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Abstract: Recent innovation, growth, and deployment of internet of things (IoT) networks are
changing the daily life of people. 5G networks are widely deployed around the world, and they are
important for continuous growth of IoT. The next generation cellular networks and wireless sensor
networks (WSN) make the road to the target of the next generation IoT networks. The challenges
of the next generation IoT networks remain in reducing the overall network latency and increasing
throughput without sacrificing reliability. One feasible alternative is coexistence of networks
operating on different frequencies. However, data bandwidth support and spectrum availability are
the major challenges. Therefore, cognitive radio networks (CRN) are the best available technology to
cater to all these challenges for the co-existence of IoT, WSN, 5G, and beyond-5G networks.
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1. Introduction

The numerous Internet of Things (IoT) technologies have contributed to explosive increase in the
number of Internet-connected devices. The exponential growth of these smart connected devices is
driving the revolution in social life of people. Move-forward in such a direction is the fifth-generation
(5G) and beyond-5G connectivity. The IoT driven by 5G is shaping the future of smart connectivity
in the society [1]. For different IoT services, the quality of service (QoS) is evaluated by parameters,
such as latency, reliability, power consumption as well as throughput. In addition, its computing
capabilities, memory, and energy efficiency determine the performance of the connected devices.
The deployment of cognitive radio network (CRN) techniques for future wireless networks could be
helpful in realizing the envisioned tactile Internet [2], sustainable information centric network [3,4],
and intelligent next generation networks [5,6].

The rest of the editorial is organized as follows. Section 2 provides future research directions.
Section 3 summarizes the accepted papers. Finally, Section 4 concludes the editorial.

2. 5G and Beyond-5G IoT Based on Cognitive Radio Networks

The limited availability of the communication spectrum is one of the challenges which hinder
the massive deployment of the 5G and beyond-5G based IoT systems. The huge demand for the
spectrum raises the difficulties in allocating the available frequency band. At the same time, due to
various reasons, a large range of frequency band remain under-utilized. The 5G and beyond-5G
communication networks are expected to leverage the under-utilized frequency band as well as
increase the bandwidth by resolving the issue of spectrum scarcity for the billions of anticipated devices
connected the Internet. The 5G and beyond-5G are intended to support the ultra-dense radio access
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networks (UDRANETs) that will accommodate a vast number of devices operating in millimeter wave
(mmWave) and THz frequency, which are currently unregulated except for certain proprietary cellular
networks. Spectrum sharing is one of the strategies used to alleviate such difficulties. The concept of
spectrum sharing is basically for multiple networks to use the spectrum in respect of a given temporal
and spatial configuration. CRNs realize such spectrum sharing and effectively use the available
bands, i.e., under-utilized spectrum. The cognitive radios (CRs), which are built on the principle of
software-defined radios (SDRs), are capable of intelligent context-aware sharing. The goal of the CRs
in 5G and beyond-5G is to alleviate spectrum crunch as well as spectrum under-utilization. The CR
has two capabilities as follows:

• Cognitive ability: The capability to sense the surrounding spectrum environments to identify the
available frequency, i.e., under-utilized spectrum. The CR will decide whether the particular band
is idle or occupied at a given time and location.

• Re-configurability: This capability allows the radio to dynamically program the system in
order to communicate with another set of frequencies and access technologies specified by the
underlying hardware.

The CRN allows dynamic spectrum access and can reconfigure the properties of spectrum
utilization. In CRN topologies, there are two groups of users, grouped according to the priority of
accessing the network. The principal users are called primary users (PUs), while the opportunistic users
are called secondary users (SUs). The PUs have the priority by paying for band allocation, while the
SUs are temporary spectrum consumers when the frequency is not used by the PU. The sharing of the
spectrum between these two classes is the primary goal of the CRN while ensuring the performance for
both the classes is maintained. One of the major tasks in this operation is to ensure that PU’s priority is
secured, while at the same time retaining the QoS for the SUs. To ensure a QoS-compliant efficiency,
moreover, the interference between the PUs and the SUs should be minimized. Thus, the CRNs
allow for the coexistence of unlicensed users with the licensed users amid challenges such as user
intervention and optimization of the power and resource allocation of the SUs.

Two major architectures, i.e., centralized and decentralized architectures, are adopted in the
CRNs, based on the implementation of the IoT framework. A cooperative sharing of spectrum can
be followed at the centralized CRN. Various cognitive radio units (CRUs) can be clustered together
by adding a cluster head to reduce the overhead signal and computational expense. This method
allows cooperative use of knowledge from the CRUs in the cluster. For non-cooperative sharing of
bandwidth, on the other hand, the CRUs follow a greedy approach to maximize the individual capacity.
This approach does not use the interference information from the other CRUs. In addition, the total
ability of the network and the efficiency of the spectrum are adversely affected. There are four types
of access methodology for the sharing of spectrum, namely interweave spectrum sharing, underlay
spectrum sharing, overlay spectrum sharing, adaptive spectrum sharing. Each technique is employed
according to the QoS requirements of IoT applications. These strategies vary in the way of the SUs’
channel access in relation to the PUs. The steps involved in the CR process present many challenges in
network design. The first step is to collect spectral, geographic, and topological details. The status of
the network resources is then determined along with the network protocols and policies. The required
communication technique is implemented, based on this knowledge.

There are various problems facing the CRNs in terms of both network architecture and hardware.
For IoT terminals, the required features include interoperability with various technologies, such as
radio environment context awareness, communication pattern learning intelligence, low-power
self-optimization, and spectrum usage robustness. The CR networks are needed to be effective
both in terms of spectrum utilization and network capacity. There are also challenges in terms of
interoperability and co-existence between multiple communication standards. The support for various
techniques should be provided for seamless operation of many connected CRUs. The CRNs should
be able to accommodate a large amount of data generated by a large number of devices in real-time,
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i.e., with low latency. To boost network performance, therefore, a CRN cloud architecture has been
implemented. However, this raises a new set of research challenges. Future research areas are listed
as follow:

• Interoperability challenges

– CRN based device-to-device communications
– CRN based device-to-network communications
– CRN based machine-to-machine communications
– CRN based service-to-service communications

• Co-existence network technologies challenges

– CRN based radio access
– CRN based medium access control (MAC)
– CRN based handover between multiple communication standards
– CRN based channel hopping

• Resource management challenges

– CRN based resource allocation for the heterogenous CRUs
– CRN based radio resource management (RRM) for spectrum sensing and interference avoidance
– CRN based dynamic RRM systems for centralized and non-centralized sharing

• Intelligent CRN challenges

– Machine learning (ML)/ deep learning (DL)/ reinforcement learning (RL) based MAC
for CRN

– ML/DL/RL based routing protocols for CRN
– ML/DL/RL based Handover between the CR Base Stations
– ML/DL/RL based offloading in the CR enabled cloud services
– ML/DL/RL based spectrum sensing and spectrum sharing strategies

• CRN based cloud services challenges

– Offloading techniques
– Co-operative sensing
– Geo-location identification

• CRN based hardware challenges

– Interoperability between multiple radios
– Antenna design for massive multiple-input multiple-output (MIMO)
– Solutions for mmWave and THz channels and miniaturization of radios

• CRN based energy efficient approaches

– Low power CR node hardware design
– Duty-cycling for SUs
– Low power spectrum sensing

• Security and Privacy challenges for CRN

3. A Brief Review of Articles in Special Issue

The massive deployment of IoT devices requires additional spectrum resources to provide
guaranteed QoS of future wireless networks. However, a major obstacle to resolve this problem
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is spectrum depletion. Many techniques are employed to reuse or share the spectrum among multiple
users without degrading the system performance. Miah et al. [7] proposed an enhanced spectrum
sharing technique by utilizing kullback leibler divergence (KLD). Their approach shows a reasonable
sensing performance even with the limited sample for sensing and noise uncertainty. They provided
mathematical analysis and experiments to show the effectiveness of the proposed scheme. It is shown
that the proposed sensing method can achieve the improved probability of detection and higher sum
rate compared to the conventional techniques.

Satellite communication networks provide extensive comprehensive coverage to the remotely
deployed devices. A digital channelizer is used to provide support for multiple transponders
in satellite communications. Kim et al. [8] proposed an energy monitoring dependent cognitive
communication system for detecting and cancelling interference. They used the inherent properties of
the digital channelizer and fast fourier transform (FFT) to improve interference detection performance.
They evaluated the analytical sensing performance mathematically, and used the empirical results
to verify it. The results showed that the proposed method tackled tone interference detection and
cancellation effectively.

Technology innovation to make devices energy efficient is accelerating at an unprecedented pace.
It is also ideal for wireless devices with limited power to increase the device lifetime and, consequently,
network lifetime [9]. In case of network bottleneck, wireless sensor networks (WSN) can use CRN
technology to increase throughput. The leasing of PU’s spectrum to SU is one of the viable options to
increase the spectrum reusability and profit for service providers. Xu et al. [10] proposed a differential
game model for energy efficient allocation of cognitive WSN resources. By using open loop Nash
equilibrium and feedback Nash equilibrium, the authors formulated optimal game control strategies
for SU. They evaluated the proposed game technique with numerical simulations. The results show
that the optimal solutions for cognitive WSN users are available to ensure the accuracy and efficacy of
the proposed scheme.

In the literature, the relaying wireless sensor nodes are used to efficiently transmit the data to
the destination. It increases the transmission capacity of the network, and saves energy. The network
consists of secondary source (SS) node, secondary relay (SR) nodes, secondary destination (SD)
nodes, and primary destination (PD) nodes. Lee et al. [11] proposed a cooperative phase steering
(CPS) technique with duty cycling to maximize spectrum sharing and boost energy efficiency.
They evaluated the CPS mathematically first, and then tested the scheme using comprehensive
mathematical simulations. The results show the improved efficiency as compared with the traditional
relay selection scheme in terms of throughput and outage probability.

The application of unmanned aerial vehicles (UAV) is growing in smart cities and IoT. The concern
about reliability and security is especially essential for ensuring protection and preventing any
accidents. Energy harvested UAV communications are essential to prolonging battery life. CR based
communication for UAV may be useful by utilizing already available spectrum without dedicated
channel and increase coverage. Khalid et al. [12] proposed UAV energy management scheme based on
CR technology. They developed an analytical model for the connection outage probability, secrecy
outage probability, and residual energy. To minimize the energy consumption, they devised optimal
sensing duration and transmission power. They also considered the scenario for the eavesdroppers to
illustrate the security and reliability of the proposed scheme. The results guarantee the secrecy and
reliability of the proposed system with energy efficiency.

Optimizing network resources is important for achieving spectrum efficiency among CR IoT.
When taking into account multiple parameters simultaneously such as transmission power, delay,
and transmission rate, it becomes a very complex problem to solve. Muwonge et al. [13] proposed
an optimal solution in the presence of a bit error rate (BER) and interference, by considering all these
factors together. They investigated how total power, rate and delay vary depending on the packet size,
network size, BER and interference. They used the branch-and-cut polyhedral method to solve this
problem. They observed that a larger packet size and more number of SUs lead to increase power,
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interference, and transmission delay. As a result, it affects the BER performance and, eventually,
the transmission rate. It is interesting to evaluate the proposed scheme with the related ones to see the
overall system improvement effectively.

4. Conclusions

Six papers in this SI present state-of-the-art research developments in the field of Cognitive Radio
Networks for Internet of Things and Wireless Sensor Networks. The papers gave the readers insight
and innovative ideas of CRNs. The guest editors would like to express gratitude to the authors and
thank all the anonymous reviewers for providing positive feedback to enhance the overall content of
all the papers they have accepted. We would also like to thank editor-in-chief Prof. Dr. Vittorio M.N.
Passaro, Prof. Dr. Leonhard M. Reindl, Prof. Dr. Assefa M. Melesse, Prof. Dr. Alexander Star and
managing editor Angelina Wang for the invaluable help and productive advice in finalizing this SI.
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Abbreviations

The following abbreviations are used in this manuscript:

5G Fifth-Generation
BER Bit Error Rate
CPS cooperative Phase Steering
CRN Cognitive Radio Network
CRs Cognitive Radios
CRUs Cognitive Radio Units
FFT Fast Fourier Transform
IoT Internet of Things
PUs Primary Users
QoS Quality of Service
SDRs Software-Defined Radios
SUs Secondary Users
UAV Unammaned Aerial Vehicles
UDRANETs Ultra-Dense Radio Access Networks
WSN Wireless Sensor Networks
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