∣∣∣∣
ξ=0‍�

(5)

The partition function, ‍Zconf ‍, determined by the energetic cost of bending the filament, ‍Ebend‍, defines 
the conformational landscape. A few considerations must be made to determine the partition 
funciton in our system. Each filament applies force only to the membrane segment under which 
the filament’s barbed (growing) end equilibrium position sits, making the approximation that each 
membrane segment acts as an infinite wall past which filament fluctuations are blocked. Given this 
assumption, the membrane only restricts filament fluctuations along the y-axis. The partition function 
is therefore integrated over all x-positions, but only the subset of y-positions where the filament 
is not restricted by the membrane. With these considerations in mind, we arrive at our partition 
function: (See Appendix Detailed Derivations II for a derivation of the filament bending energy and 
Detailed Derivations III for the derivation of the force).

	﻿‍
Zconf =

ˆ ∞

−∞

ˆ ∞

0
e−βEbend dy dx

‍�
(6)

where y is measured relative to the membrane surface and ‍β = 1
kBT ‍. The final equation for the force 

of a filament on the membrane becomes…

	﻿‍
Factin = kBTe−

1
2 κ̄Effy2

0

´∞
0 e−

1
2 κ̄Eff

(
y−y0

)2
dy‍�

(7)

where y0 is the equilibrium filament position measured relative to the membrane surface (the filament 
pokes through the membrane for ‍y0 < 0‍) and

	﻿‍
κ̄Eff =

(
κ̄∥κ̄⊥

κ̄⊥cos2(θ) + κ̄∥sin2(θ)

)

‍�
(8)

and ‍̄κ⊥ = 3
L2N ‍, ‍̄κ∥ = 16

L2N2 ‍, and ‍N = L
lp ‍ for a filament with length L and persistence length lp at an angle 

‍θ‍ relative to the membrane segment normal.

Actin network dynamics
Actin network dynamics including polymerization, depolymerization, branching, and capping were 
assumed to be independent, constant rate Poisson processes. The choice of rates are described in 
their respective sections below. For a given time step of ‍∆t‍ and rate ‍r‍, the probability of an event 
happening during any given time step is…

	﻿‍ p = 1 − e−r·∆t
‍� (9)

where ‍e−r·∆t‍ is the probability that the event did NOT take place within a time step of ‍∆t‍. A random 
number generator was used to determine which processes occurred in each time step. In particular, 
a random number was chosen between 0 and 1. If the random number lied below the probability 
‍p‍, then the event occured. For each simulation the random number generator was seeded with a 
unique, semi-random number, based on the current time.

Polymerization and depolymerization
The rate of polymerization was assumed to be ‍ron = kon · M·gap′‍, where ‍kon‍ is the rate of polymerization 
per free monomer concentration in ‍monomers ms−1µM−1

‍, M is the free monomer concentration in 

‍µM ‍, and ‍pgap‍ is the probability that enough space opens up in between the filament tip and the 
membrane to add a monomer (such that the polymerization rate far away from the membrane is 

‍r(y=∞) = kon · M ‍). Previously, it was determined that this probability is set by thermal fluctuations 
of the filament (Mogilner and Oster, 1996). In other words, the probability of adding a monomer 
is determined by the probability that thermal fluctuations, by chance, overcome the bending and 
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stretching energies of the filament and bend the filament tip away from the membrane enough to 
open up a space of sufficient size to add a monomer. Given a monomer width ‍∆‍, the probability of 
adding a monomer is…

	﻿‍
pgap =

´∞
∆ e−

1
2 κEff

(
y−y0

)2
dy

´∞
0 e−

1
2 κEff

(
y−y0

)2
dy‍�

(10)

where ‍κEff ‍ takes into account the thermal energy (‍kBT ‍) as well as the flexibility, length, and 
orientation of the filament. Depolymerization was assumed to be a constant rate process with rate 

‍roff ‍ (‍monomers ms−1‍), independent of membrane proximity.

Branching
The rate of branching was calculated for each filament at each time step, such that 
‍rbranch = kbranch · M · lbranch‍. Here ‍kbranch‍ is the branching rate per free monomer concentration per 
length of mother filament in units of ‍branches ms−1µM−1nm−1

‍, M is the free monomer concentration 
in ‍µM ‍, and ‍lbranch‍ is the length of the filament that sits inside the branching window. A fixed-length 
branching window is required for model stability, and is well-supported by experimental evidence 
that branching activation is localized to the leading edge membrane. Unlike linear polymerization, 
branching was not inhibited by membrane proximity. For simplicity, new branches were placed on 
the tip of the mother filament. If this placement caused the new branch tip position to extend past 
the membrane, then the branches were placed on the side of the mother filament such that the 
branch tip is flush with the membrane. The angle of the branch relative to the mother filament 
was randomly selected from a normal distribution with mean ‍µ = θbranch‍ and standard deviation 
‍σ = ∆θbranch‍ as specified for each simulation. The side of the mother filament on which the branch 
was placed was random.

Capping
Capping was assumed to be a constant rate process with rate rc (‍ms−1‍), independent of membrane 
proximity. Filaments were not allowed to uncap. Capped filaments were not allowed to polymerize 
or depolymerize.

Filament deletion
Our simulations were intended to capture only leading edge actin dynamics. We therefore chose, 
for simulation efficiency, to only keep track of filaments actively applying force to the membrane. 
Filaments which were both (1) capped and (2) cumulatively provided less than 0.1% of the force on 
a given membrane segment were deleted from the simulation.

Detailed Derivations
This Detailed Derivations contains detailed derivations and clarifications for the material discussed in 
the previous section of the Appendix: “Detailed description of the model”.

Detailed Derivations I: Forces of membrane bending and stretching
In this section, we use the energy functional for membrane elasticity defined in section A.3 to calculate 
the elastic forces on a discrete membrane segment, filling in the steps of Appendix equation (3).

Functional derivative of the membrane stretch/bend energy functional
We can solve the functional derivative ‍

δE
δy ‍ for our particular energy function (Appendix equation (2)) 

using the fact that for a functional of the following type…

	﻿‍
F[ρ] =

ˆ
f(r, ρ(r),∇ρ(r), ...,∇Nρ)dr

‍�

The functional derivative is calculated by….

	﻿‍
δF

δρ(r) =
(

∂f
∂ρ +

N∑
i=1

(−1)i∇i · ∂f
∂∇iρ

)

‍�

So for this particular energy functional
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	﻿‍
E[y] = h

ˆ
σ

2

(
∂y
∂x

)2
+ κ

2

(
∂2y
∂x2

)2

dx
‍�

(11)

	﻿‍

f(x, y(x),∇y(x), ...,∇Ny(x)) = h


σ

2
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)2
+ κ

2
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
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(12)

	﻿‍
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∂x4

)
‍�

(13)

Note that ‍
δE
δy(x)‍ is a functional derivative (rather than an ordinary derivative), with units of a force 

per unit length (rather than a force). Finally, we can calculate the total elastic force on a discrete 
membrane segment of length ‍∆x‍, by integrating this force density over the length of a segment 
(within which the spatial derivatives of ‍y‍ do not vary).

	﻿‍

FS/B = −
´

seg
δES/B
δy dx

= −
´

seg h
(
−σ ∂2y

∂x2 + κ∂4y
∂x4

)
dx

= h∆x
(
σ ∂2y
∂x2 − κ∂4y

∂x4

)

= σeff
∂2y
∂x2 − κeff

∂4y
∂x4 ‍�

(14)

where ‍σeff = σh∆x‍ and ‍κeff = κh∆x‍.

Detailed Derivations II: 2D thermal fluctuations of actin filaments
In this section, we characterize the thermal fluctuations of an actin filament with a given length and 
persistence length (and the associated bending modulus). We first decompose the fluctuations into 
their (small) end-to-end and (larger) side-to-side fluctuations, and then further perform a wavelength 
decomposition on the side-to-side fluctuations. We next apply the equipartition theorem, giving 

‍
1
2 kBT ‍ to each independent bending mode, to determine the fluctuation magnitude of each of these 
modes. We then determine the average total side-to-side and end-to-end fluctuation magnitudes, 
allowing us to calculate effective bending coefficients for the side-to-side (‍κ⊥‍) and end-to-end 
(‍κ∥‍) fluctuations. These effective bending energies will then be used in Detailed Derivations III to 
determine the force of a filament on a membrane segment.

Determining the wavelength-dependence of thermal fluctuations
Assume we have a filament of length ‍L‍, which, in the absence of thermal fluctuations, points vertically 
upward in the direction ‍̂i‍. Due to thermal fluctuations, the actin polymer will fluctuate all along its 
length, as well as along the directions of both the short and long axis of the filament. At any point ‍s‍ 
along the polymer, we can define the local position vector ‍⃗r(s)‍, and the local tangent vector of the 
polymer ‍⃗t(s) = ∂⃗r

∂s ‍. Given a persistence length lp, and thus a bending modulus ‍B = lpkBT ‍, the bending 
energy ‍Ebend‍ of a filament is defined as…

	﻿‍

Ebend = B
2

ˆ L

0

(
∂⃗t
∂s

)2
ds

βEbend = lp
2
´ L

0

(
∂⃗t
∂s

)2
ds

‍�

(15)

where ‍β = 1
kBT ‍ and ‍⃗t(s = 0) = î‍. If we assume the thermal fluctuations are small (‍

L
lp << 1‍), then we can 

write the position vector along the polymer as…

	﻿‍ r⃗(s) = J(s)̂j +
(
s − δ(s)

)
î‍� (16)

Then…

https://doi.org/10.7554/eLife.74389
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	﻿‍
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î
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(17)

And…

	﻿‍
∂⃗t
∂s

= ∂2J
∂s2 ĵ − ∂2δ

∂s2 î
‍�

(18)

Because ‍⃗t ‍ is the unit tangent vector, we know ‍⃗t · t⃗ = 1‍. This allows us to solve for ‍
∂δ
∂s ‍ in terms of ‍

∂J
∂s ‍.
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Plugging this back into our equation for ‍Ebend‍…
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´ L

0

(
∂⃗t
∂s ·

∂⃗t
∂s

)
ds

= lp
2
´ L

0

((
∂2J
∂s2

)2
+
(
∂2δ
∂s2

)2
)

ds

= lp
2
´ L

0

((
∂2J
∂s2

)2
+
(
∂J
∂s

∂2J
∂s2

)2
)

ds

≈ lp
2
´ L

0

(
∂2J
∂s2

)2
ds

‍�

(20)

By decomposing ‍J(s)‍ into its wavemodes, we can determine the relative amplitudes ‍An‍ of thermal 
fluctuations at different lengthscales, where ‍n‍ refers to the specific wavemode. This choice of 
wavemode decomposition oscillates around ‍

√
2An‍ from 0 to ‍2

√
2AN ‍ (‍

⟨
An

⟩
= 0‍), where the filament is 

pinned at zero at ‍s = 0‍ and open at the other end.

	﻿‍

J(s) =
∞∑

n=0

√
2An

[
1 − cos

(
π

(
n + 1

2

)
s
L

)]

∂J
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∑∞
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√
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(
n + 1

2

)
1
L sin

(
π
(

n + 1
2

)
s
L

)

∂2J
∂s2 =

∑∞
n=0

√
2Anπ

2
(

n + 1
2

)2 1
L2 cos

(
π
(

n + 1
2

)
s
L

)
(
∂2J
∂s2

)2
=
∑∞

n=0 2A2
nπ

4
(

n + 1
2

)4 1
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(
π
(

n + 1
2

)
s
L

)

+
∑

n̸=m 2An · Amπ
4
(

n + 1
2

)2 (
m + 1

2

)2 1
L4 cos

(
π
(

n + 1
2

)
s
L

)

cos
(
π
(

m + 1
2

)
s
L

)
‍�

(21)

Because…

	﻿‍

( N∑
n=0

An

)2

=
N∑

n=0
A2

n +
∑
n̸=m

An · Am

‍�
(22)

Now we can solve the integral for the parts of the function that contain ‍L‍. For the part where ‍n = m‍…

	﻿‍

ˆ L

0
cos2

(
π

(
n + 1

2

)
s
L

)
ds

= 2
(
π
(

n+ 1
2
))

+sin
(

2π
(

n+ 1
2
))

4
(
π
L
(

n+ 1
2
))

= L
2 ‍� (23)

And for ‍n ̸= m‍…
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	﻿‍

ˆ L

0
cos

(
π

(
n + 1

2

)
s
L

)
cos

(
π

(
m + 1

2

)
s
L

)
ds

‍�
(24)

	﻿‍

βEbend ≈ lp
2
´ L

0

(
∂2J
∂s2

)2
ds

= lp
2

∞∑
n=0

2A2
nπ

4
(

n + 1
2

)4 1
L4

L
2

= lpπ4

2L3

∞∑
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A2
n

(
n + 1

2

)4

= π4

2L2N

∞∑
n=0

A2
n

(
n + 1

2

)4

‍�

(25)

where ‍N = L
lp ‍. By the equipartition theorem (‍βEbend = 1/2‍ for 1 degree of freedom), we can determine 

the Fourier coefficients.

	﻿‍

⟨
A2

n

⟩
= L2N

π4
(

n + 1
2

)4

‍�
(26)

We can now calculate a few useful integrals. From the equipartition theorem and Appendix Equation 
26:

	﻿‍

⟨ˆ L

0

(
∂2J
∂s2

)2

ds

⟩
= N

L ‍�
(27)

	﻿‍

⟨ˆ L

0

(
∂J
∂s

)2
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⟩
=
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2
⟨

A2
n

⟩
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(
n + 1

2

)2 1
L2
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2

= 1
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∞∑
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(
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2
)4 π

2
(

n + 1
2

)2

= LN
π2

∞∑
n=0

1(
n+ 1

2
)2

= LN
2 ‍�

(28)

Because…

	﻿‍

∞∑
n=0

1(
n + 1

2

)2 = π2

2
‍�

(29)

Finally…

	﻿‍

⟨(ˆ L

0

(
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∂s

)2
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)2⟩
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⟨(∞∑
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2A2
nπ
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(

n + 1
2
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⟨
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⟩
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(
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=
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(
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2
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(
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∞∑
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1(
n+ 1

2
)4
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6
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(30)

Because for a Gaussian distribution, the 4th moment is related to the variance in the following way…

	﻿‍

⟨
A4

n

⟩
= 3

⟨
A2

n

⟩2
= 3L4N2

π8
(

n + 1
2

)8

‍� (31)
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and

	﻿‍

∞∑
n=0

1(
n + 1

2

)4 = π4

6
‍�

(32)

Determining the average end-to-end retraction
The the new effective length of the filament is ‍I(s = L)‍ can be found by integrating ‍̂i‍ component of 
the tangent vector ‍⃗t ‍ over the arc length of the filament ‍s‍.

	﻿‍

Is=L = î ·
´ L

0 t⃗ds

=
´ L

0

(
1 − ∂δ

∂s

)
ds

≈
´ L

0

(
1 − 1

2

(
∂J
∂s

)2
)

ds

≈ L − 1
2
´ L

0

(
∂J
∂s

)2
ds

‍�

(33)

From Appendix Equation 28…

	﻿‍

⟨
Is=L

⟩
≈ L − 1

2
LN
2

≈ L − LN
4

≈ L
(

1 − N
4

)
‍�

(34)

Determining the end-to-end retraction fluctuations

	﻿‍

(
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⟨
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⟩)2 =
(

L − 1
2
´ L

0

(
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∂s
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4
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)2
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4

(´ L
0

(
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∂s

)2
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)2

‍�

(35)

From Appendix Equation 28 and Equation 30…

	﻿‍

⟨(
Is=L −

⟨
Is=L

⟩)2
⟩

= L2N2

16 − LN
4

LN
2 + 1

4
L2N2

2

= L2N2

16 ‍�
(36)

Determining the side-to-side fluctuations

	﻿‍

Js=L = ĵ ·
´ L

0 t⃗ds

=
´ L

0
∂J
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=
´ L

0
∑∞

n=0
√
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(
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(
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(

n + 1
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∑∞
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(37)

	﻿‍

⟨
J2

s=L

⟩
=

∞∑
n=0

2
⟨

A2
n

⟩

=
∞∑
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2 L2N
π4

(
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2
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n=0

1(
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2
)4
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π4
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6
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3 ‍� (38)
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Deriving effective stretching constants
We know by the equipartition theorem that for each degree of freedom, 

‍
1
2 kBT = 1

2κ
⟨

x2
⟩

‍
. So for the 

‍̂x‍ direction…

	﻿‍

1
2
κ⊥

⟨
J2

s=L

⟩
= 1

2 kBT
1
2κ⊥

L2N
3 = 1

2 kBT

κ⊥ = kBT 3
L2N ‍�

(39)

And for the ‍̂i‍ direction…

	﻿‍

1
2
κ∥

⟨(
Is=L −

⟨
Is=L

⟩)2
⟩

= 1
2 kBT

1
2κ∥

L2N2

16 = 1
2 kBT

κ∥ = kBT 16
L2N2 ‍�

(40)

This gives us an effective bending energy as a function of actin filament tip position….

	﻿‍
βEbend = 1

2
κ̄⊥J2

s=L + 1
2
κ̄∥

(
Is=L − L + NL

4

)2

‍�
(41)

where ‍̄κ⊥ = 3
L2N ‍ and ‍̄κ∥ = 16

L2N2 ‍.

Detailed Derivations III: The force of an actin filament on the membrane
In this section, we take the effective side-to-side and end-to-end filament bending energies 
calculated in Detailed Derivations II to determine the force of a filament on a membrane segment. 
We start by converting from the coordinate system used in Detailed Derivations II (in the frame of 
the filament long axis) to the reference frame of the membrane segment. We then use the bending 
energies to evaluate the partition function ‍Zconf ‍ for a filament which is constrained by the membrane 
segment - and then use the partition function to determine the free energy ‍G‍ of the filament. Finally, 
we evaluate the force of the filament on the membrane segment (‍Factin‍) as the increase in filament 
free energy obtained by an incremental movement of the membrane 

‍
∂G
∂ξ

∣∣∣
ξ=0‍

.

Converting to the reference frame of the membrane segment
We derived this bending energy function in the reference frame of the filament. However, our 
partition function, ‍Zconf ‍, will need to be integrated across the x-y coordinate system used in the rest 
of the paper. The energy function can be extended to an arbitrary filament orientation in a ‍⃗u0‍ and tip 
position ‍⃗r ‍ relative to resting filament tip position ‍⃗r0 = (0, 0)‍ in the following way:

	﻿‍
βEbend = 1

2
κ̄⊥

(
r⃗
(

I −
(⃗
u0 ⊗ u⃗0

))
r⃗
)

+ 1
2
κ̄∥

(⃗
r · u⃗0

)2
‍�

(42)

Taking a coordinate system centered around the equilibrium filament tip position and aligned with 
the membrane normal, a filament lying at angle ‍θ‍ relative to the membrane normal will have filament 
orientation vector ‍⃗u0 = sin(θ)x̂ + cos(θ)ŷ‍ and filament tip position ‍⃗r = xx̂ + yŷ‍ will having the following 
perpendicular and parallel displacements…

	﻿‍

r⃗ · u⃗0 = xsin(θ) + ycos(θ)
(⃗
r · u⃗0

)2 = x2sin2(θ) + y2cos2(θ) + 2xycos(θ)sin(θ)‍�
(43)

and…

	﻿‍

r⃗
(

I −
(⃗
u0 ⊗ u⃗0

))
r⃗ = (⃗r · r⃗)2 − (⃗r · u⃗0)2

= x2 + y2 − y2cos2(θ) − x2sin2(θ) − 2xycos(θ)sin(θ)

= x2cos2(θ) + y2sin2(θ) − 2xycos(θ)sin(θ) ‍� (44)
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We arrive at the following bending energy as a function of the filament angle, relative to the 
membrane normal.

	﻿‍

βEbend = 1
2 κ̄⊥

(
x2cos2(θ) + y2sin2(θ) − 2xycos(θ)sin(θ)

)

+ 1
2 κ̄∥

(
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2 sin2(θ)

)
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(
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2 sin2(θ) + κ̄∥
2 cos2(θ)

)
y2

+
((

κ̄∥
2 − κ̄⊥

2

)
2sin(θ)cos(θ)

)
xy

‍�

(45)

The x- and y-components have been separated for ease of integration in the next section.

Simplification of the bending energy function
Currently, the exponential being integrated is of the form 

‍
´∞
−∞
´∞

0 e−ax2+bxy−cy2
dydx‍. We can re-write the integral in the form ‍

´∞
−∞
´∞

0 e−
(

dx+fy
)2−gy2

dydx‍, 
to take advantage of the fact that ‍

´∞
−∞ e−(x+c)2

dx =
´∞
−∞ e−x2

dx‍. To do this, we can complete the 

square:
‍
f(x) = ax2 + bx + c = a

(
x + b

2a

)2
+ c − b2

4a‍

	﻿‍
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‍�

(46)

Now looking just at the ‍y2
‍ portion, we can determine an effective bending coefficient in the ‍̂y‍ 

direction.

	﻿‍
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‍�

(47)

Because ‍̄κ⊥ < κ̄∥‍, ‍κEff ‍ has a maximum at ‍θ = 0‍ and a minimum at ‍θ = π
2 ‍. In the limit where ‍̄κ⊥ << κ̄∥‍, 

we find

	﻿‍

βEy2

bend = 1
2

(
κ̄⊥

sin2(θ)

)
y2

= 1
2κEffy2

‍�
(48)

where ‍κEff = 3lpkBT
L3sin2(θ)‍, agreeing with previous models (Mogilner and Oster, 1996, BiophysJ), except 

for the fact that we arrive at a prefactor of 3 rather than 4, as we took into account all of the bending 
modes of the filament, rather than assuming bending of the filament lies along an arc of constant 
curvature - a difference also arrived at by Dickinson and colleagues (Dickinson, Caro, and Purich, 
2004, BiophysJ).

This gives us a final bending energy…

	﻿‍
βEbend = 1

2

(
κ̄⊥ · κ̄∥
κ̄Eff

)(
x + f(y)

)2 + 1
2
κ̄Effy2

‍� (49)
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Calculation of the partition function
Using these energies, we can determine the partition function, ‍Zconf ‍, summing over all possible 
positions of the filament. In this case, the filament can fluctuate freely along the x-axis, but cannot 
fluctuate past the membrane position along the y-axis. Here we define the membrane position ‍d‍ 
relative to the filament tip.

	﻿‍

Zconf =
´∞
−∞
´ d
−∞ e−βEbend dy dx

=
´∞
−∞
´ d
−∞ e−

(
1
2
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( 1
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dy dx
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´ d
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2
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) e−
1
2 κ̄Effy2

dy

=
√

2πκ̄Eff
κ̄⊥·κ̄∥

´ d
−∞ e−

1
2 κ̄Effy2

dy
‍�

(50)

If we then have a change of variables, where we center the system at d, the equation becomes…

	﻿‍
Zconf =

√
2πκ̄Eff
κ̄⊥ · κ̄∥

ˆ ∞

0
e−

1
2 κ̄Eff

(
y−y0

)2
dy

‍�
(51)

where y0 is the equilibrium filament position, measured relative to the membrane surface (the 
filament pokes through the membrane for ‍y0 < 0‍).

Calculation of the force of actin on a membrane
Upon an infinitesimal membrane position perturbation ‍ξ‍, the equilibrium filament tip position 
becomes ‍y0 → y0 + ξ‍. The partition function becomes…

	﻿‍
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ξ
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(52)

and the derivative of the partition function with respect to the perturbation is (by Leibniz’s rule)…
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(53)

Plugging Appendix Equation 51 and Equation 53 into Appendix Equation 5, we get the following 
force:

	﻿‍
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)����
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0
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(
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)2
dy ‍�

(54)

Note that this equation for the force assumes that the pointed (non-growing) ends of the filaments 
(as well as branches) are rigidly fixed to a stiff and immobile actin network.

Detailed Derivations IV: Numerical approximations
In this section, we describe the various numerical approximations made in the development of our 
computational model.

Membrane stretch/bend forces
For membrane stretch/bend force calculations, the 2nd and 4th order spatial derivatives were 
calculated using a central finite difference approximation with 8th order accuracy.
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Force of actin on the membrane
Many equations used in this model required performing numerical calculations of Gaussians over 
half-space. For this purpose, we used the error function. The denominator of Appendix Equation 54 
can be rewritten in terms of the error function in the following way…

	﻿‍
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(55)

The error function appears in the equation as ‍1 + erf(z)‍, which can give inaccurate calculations 
when ‍z << 0‍ and ‍1 + erf(z) ≈ 0‍. Therefore, in the low ‍z‍ regime (‍z < 0‍), we replaced ‍1 + erf(z)‍ 
with ‍erfc(|z|)‍. (Because ‍erf(−z) = −erf(z)‍, ‍erf(z(z < 0)) = −erf(|z(z < 0)|)‍). It follows that 
‍1 + erf(z(z < 0)) = 1 − erf(|z(z < 0)|) = erfc(|z(z < 0)|)‍. The following cases are listed below for the 
relevant equations.

	﻿‍

Factin =





y0 > 0, kBTe−
1
2 κ̄Effy2

0
√

π
2κ̄Eff

(
1+erf

[√
κ̄Eff

2 y0

])

y0 ≤ 0, kBTe−
1
2 κ̄Effy2

0
√

π
2κ̄Eff

erfc
(����

√
κ̄Eff

2 y0

����
)

‍�

(56)

When the error function calculations failed (e.g., produced values of 0 or ‍∞‍), variable precision 
accuracy was used.

Probability of adding a monomer
We used similar error function approximations to calculate the probabilities that thermal fluctuations 
of the filament open up a gap between the filament tip and the membrane of sufficient size to add a 
monomer: (See Detailed Derivations IV: Numerical approximations, Force of actin on the membrane 
for rational on using the erf and erfc functions.)

	﻿‍

pgap =





y0 > ∆,

(
1+Erf

[√
κEff

2
(

y0−∆
)])

(
1+Erf

[√
κEff

2 y0

])

∆ ≥ y0 > 0,
erfc

(����
√

κ̄Eff
2

(
y0−∆

)����
)

(
1+Erf

[√
κEff

2 y0

])

y0 ≤ 0,
erfc

(����
√

κ̄Eff
2

(
y0−∆

)����
)

erfc
(����

√
κ̄Eff

2 y0

����
)

‍�

(57)

When the error function calculations failed (e.g., produced values of 0 or ‍∞‍), variable precision 
accuracy was used.

Choice of timestep
The timestep was chosen to capture the fastest dynamics in the system, which could either be 
the membrane stretch/bend relaxation, or actin network growth dynamics. This was implemented 
as min(

‍
0.1

ractin
max ‍

,
‍

1
rmemb

max ‍
). This timestep was calculated specifically for each simulation, depending on the 

parameters chosen. The timescales of the actin dynamics are set by the rates of polymerization, 
depolymerization, branching, and capping. To estimate the timescales of relaxation for membrane 
elastic forces, we calculate the relaxation timescales of the membrane fluctuating under Brownian 
thermal forces. (We do this because we do not a priori have an analytical theory describing the 
shape profile of the actin dynamics. Importantly, the fact that our simulations are not affected by the 
timestep (Fig. S3) provide evidence that we are sufficiently resolving all system dynamics using this 
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approximation to set the timestep.) For a membrane at low Reynolds number, we have the following 
equation of motion.

	﻿‍

0 = −γ
∂y
∂t

+ σeff
∂2y
∂x2 − κeff

∂4y
∂x4 + ξ(t)

∂y
∂t = 1

γ

(
σeff

∂2y
∂x2 − κeff

∂4y
∂x4 + ξ(t)

)
‍�

(58)

The random Brownian force is Gaussian distributed with mean ‍µ = 0‍ and variance ‍σ
2 = 2γkBT ‍ and is 

defined by its autocorrelation function

	﻿‍
⟨
ξ(x, t)ξ(x′, t′)

⟩
= 2γkBTδ(t − t′)δ(x − x′)‍� (59)

We are ultimately interested in the time evolution of wave mode solutions to this equation, so we 
first take the Fourier transform in order to solve for the amplitude of each wavemode. Using the 
following properties of the Fourier transform:

	﻿‍
F (f(x, t)) = F(k, t) =

√
1
L
∑∞

k=1 cos
(

2πkx
L

)
f(x, t)

‍�

	﻿‍
F

(
dnf(x,t)

dxn

)
=
(

i2πk
L

)n
F (f(x, t))

‍�

	﻿‍
F

(
dnf(x,t)

dtn
)

= dn

dtn F(f(x, t))
‍�

we can re-write the equation in Fourier space as…

	﻿‍

dY(k, t)
dt

= 1
γ

(
σeff

(
i2πk

L

)2
Y(k, t) − κeff

(
i2πk

L

)4
Y(k, t) + Ξ(k, t)

)

= − Y(k,t)
γ

(
σeff

(
2πk

L

)2
+ κeff

(
2πk

L

)4
)

+ Ξ(k,t)
γ

= −Y(k, t)
(
σeffα
γ + κeffα

2

γ

)
+ Ξ(k,t)

γ ‍�

(60)

where ‍α = 2πk
L ‍. The random Brownian force in Fourier space is Gaussian distributed with mean ‍µ = 0‍ 

and variance ‍2γkBT∆x‍ as defined by its autocorrelation function. For a discrete system, a Fourier 
transform with normalization 

‍
1√
N ‍

, where N is the number of discrete membrane segments in this 

case, preserves the variance and standard deviation of a vector of normally distrbuted random 
values. Here, our normalization is 

‍
1√
L‍
 in addition to integrating over the fixed segment length ‍∆x‍, 

giving a final normalization of ‍

√
∆x
N ‍ for the Brownian force ‍Ξ(k, t)‍. The factor of 

‍
1√
N ‍

 preserves the 

variance, leaving the variance changed only by the multiplicative factor of ‍(
√
∆x)2 = ∆x‍.

	﻿‍
⟨
Ξ(k, t)Ξ(k′, t′)

⟩
= 2γkBT∆xδ(t − t′)δ(k − k′)‍� (61)

We can solve this equation using a Laplace transform.

	﻿‍
sŶ(k, s) − Y(k, 0) = −Ŷ(k, s)

(
σeffα

γ
+ κeffα

2

γ

)
+ Ξ̂(k, s)

γ ‍�
(62)

	﻿‍

Ŷ(k, s) =
Ξ̂(k,s)
γ + Y(k, 0)

s +
(
σeffα
γ + κeffα2

γ

)
‍�

(63)

and then in inverse Laplace transform

	﻿‍

Y(k, t) =
´ t

0 e
−
(

σeffα

γ + κeffα2

γ

)
(t−τ )

Ξ(k,τ )
γ dτ + Z(k, 0)e

−
(

σeffα

γ + κeffα2

γ

)
t

=
´ t

0 e−
Γ
γ (t−τ ) Ξ(k,τ )

γ dτ + Y(k, 0)e−
Γ
γ t

‍� (64)

Using the properties
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	﻿‍

L[(f ∗ g)(t)] = L
[´ t

0 f(τ )g(t − τ )dτ
]

= F(s) · G(s) ‍�
(65)

and

	﻿‍ L[af(t)] = aF(s)‍� (66)

and

	﻿‍
L[e−at · u(t)] = 1

s + a‍�
(67)

and

	﻿‍ L[f′(t)] = sF(s) − f(0)‍� (68)

Now that we have ‍Y(k, t)‍, we can solve for for the time-autocorrelation function ‍
(
k′, t)Y(k, 0)

⟩
‍.

	﻿‍

⟨
Y(k′, t)Y(k, 0)

⟩
=
⟨[´ t

0 e−
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γ (t−τ ) Ξ(k′,τ )

γ dτ + Z(k′, 0)e−
Γ
γ t
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Y(k, 0)
⟩

=
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Y(k′, 0)Y(k, 0)

⟩
e−

Γ
γ t

‍�
(69)

We know that ‍
(
k′, 0)Y(k, 0)

⟩
‍ is non-zero only if ‍k = k′‍ .

	﻿‍
(
k′, 0)Y(k, 0)

⟩
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(
k, t)Y(k, t)

⟩
‍� (70)
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‍�

(71)

by a variant of Fubini’s theorem

	﻿‍

(´ b
a f(x)dx

)2
=
´ b

a f(x)f(y)dxdy
‍�

and a property of the Delta function

	﻿‍

ˆ ∞

−∞
f(x)δ(x − a)dx = f(a)

‍�
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So finally…

	﻿‍

(
k′, t)Y(k, 0)

⟩
= kBTδkk′

σh
(

2πk
L

)2
+ κh

(
2πk

L

)4 e−
(

σeff
γ

( 2πk
L

)2+ κeff
γ

( 2πk
L

)4
)

t

‍�
(72)

From this equation, the rate of relaxation due to membrane elasticity is…

	﻿‍

rmemb = σ

γ

(
2πk

L

)2
+ κ

γ

(
2πk

L

)4

rmemb
max = σ

γ

(
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L

)2
+ κ

γ

(
2πNsegments

L

)4

‍� (73)
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