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Abstract: This review summarizes articles that have been reported in literature on
liposome-based strategies for effective drug delivery across the blood—brain barrier. Due to
their unique physicochemical characteristics, liposomes have been widely investigated for
their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of
neurological diseases, such as Alzheimer’s, Parkinson’s, stroke, and glioma. Several strategies
have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such
macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor-
targeting liposomes, which allows their blood—brain barrier penetration and/or the delivery of
their therapeutic molecule specifically to the disease site. Additionally, methods have been
employed for the development of liposomes that can respond to external stimuli. It can be
concluded that the development of liposomes for brain delivery is still in its infancy, although
these systems have the potential to revolutionize the ways in which medicine is administered.
Keywords: Alzheimer, Parkinson, stroke, cerebral ischemia, glioma, liposomes, blood—brain
barrier

Introduction

In the 1880s, Paul Ehrlich intravenously injected dyes (eg, trypan) into animals, and
observed that the dyes were able to stain all organs except for the brain. He concluded
that the brain had a lower affinity to the dye when compared to other organs.' In 1913,
Edwin Goldmann, a student of Ehrlich, did the opposite, and injected the very same
dyes directly to the cerebrospinal fluid of animal brains. He found that in this case,
the dyes readily stained the brain and not the other organs.? These experiments clearly
demonstrated the existence of a separation between the blood and the brain. However,
in 1898, Max Lewandowsky was the first to postulate the existence of a specialized
barrier at the level of cerebral vessels: the blood—brain barrier (BBB), after he and his
colleagues had carried out some experiments to demonstrate that some drugs were
neurotoxic when injected directly into the brain and not into the vascular system.?
It was just in the late 1960s that Reese and Karnovsky visualized the fact that the bar-
rier was localized to the endothelium by electron-microscopy studies.*

The BBB is composed of polarized endothelial cells connected by tight junctions of
the cerebral capillary endothelium and a variety of transporters (Figure 1), which are
responsible for its extremely low permeability, limiting the delivery of drugs to the cen-
tral nervous system (CNS).>¢ BBB functionality is dynamically regulated by an ensem-
ble of different cell types, such as astrocytes, pericytes, and neurons (Figure 1A).”°
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Figure | Pathways for crossing the blood-brain barrier (BBB).

Notes: The BBB is located at the walls of the blood vessels that supply the central nervous system, including the brain. (A) Cross-section of a cerebral capillary, showing the
structure of the BBB. The barrier is composed of a network of astrocytes, pericytes, neurons, and endothelial cells that form the tight junctions. (B) Different mechanisms
for drug delivery across the BBB: water-soluble molecules penetrate the BBB through the tight junctions (I); lipid-soluble molecules are able to diffuse across the endothelial
cells passively (Il); carrier-mediated transport machineries are responsible for transporting peptides and small molecules (l1l); cationic drug increases its uptake by adsorptive-
mediated transcytosis or endocytosis (IV); larger molecules are transported through receptor-mediated transcytosis (V).

Endothelial cells are surrounded by a basal lamina, which
is generally rich in laminin, fibronectin, type IV collagen,
and heparin sulfate,>* which may represent an interesting
targeting for drug transport and provides a negatively charged
interface.!!!

Aimed at the development of more efficient therapies for
neurological disorders, extensive research is being done into
the molecular and cell biology of many of these disorders. To
date, human genetic mutations and defective cell-signaling
pathways linked to a disease have been identified, and may
contribute to the development of mechanism-based thera-
pies and biomarkers for affected patients at early stages in
the disease.'>!*> Moreover, pharmaceutical companies have
spent billions of dollars in the hope that their scientists could
develop drugs to defeat the brain disorders, eg, a drug that

helps brain-cell growth, repairs damage, or slows down tumor
progress, something that is not available now. However,
obstacles to effective therapy delivery remain, and one of
the most notable obstacles for drugs to penetrate the brain
effectively is the BBB.!%!5

How to circumvent the blood—-brain

barrier?

Based on better knowledge of BBB biology, several dif-
ferent strategies for delivering molecules across the barrier
have been developed for treating CNS diseases, and can be
broadly classified as invasive, pharmacological, and physi-
ological approaches.””!* The invasive method is based on
direct delivery of drugs into the brain tissue through varying
techniques, such as the use of polymers or microchip systems,
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stereotactically guided drug insertion through a catheter, and
transient disruption of the BBB. However, these approaches
are invasive, leading to risks of infection, damage to brain
tissue, and toxicity. Furthermore, invasive approaches are
costly and require hospitalization.?*2

The pharmacological method for crossing the BBB is
based on modifying, through medicinal chemistry, a drug
molecule to enable BBB permeability and making it insuscep-
tible to drug-efflux pumps, such as P-glycoprotein (PgP)."”
One early strategy was based on the development of highly
lipophilic and small drugs, allowing them to diffuse suc-
cessfully through the brain’s endothelial cells (Figure 1B).
Unfortunately, synthesizing drugs that fulfill this condition
eliminate a vast number of potentially useful polar molecules
that could be used to treat CNS disorders. A second possibil-
ity is to use small water-soluble drugs to facilitate traversal
ofthe BBB by the paracellular hydrophilic diffusion pathway
(Figure 1B), though the majority of these molecules are just
able to penetrate the interendothelial space of the cerebral
vasculature up to the tight junctions, and not beyond. More-
over, modifications to drug structure often result in loss of
the drug’s biological activity.”

Among all the approaches employed in drug delivery
to the brain tissues, the physiological method is the most
advantageous, as it takes advantage of the transcytosis
capacity of specific transporting receptors expressed at the
BBB surface in order to penetrate the barrier (Figure 1B).
For example, the occurrence of low-density lipoprotein
receptor-related protein on the BBB is of critical importance
for therapeutic proteins or peptides to glial cells or neurons
across the whole CNS.**26 Another method consists in the
use of receptor-mediated endocytosis by conjugation of drug
molecules to ligands, such as antibodies and peptides, against
receptors that are expressed on the surface of endothelial
cells of the barrier,® allowing the drug to be transported into
the brain (Figure 1B). In addition, cationic compounds are
able to bind to the negatively charged plasma membrane of
the endothelial cells by electrostatic interactions.'®!! There-
fore, the cationic substance crosses the BBB by adsorption-
mediated transcytosis or endocytosis (Figure 1B). However,
a low rate of drug dissociation from the ligands, nonspecific
drug-receptor interactions, and the limited concentration of
cationic substances in the brain are disadvantages for this
kind of approach.

Undoubtedly, all three of these approaches have strong
disadvantages that limit the successful treatment of neuro-
logical diseases. In response to this insufficiency in methods
to transport therapeutic drugs across the BBB, aggressive

research efforts into the use of nanotechnology to deliver
drugs effectively across the BBB without altering their effect
is being done. For this purpose, a broad range of nanoparticles
with different sizes, architectures, and surface properties
have been engineered for brain drug delivery.?’?® These
include liposomes,*3® polymeric nanoparticles,**> carbon
nanotubes,** nanofibers,*>*¢ dendrimers,*”*® micelles,*
inorganic nanoparticles made of iron oxide,* and gold
nanoparticles.* Unfortunately, it is beyond the scope of this
article to review potential advantages — or disadvantages — of
each of these nanocarriers in the imaging and/or therapy of
the brain. For a more detailed overview of nanotechnology-
based systems on drug delivery to the CNS, we refer the
reader to Vlieghe and Khrestchatisky.?” Here we focus on the
one of most promising approaches aimed at improving brain
drug targeting and delivery: liposomes and molecules that
can selectively target brain tissues. In fact, liposomes are at
present the nanoparticle type with the most studies that have
been published for delivery to the brain, representing in this
way the most advanced material and thus with the highest
potential for clinical applications.

Why use liposomes for treating

neurological disorders?

Common diseases of the CNS, such as neurodegeneration,
multiple sclerosis, stroke, and brain tumors, represent a huge
medical need. According to a World Health Organization
report, about 1.5 billion people globally are suffering from
neurological diseases.* The prevalence of neurological dis-
orders is expected to have a significant increase in the next
decade, as the aging population is highly increasing and living
longer. Drug therapies to the brain have been particularly
inefficient, especially due to the BBB, as discussed earlier.
It would be thus be desirable to gain a better understanding
of the molecular mechanism of the disease and the devel-
opment of improved diagnostic devices and treatments. In
this way, liposomes have emerged as promising carriers for
CNS delivery.

Liposomes are roughly nano- or microsize vesicles
consisting of one or more lipid bilayers surrounding an
aqueous compartment. The potential use of these vesicles
as a carrier system for therapeutically active compounds
was recognized soon after its discovery in the early 1960s.
In recent years, liposomes have been explored as carriers of
therapeutic drugs, imaging agents, and genes, in particular
for treatment and/or diagnosis of neurological diseases.?##°
Due to their unique physicochemical characteristics, lipo-
somes are able to incorporate hydrophilic, lipophilic, and
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Figure 2 Schematic representation of the main liposomal drugs and targeting agents
that improve liposome affinity and selectivity for brain delivery.
Abbreviation: PEG, polyethylene glycol.

hydrophobic therapeutic agents. Hydrophilic compounds
may either be entrapped into the aqueous core of the lipo-
somes or be located at the interface between the lipid bilayer
and the external water phase. Lipophilic or hydrophobic
drugs are generally entrapped almost completely in the
hydrophobic core of the lipid bilayers of the liposomes. In
addition, the use of cationic lipids allows the adsorption of
polyanions, such as DNA and RNA (Figure 2). They also
have the advantage of presenting good biocompatibility
and biodegradability, low toxicity, drug-targeted delivery,
and controlled drug release.***’ In order to improve blood
circulation and brain-specific delivery, the liposome surface
can be further modified by the inclusion of macromolecules,
such as polymers, polysaccharides, peptides, antibodies, or
aptamers (Figure 2). Unfortunately, efficient brain-specific

drug delivery by liposomes is not in clinical practice. How-
ever, several liposomal drugs are either approved for clinical
use or in clinical trial studies (Table 1).4°

Optimizing the ideal liposome for crossing the BBB has
important implications for the treatment of neurological
diseases. Different liposomal formulations and strategies
have been developed for enhancing drug delivery across the
BBB. The following examples illustrate current strategies
using liposomes as brain vectors (Table 2).%° Cationic
liposomes are successfully used as carriers for the delivery
of therapeutic drugs and genes.”®’? Several studies have
shown that these cationic nanocarriers are more efficient
vehicles for drug delivery to the brain than conventional,
neutral, or anionic liposomes, possibly due to the electro-
static interactions between the cationic liposomes and the
negatively charged cell membranes, enhancing nanoparticle
uptake by adsorptive-mediated endocytosis.®*2 But there is a
major drawback to the use of cationic nanocarriers for brain
delivery: due to nonspecific uptake by peripheral tissues and
their binding to serum proteins that attenuates their surface
charge, large amounts of these nanocarriers will be required
to reach therapeutic efficacy, and those carriers are potentially
cytotoxic. Therefore, there is a need for the development of
liposomes that efficiently target diseased areas in the brain.

Surface-functionalization methodologies improve,
at least in part, the pharmacokinetics and biodistribution
of liposomes into the brain. For example, the addition of
polyethylene glycol (PEG) or polysaccharides forms a pro-
tective layer over the surface of liposomes and protects the
vehicle from the binding of plasma proteins, preventing the
opsonization process and subsequent clearance of liposomes.
Even though the PEGylation of liposomes prolongs their
circulation time in the bodys, it does allow liposomes to cross
the BBB. Therefore, their functionalization with biologically
active ligands, such as peptides, antibodies, aptamers, and
others, which specifically bind to receptors that are expressed

Table | Liposome-based drugs on market or in clinical trials for brain-targeted drug delivery

Commercial Compound Lipid composition Indications Trial phase References
name
AmBisome Amphotericin B HSPC, DSPG, and cholesterol Cryptococcal meningitis NA 48, 49
Abelcet® Amphotericin B DMPC and DMPG Cryptococcal meningitis NA 48, 49
DaunoXome® Daunorubicin DSPC and cholesterol Pediatric brain tumors | 50
Depocyt® Cytarabine Cholesterol, triolein, DOPC, and DPPG Lymphomatous meningitis NA 51
Doxil®/Caelyx® Doxorubicin HSPC, cholesterol, and DSPE-PEG, Glioblastoma multiforme 1l 52-55
Pediatric brain tumors Il 56, 57
Myocet® Doxorubicin EPC and cholesterol Glioblastoma multiforme 1l 58

Note: *PEGylated liposomal doxorubicin is known as Doxil® in the US and Caelyx® in Europe.
Abbreviations: DMPC, dimyristoylphosphatidylcholine; DMPG, dimyristoylphosphatidylglycerol; DOPC, dioleoylphosphatidylcholine; DPPG, dipalmitoylphosphatidylglycerol;
DSPC, distearoylphosphatidylcholine; DSPE, distearoylphosphatidylethanolamine; DSPG, distearoylphosphatidylglycerol; EPC, egg phosphatidylcholine; HSPC, hydrogenated

soy phosphatidylcholine; NA, not applicable; PEG, polyethylene glycol.
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Table 2 Means by which liposomes can penetrate the BBB

Strategies to permeate the BBB Short description References

Cationization of the vector

The use of cationic liposomes is an interesting strategy, due to electrostatic
interaction between their positive charges and the polyanions present at the 60-62
BBB, resulting in adsorptive-mediated endocytosis.

To increase liposomal drug accumulation into the brain, the use of ligand-

targeted liposomes toward the receptors expressed on brain endothelial

cells has been suggested, resulting in receptor-mediated transcytosis. One 44, 63-65
or more targeting ligands, such as antibodies and aptamers, can be covalently

bound over the liposome surface or to the ends of the PEG chains.

Triggered drug release

Chemical,
physical, or
biological
stimulus

&8 W y Strategies developed for trigged drug release of liposome contents in response
- to specific external stimuli, such as variations in magnetic field, temperature, 6668
ultrasound intensity, light or electric pulses, and others.

stimulus

Theranostic

Liposomes are a very well-known carrier for drugs, but they can also
incorporate a noninvasive contrast agent. This multifunctional theranostic 30, 68. 69
liposomal drug-delivery system has advantages in diagnosis, real-time T

monitoring of disease treatment, and pharmacokinetics of liposomes.

Abbreviations: BBB, blood-brain barrier; PEG, polyethylene glycol.

on the surface of the brain endothelial cells, facilitates their ~ enhance the delivery of drugs at the targeted site in response
binding and transport across the BBB.>7 to specific stimuli, such as variations in temperature, magnetic

Although actively targeted brain drug delivery has  field, ultrasound intensity, or changes in pH. For example,
improved the crossing of nanoparticles into the brain, addi-  recent reports introduced the concept of magnetic liposomes
tional properties can be included in liposomal systems to  as a targeting moiety for delivering of therapeutic molecules
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across the BBB. In one example, one or more drug molecules
could be reversibly bound to the surface of iron oxide nano-
particles, and when encapsulated within the core of liposomes,
bypassed an established in vitro model of the BBB by action
of an external magnetic field.®” Furthermore, it has been shown
that magnetic liposomes can also be taken up into human
monocytes, followed by the entry of nonmagnetic monocytes
into the brain.®” Although this approach has not been largely
explored for brain delivery, this may become a good strategy
for effective drug delivery by stimuli-responsive liposomes.

Furthermore, multifunctional liposomes can be engineered
into a single structure, providing a powerful approach to
improve disease-specific detection, treatment, and follow-up
monitoring.*® The term “theranostic” is used for nanoparticles
that incorporate both therapeutic and diagnostic agents onto
the same system.” One example of theranostic agent for brain
delivery was described by Wen et al,” using quantum dots and
apomorphine liposomally encapsulated for both brain therapy
and imaging. The results showed that theranostic liposomes
were transported across the BBB, providing a new and excit-
ing strategy for brain-cancer imaging and therapy.”

It is worth mentioning that various routes of administra-
tion have been tested to access the brain for therapeutic pur-
poses. For the delivery of liposomes to the CNS, intravenous
injection seems to be the preferred route. The possibility of
choosing between alternative routes of administration (oral,
ocular, or mucosal) has been largely explored for bypassing
the BBB, but it is beyond the scope of this article. For exam-
ple, intranasal administration provides a practical and non-
invasive approach to deliver drugs to the brain, allowing in
this way an increase in the amount of drugs delivered across
the barrier.””” It was shown that a liposomal formulation of
rivastigmine was able to prevent degradation of the drug in
the nasal cavity and to carry it through the mucosal barriers.*
Furthermore, the ability of cationic liposomes to delivering
proteins to the brain via the intranasal route has also been
demonstrated.®!

In this review, a search of the literature was undertaken
to investigate whether the use of liposomes offered any
additional benefit than the therapeutic drug alone to treat
most significant neurological diseases, such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s
disease, stroke, and brain cancer, and discuss its advantages
and limitations. As a vast majority of CNS drugs have limited
brain uptake, they may benefit from the use of liposomes as
a drug-delivery vehicle into the brain. Moreover, liposomes
have been widely explored as drug-delivery carriers to
increase uptake of such drugs into the CNS. Therefore, there

appears to be an obvious need for establishing CNS-penetrant
and specific therapeutics to overcome the BBB and to do this
in a controlled manner.

Materials and methods

Search strategy

A PubMed and Web of Science search was conducted to
identify all known published articles on liposomes in drug
development focused on the treatment of neurological dis-
orders up to May 2016.

Study selection

Initially, articles were identified using a combination of
the following keywords: 1) “liposomes” and “Alzheimer”;
2) “liposomes” and “Parkinson”; 3) “liposomes” and
“Huntington”; 4) “liposomes” and “stroke” or “cerebral
ischemia”; and 5) “liposomes” and “glioma”. Reviews,
patents, editorial materials, book chapters, conference
publications, and articles not published in English were
excluded from the literature search. Based on titles/abstracts,
only studies that described in vivo experiments were selected
for review. The final decision to include/exclude studies was
based on full copies of articles.

Data extraction

In vivo studies with liposomes have been performed in most
species, including mice, rats, dogs, monkeys, and humans.
As in vivo study interpretation of results deserves attention,
especially because of the biological differences between
species, this was the parameter used to group the studies.
Also, the following parameters of the liposome formulation
were compared: 1) route of administration, 2) time points,
3) liposome composition, 4) ligands, 5) drug or imaging
agent, and 6) particle size. Lately, biological outcome into
the CNS has also been reported.

Results and discussion

Neurodegenerative disorders

AD, PD, and Huntington’s disease were grouped together
in this topic, because a growing number of studies indicates
that these disorders share in common some features, such
as the accumulation of intracellular or extracellular protein
aggregates, selective degeneration of neurons, inclusion-body
formation, and inflammation in particular brain regions.®
However, the search for reports on the use of liposomes for
delivery of active or imaging compounds against neurological
diseases was done individually. A flowchart of the literature
search is shown in Figure 3. An initial search yielded a total
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Total number of articles identified in searches n=1,902
PubMed and Web of Science

585 articles excluded at full review :
o' Duplicates; reviews; patents; i
"1 editorial materials; book chapters;
conference publications; non-English articles
Alzheimer’s Articles using liposomes
L Nonduplicate articles for drug delivery
identified in searches { across the barrier
n=333 ; \ n=14
H 319 articles excluded after H
H screening of titles and abstract or H
H full-text articles reviewed H
v
Parkinson’s Avrticles using liposomes
> Nonduplicate articles for drug delivery
identified in searches ¢ across the barrier
n=141 : n=8
H 133 articles excluded after
H screening of titles and abstract or
H full-text articles reviewed
v
Huntington’s Articles using liposomes
Y Nonduplicate articles for drug delivery
identified in searches ¢ across the barrier
n=59 : \ n=0
H 59 articles excluded after H
H screening of titles and abstract or H
full-text articles reviewed H
v
Stroke Articles using liposomes
L Nonduplicate articles for drug delivery
identified in searches { across the barrier
n=365 : n=57
i —303 articles excluded after screening of
; titles and abstract or full-text articles
i — 5 full-text articles were not available H
i (ref 136, 170, 179, 180, 186) H
v
Glioma Avrticles using liposomes
L) Nonduplicate articles for drug delivery
identified in searches { across the barrier
n=448 n=77
— 340 articles excluded after screening of
titles and abstract or full-text articles
— 7 full-text articles were not available
H (ref 209, 214, 227, 243, 251, 252, 262) ;
Full-text articles
included in the literature
n=156
']
164
|| ] Glioma
14 V77 Stroke
Il Parkinson’s
12 Alzheimer’s
Q
]
Q
©
Q.
=
o
S
[}
K]
£
>
-4

Year of publication

Figure 3 Flow diagram of studies that were identified based on the search terms described in the body of this article.
Abbreviation: ref, reference.
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of 319 articles for AD, 141 articles for PD, and 59 articles
for Huntington’s, after excluding duplicate articles found
in the PubMed and Web of Science databases. For AD, 26
full-text article reviews were performed, and 12 studies were
included for their fulfillment of inclusion criteria (Figure 3,
Table 3).883% For PD, 19 full-text articles were reviewed,
and eight articles had all the requisites to be considered here
(Figure 3, Table 3).°'% Unfortunately, for Huntington’s
disease, just one full article was analyzed and this article did
not show any outcome of interest for this disease, and for
this reason was not included here (Figure 3).

Liposomes in the treatment of Alzheimer’s disease
AD is a progressive and irreversible disease of the brain,
affecting mainly people aged over 65 years. The neuropatho-
genesis of AD is a critical unsolved question. Progressive
production and accumulation of insoluble protein aggregates,
such as neurofibrillary tangles of hyperphosphorylated
tau and amyloid-p (AP) plaques are thought to underlie
the neuropathology of AD, leading to brain atrophy and
neurodegeneration.!® In addition, some studies have also
suggested that deficits in cholinergic neurotransmitter systems
and increased levels of free radicals or proinflammatory
cytokines might be involved in AD neuropathogenesis.!>1%
More recently, a new potential cause for AD has been found
in the behavior of certain immune cells that normally protect
the brain instead beginning to consume a vital nutrient: the
amino acid arginine.'” This new discovery has implications
not only in a new potential cause of the disease but also as
a new strategy for targeting disease.

To date, the US Food and Drug Administration (FDA) has
approved three acetylcholinesterase inhibitors — rivastigmine,
galantamine, and donepezil — for the treatment of AD, which
lead to an increase in central cholinergic action in the brain
areas affected by the disease.!'® However, the administra-
tion of these inhibitors is associated with some severe side
effects. It would thus be desirable to develop new formula-
tions to avoid these side effects, and all studies proved that
the use of liposomes was a good strategy in the treatment
of AD.808690-92111 Intranasal delivery of rivastigmine or
galantamine liposomes has been shown to be a viable and
effective route to improve drug bioavailability for brain drug
targeting.’***% Intranasal delivery was also used as a success-
ful approach for delivery of liposomes containing quercetin,
which has antioxidant properties. As oxidative stress plays a
very important role in the neuropathogenesis of AD, the use
of quercetin liposomes has been shown to decrease neuronal
oxidative stress.”

Moreover, there have been several studies exploring differ-
ent strategies to block the effects of AP and tau proteins that
constitute major hallmarks of AD.*#7°! Once encapsulated
into liposomes, the H102 peptide, a B-sheet breaker, was able
to block the early steps of aggregation and misfolding of the
soluble AR, improving the spatial memory impairment of AD

inrats.''?

o-Mangostin is a polyphenolic xanthone that exhibits
pharmacological effects, such as anti-inflammation, antioxi-
dant, and antitumor effects. When administered intravenously,
o-mangostin liposomes have been shown to protect and
improve the neurons against AB-oligomer toxicity in rats.®®

Methoxy-XO4, a highly specific AP plaque ligand with
the dual role of targeting moiety and fluorescent marker,
has been conjugated to liposomes. When administered
intravenously, these liposomes were able to cross the BBB
in vivo and specifically bind to AB-plaque deposits, labeling
vascular and parenchymal amyloid deposits in brain tissue.?’
For example, glutathione PEGylated liposomes demonstrated
efficient encapsulation of an antiamyloid single-domain
antibody fragment (V, H-pa2H), increasing its transport from
blood into the brain.®3 It has also been demonstrated that
bifunctionalized liposomes decorated with phosphatidic acid
and a modified ApoE-derived peptide are able to cross the
BBB in vivo and destabilize AP aggregates, suggesting that
this approach is a good option for AD treatment.3*%

Although the scope of this review is on liposome-strategies
with the aim of facilitating BBB crossing, it is important to
mention that other strategies have been developed for the use
of liposomes for AD treatment.®!'3-11¢ Curcumin is a natural
compound extract from the plant Curcuma longa, and has
been reported to be a fluorescent molecule with high affin-
ity for the AP peptide and able to reduce AP aggregation.
In this way, intracranial injection of liposomes encapsulat-
ing curcumin efficiently labeled AP deposits in both human
and mice tissues, proving to be an effective formulation for
diagnosis and treatment of AD.!* Also, intraperitoneal injec-
tion of liposomes containing phosphatidic acid or cardiolipin
was able to reduce A peptides in the plasma and shifted the
equilibrium that exists between brain and blood AP peptides,
slightly affecting the plaques in the brain.* Lastly, different
liposome-based vaccines were developed and directed toward
AP plaques!>!1¢ and tau.!'*

Liposomes in the treatment of Parkinson’s disease

PD affects 4 million people worldwide.!'” The neuropathogen-
esis of PD is characterized by motor symptoms, such as tremor,
rigidity, slowness of movement, difficulty with walking, and
problems with gait. These motor symptoms result primarily
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from the death of dopamine-generating neurons in an area of
the brain called the substantia nigra, leading to the decreas-
ing of dopamine levels.!'® Also, misfolding and intracellular
aggregation of a-synuclein fibrils, also known as Lewy bod-
ies, are pivotal to PD neuropathogenesis.!'”-!''® Mitochondrial
dysfunction and oxidative stress may also be implicated in PD
neurodegeneration.''® However, the mechanisms underlying
PD pathogenesis have not been fully elucidated.

Currently, available therapies for PD are essentially
symptom-directed, having no effect on the disease
progression. To date, the natural precursor of dopamine,
levodopa or L-dopa, has been used in the clinic for several
years.!"” However, levodopa cannot be administered alone,
since it is converted to dopamine via peripheral dopamine-
decarboxylase enzyme and causes such side effects as
sleepiness, nausea, and dyskinesia.'*® A recently reported
study overcame this problem, developing liposomes for
site-specific delivery of levodopa into the CNS.°¢ Chloro-
toxin-modified stealth liposomes encapsulating levodopa
proved to be an efficient nanocarrier, increasing levodopa
concentration into the substantia nigra and striatum.’® In
the same way, it was also observed that intraperitoneal
injection of liposome formulations encapsulating anti-PD
drugs could improve the release of dopamine in the stria-
tum region.96—99,102,103

Also, there are ongoing studies showing that GDNF is
able to promote growth, regeneration, and survival of sub-
stantia nigra dopamine neurons, preventing the progression
of PD if administered in the early stages of the disease.!?'"1%
Recently, a very promising study showed neurotrophic and
neuroprotective effects of GDNF protein into the rat brain.'®
Although the liposomal preparation of GDNF offered no
significant advantage of GDNF alone after intranasal injec-
tion, the liposomal formulation might have a protective effect
on the protein, preventing it from degradation.'® Another
example that demonstrated the improvement of the treat-
ment of the disease with GDNF is reported in Xia et al.'"!
In this study, intravenous administration of OX26-targeted
PEGylated liposomes was used as a nonviral gene-delivery
system to deliver GDNF plasmid into the CNS. The expres-
sion of GDNF genes, under the influence of a rat tyrosine
hydroxylase promoter, was observed in organs where the
TH gene is highly expressed, including the substantia nigra,
adrenal gland, and liver. Sustained therapeutic delivery
was achieved at the neurons of the nigrostriatal tract in
experimental PD.'"" Lastly, novel liposomal formulations
have been characterized and efficacy in PD rats reported
after intracerebral injection.!?1** As the injection was at

the local site of the disease and did not show any evidence
of transposing the BBB, they were not considered in this
review article.

Stroke or cerebral ischemia

Unlike the other neurological disorders described so far,
stroke has high incidence, disability, and mortality rates in
a modern society.!*! An ischemic stroke is characterized by
the sudden reduction of brain blood flow due to obstruction
of cerebral vasculature, damaging the neural tissue (isch-
emic penumbra zone)."*? Unfortunately, the treatment for
stroke has its limitations, due to the poor ability to deliver
therapeutic agents across the BBB. Therefore, efforts have
been made to identify and develop drug-delivery systems
to the brain. Liposomes are described as a possible valuable
system to achieve better therapeutic effects in the treatment
of stroke. The search for reports on the use of liposomes as
drug-delivery nanocarriers for the treatment and/or diagno-
sis of stroke is shown in Figure 3. An initial search yielded
a total of 365 articles after excluding duplicate articles
found in the PubMed and Web of Science databases. In
total, 62 articles were eligible.'**""** Although all articles
described new nanocarriers for the delivery of therapeutic
molecules into the brain, only 57 studies are included in
Table 4, because the full text of five articles!3%!73:182183.189
was not available to access.

The initial treatment for acute ischemic stroke con-
sists in the administration of the FDA-approved tissue
plasminogen activator (tPA), which is effective within the
first 3 hours after the event occurs. This drug works on
quickly dissolving the blood clot to restore brain perfu-
sion.'” However, its use is limited, due to elevated risk of
cerebral hemorrhage, most probably due to the generation
of free radicals posttreatment.'”® Because oxidative dam-
age is an important aspect of the pathology of stroke and
involved in vascular cell-membrane damage, researchers
considered the possibility of developing a novel system
to deliver tPA efficiently to the ischemic penumbra area
in the brain. Actin is already known to be able to bind
to antigens present at the surface of cells with damaged
membranes. Therefore, actin-targeted liposomes for tPA
delivery were developed, and this new drug-delivery sys-
tem was in fact very efficient in delivering tPA within the
brain, reducing hemorrhagic transformation in rats after
focal embolic stroke.!” Furthermore, the enzyme SOD
was demonstrated to be an excellent biological natural free
radical scavenger, and its ability as a neuroprotectant agent
was tested. As free enzymes possess no BBB-penetration
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capacity and degrade rapidly in the serum, SOD encap-
sulation in liposomes was needed. In vivo experiments
demonstrated the efficacy of SOD-loading liposomes to
get into the brain, providing significant protection against
free radicals.136,139,185,186,189,192

Moreover, a wide debate is ongoing in the literature about
new strategies to treat this disease. Neuroprotective and
neuroreparative drugs (for example, citicoline) are under
development.'’ Citicoline, an exogenous form of cytidine-
5’-diphosphocholine, is a key intermediate in the biosynthesis
of phosphatidylcholine, the primary neuronal membrane
phospholipid that is degraded during brain ischemia to free
radicals and fatty acids. In addition, citicoline restored Na*/K*
ATPase, inhibited activation of phospholipase A, and acceler-
ated cerebral edema reabsorption.'® Therefore, citicoline was
considered a good candidate for molecular therapy for stroke,
since its acts at several points on the ischemic pathway. Unfor-
tunately, due to the drug’s polar nature, crossing the BBB was
far lower than desired. It has been observed that liposome-
encapsulated citicoline increases its bioavailability within the
brain parenchyma and improves its therapeutic efficacy for
the treatment of stroke in animals,'4%133:139.169.177.179-182

Besides damaged blood vessels in cerebral ischemia,
another important process that occurs in stroke is neovascu-
larization or angiogenesis. This is the physiological process
of forming new blood vessels from the existing vasculature
in healthy brain tissue into areas of ischemic penumbra.'*’
The outermost cells in the zone of ischemic penumbra
slightly restore their metabolism activities, since they have
more blood supply when compared to cells more centrally
located in the ischemic area. At this site, where blood supply
is limited, there is rapid consumption of ATP, due to low
levels of oxygen. Therefore, the delivery of exogenous ATP
by liposomes could restore the metabolism of ischemic cells
and reduce the area of injury.!3%137.138.183.184.187.188

As mentioned earlier, cells within the infarcted area of
ischemic tissue do not receive enough oxygen or nutrients
to generate ATP. For this purpose, liposome-encapsulated
hemoglobin (Hb) was engineered as a pharmacological agent
able to deliver oxygen for the treatment of ischemic diseases.
Several studies reported in the literature suggest the efficacy
of Hb liposomes in the treatment of stroke by enhancing the
biodistribution of Hb liposomes within the ischemic area
in the brain.144,145,147,160—164,167,171,191,193,194 In the same Way,
liposomes for the delivery of angiogenic peptides'*’ and
VEGF' to promote angiogenesis in ischemic tissue were
developed, and both formulations effectively promoted
vascular regeneration. 4157

Over the years, many liposomal formulations have been
developed for the treatment of stroke. Moreover, when
liposomes were associated with contrast agents, research-
ers observed that they quickly accumulated in the ischemic
zone, 34143812190 Some formulations have demonstrated
their ability to improve in vivo activity of drugs, such as
chrysophanol,'** dexamethasone phosphate,'>* nerve growth
factor,'” Xe, 518 FK506,'* isopropylidene—shikimic acid,'!
asialo-erythropoietin,'>* antisense oligonucleotides,!®
plasmids,'” quercetin,'®*!%® fasudil, ' nitric oxide, ' N-acetyl-
leucyl-leucyl-norleucine amide,'”® and a combination of syner-
gistic drugs.'*!” Very recently, a promising uncoupling new
drug — ZL006 (5-(3, 5-dichloro-2-hydroxybenzylamino)-2-
hydroxybenzoic acid) — was developed for stroke treatment. Its
mechanism of action is based on the selective blocking of the
coupling of nitric oxide synthase, and it was also recognized
as a neuroprotective drug. As with many other drugs, ZL006
possesses low to BBB-permeability capacity. However, its
encapsulation in immunoliposomes targeted the BBB and
significantly enhanced the delivery of ZL006 within the brain.
A remarkable neuroprotective effect was also observed.'*!

Brain cancer — glioma

There are more than 100 different types of brain and CNS
tumors. In this article, we focused our search on the term
“glioma”, which encompasses all tumors that arise from
glial cells, including astrocytomas, oligodendrogliomas,
ependymomas, and glioblastomas multiforme.? Glioblas-
toma multiforme is by far the most common and aggressive
cancer form of the glial tumors. The current standard of care
for this type of cancer includes surgery, followed by treat-
ment with radiation and/or chemotherapeutic drugs. The
current median overall survival of patients with glioblastoma
multiforme is less than 15 months after surgery, followed by
synergistic combination of radiotherapy and chemotherapy
with the anticancer drug temozolomide.?*! Treatment for this
type of cancer has its limitations, due to the poor ability to
deliver therapeutic agents across the two unique barriers pres-
ent in the brain: the BBB and the blood—brain tumor barrier
(BBTB). Moreover, the low accumulation of nanoparticles
into brain tumors by the enhanced permeability and retention
(EPR) effect should be also taken into account.?> Therefore,
efforts have been made to identify and develop drug-delivery
systems for the brain. Liposomes are described as a possible
valuable system to achieve better therapeutic effects in the
treatment of gliomas, since several targeting strategies have
been reported showing ability to reach the brain and to target
the tumor. The search for reports on the use of liposomes as
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drug-delivery nanocarriers for the treatment and/or diagnosis
of gliomas is shown in Figure 3. An initial search yielded a total
of 448 articles after exclusion of duplicate articles found in the
PubMed and Web of Science databases. In total, 80 articles
were eligible.®646520328 Although all described new nanocarri-
ers for the delivery of therapeutic molecules into the brain, only
77 studies are included in Table 5, because the full text of
seven articles?!2:217:230.246254.255.265 a5 not available to access.

Design of liposomal drug-delivery systems

for glioma diagnosis

One of the most challenging problems in therapy of gliomas
is their detection in the earliest stages of development. Like
many tumor types, early detection correlates with success-
ful therapy. Therefore, both new diagnostic and therapeutic
approaches need to be developed for glioma-imaging oncol-
ogy. For this purpose, a huge variety of contrast agents have
been encapsulated into liposomes. These new nanomaterials
may provide new opportunities for biomedical imaging, due
to their unique magnetic, optical, and/or chemical proper-
ties, leading to the creation of better contrast-enhancement
agents and increasing the sensitivity of techniques clinically
available for diagnosis of brain tumors.?*

Modern imaging techniques, such as magnetic reso-
nance imaging (MRI), optical imaging, ultrasound, and
single-photon-emission computed tomography (SPECT),
are rapidly emerging as noninvasive modalities for detec-
tion and follow-up posttreatment of gliomas.?*2% MRI
is the preferred approach for glioma imaging, since it
provides high-spatial-resolution anatomic images of this
tumor type.?®” Optical imaging applied to glioma therapy
has the potential to localize and identify intrinsic brain
tumors for removal during surgery.?®® Ultrasound, unlike
MRI, defines tumor volume and provides intraoperative
localization of tumor tissue, although its use is limited by
the presence of the skull.?** SPECT yields growth rate and
gives information about the heterogeneity of gliomas, but
provides low-spatial-resolution images.?* Positron-emission
tomography (PET) provides functional information, since
this technique is highly sensitive for measurements of bio-
logical processes, such as cell proliferation, angiogenesis,
and glucose consumption.?

Paramagnetic contrast agents are the most widely
used agents to enhance the visibility of gliomas in MRI
images. Gadolinium (Gd)-based compounds, such as
Gd—diethylenetriaminepentaacetic acid, gadodiamide, and
gadoteridol, are effective contrast agents, owing to their seven
unpaired electrons. Although Gd-based compounds are able

to cross the BBB, a key advantage of using liposomes as Gd
carriers is preferential localization at the tumor site through
the EPR effect. In this way, it was shown that Gd liposomes
with prolonged blood-circulation time tend to accumulate
in the intratumoral extravascular space after moving across
the tumor’s leaky vasculature.?®2* Moreover, a recent
advance was reported in the design of a pH-responsive Gd
liposome that was able to release the imaging agent into a
cerebral glioma rodent model, detecting with 0.2 pH precision
the mildly acid tumor microenvironment.?*®

Methods for optical imaging of glioma are based on
fluorescence. The lipid-binding fluorescent carbocyanine
dyes DiD (4,4’-diisothiocyanatostilbene-2,2’-disulfonic
acid, disodium salt), DiO (3,3’-dioctadecyloxacarbocyanine
perchlorate), and Dil (1,1’-dioctadecyl-3,3,3,’3,’-
tetramethylinocarbocyanine perchlorate) are widely used for
imaging studies. The characteristics of aqueous-insolubility
ease of aggregate formation and the fact that these dyes do
not readily cross the BBB suggest that it would be desir-
able to develop a liposome-based system. In this way, the
carbocyanine dyes have been encapsulated into liposomes
with the ability to demarcate tumors.**>3¢2% The results of
these studies suggest that those formulations, independent
of the mode of administration, stained the tumor tissue and
increased their bioavailability.***¢2% However, the use of
these fluorescent probes has the disadvantage of requiring
low-light conditions for the visualization of tumors in vivo,
which is not useful in a surgical environment. It was recently
reported that Evans blue liposomally encapsulated was able
to demarcate visually the margins of invasive gliomas, which
may not significantly change the surgical conditions for the
resection of this type of tumor.>

Also, studies reported in Table 5 suggest that the use
of MRI or optical imaging alone in the imaging of gliomas
is not enough for their classification and grading, optimal
treatment, and follow-up after treatment,?"*”* since each
imaging technique is associated with individual advantages
and limitations. Furthermore, it is generally observed that
the presence of targeting ligands over the liposome surface
improves the uptake of vesicles by target cancer cells and
increases their retention time within tumors,?3!:233:239.247.253
In gliomas, angiogenesis seems to be the preferable target
area for diagnosis of this cancer. Angiogenesis, the forma-
tion of new vessels, is a key process for glioma survival
and growth.??! From the literature search, two molecules
were identified for angiogenic cells: endoglin, also known
as CD105, and the Ala-Pro-Arg-Pro-Gly peptide. MRI of
endoglin-target liposomes was able to demonstrate tumor
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angiogenesis®? and delineate tumor margins, showing
correlation between endoglin-associated neovasculature and
tumor infiltration.?! In the same way, PET of Ala-Pro-Arg-
Pro-Gly peptide-targeted liposomes was able specifically
to image the different structure of glioma vessels.?’ Also,
liposome-targeted delivery of contrast agents containing
antibodies to GFAP and the extracellular loop of Cx43 on
its surface that selectively bound to brain-reactive astrocytes
and faster-migrating glioma cells has been developed.?** Also
developed have been PEGylated liposomes containing VEGF
antibody on the surface, increasing the distribution and effi-
cacy of the delivery of liposomes to glioma.?** However, it is
still unclear if any of the strategies described could enhance
detection of the earliest stage of tumors.

Design of liposomal drug-delivery systems

for glioma therapy

Glioma therapy consists of surgery followed by radiotherapy,
chemotherapy, or photodynamic therapy (PDT). Moreover,
the stage and type of glioma often determines whether mono-
therapy or combined therapies are needed. Radiation therapy
is a very common option for the treatment of gliomas, and
has a variety of modalities, including external beam and
brachytherapy.?®? External beam radiotherapy, the most com-
mon approach in the clinic, uses ionizing radiation to kill
cancer cells, but its application is limited by doses lower than
80 Gy due to toxicity.®® Brachytherapy or internal therapy
uses a radioactive source that is delivered into or near the
tumor itself, making it possible to deliver high radiation to
the tumor and harming as few normal cells as possible.** In
this way, recent studies suggest that brachytherapy with lipo-
somally encapsulated '*Re or '%¥Re isotopes holds significant
promise for glioma therapy.??*2422% These studies demon-
strated that animals treated with '3Re or '*¥Re liposomes had
significantly prolonged survival, independent of the route of
administration.??2* Also, '¥¥Re liposomes have been explored
for diagnostic evaluation, revealing the potential of these lipo-
somes as a future theranostic agent for brain gliomas.?*

A wide variety of liposome-encapsulated anticancer drugs
have also been developed for both experimental and clinical
oncology. By virtue of their unique physicochemical charac-
teristics, liposomes have mainly shown improvement in the
therapeutic index of chemotherapeutic drugs by enhancing
their efficacy against aggressive and chemoresistant glioma
cells and/or lowering drug side effects in the body. Antitumor
antibiotics include doxorubicin (DOX), daunorubicin
(DNR), and bleomycin. DOX, an anthracycline antibiotic,
damages DNA by intercalation, inhibiting DNA synthesis

or poisoning of topoisomerase II, by alteration of membrane
function, or by generation of free radicals.?”>**¢ DNR, also
an anthracycline antibiotic similar in its chemical structure
to DOX, acts through intercalation into DNA, metal ion
chelation, and/or by free radical formation.”® Bleomycin,
a polypeptide antibiotic, exerts its action by breaking the
DNA double helix.*”

Furthermore, antitumor antibiotics are among the most
widely used and studied chemotherapeutic drugs. They are
currently available in the market as free drugs (Adriamycin®,
Cerubidine®, and Blenoxane®, trade names for DOX, DNR,
and bleomycin, respectively), encapsulated in PEGylated
liposomes (Doxil® [PEGylated form of liposomal DOX]),
and encapsulated in conventional liposomes (Myocet® and
DaunoXome® [liposomal DOX and DNR, respectively]).
Although the anticancer activity of free drugs has been
reported to be effective against gliomas cells in vitro, they
present very poor efficacy in vivo, because these antibiotics
do not readily cross the BBB.*® In a rat brain-glioma model,
prolonged survival of the animals was observed when PEGy-
lated liposomes were used to deliver DOX.?*” In contrast,
in a cohort of patients with brain cancer, liposomal DOX,
DNR, or bleomycin was found moderately effective against
glioma.275,278,279,281—283

Based on the moderate efficacy of liposomal formula-
tions against brain tumors, it is clear that more effective
drug-delivery strategies are needed. One promising alterna-
tive strategy involves the combination of ultrasound and
microbubbles to induce BBB opening for local and transient
delivery of drugs into the brain, leading to improvement in
chemotherapy treatment.?2622824326> Moreover, as Doxil has
been already clinically approved for the treatment of some
types of cancer, these results suggest that the use of ultrasonic
microbubbles for glioma chemotherapy is highly clinically
relevant.??®2# Other alternative strategies were found in this
search. Researchers developed stimuli-responsive liposomes
that were able to release DOX in a controlled manner in
response to an external low-power radio frequency field*®
or local temperature rise.?!® Both strategies showed an
improvement of DOX delivery across the BBB and prolonged
survival time of animals.

In fact, over the years many liposomal formulations have
been developed for the treatment of gliomas. Some formula-
tions demonstrated their ability to improve activity of anticancer
drugs in vivo, such as topotecan,?? irinotecan,?!4230.235:259
arsenic trioxide,” cisplatin,?”-*926%%8 and oxaliplatin,”” and
codelivery of synergistic two-drug combinations®’?%* into
brain tumor-bearing animal models. Other formulations
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demonstrated increased bioavailability of the bioactive com-
pound celastrol,?'” carriage of small molecules®' and large
payloads, 27 and enabled efficient gene therapy.?’!-274276:277
Additionally, the design of liposomes that simultaneously
carry imaging and therapeutic agents is promising for glioma
therapy, since it allows the opportunity for real-time visual-
ization of drug localization, drug delivery, and monitoring
the tumor-therapy response.?2260262272.28 However, although
passively targeting liposomes are the only ones used in clinical
therapy, they suffer several limitations, such as low EPR effect
within the brain, nonspecific uptake, and the crossing of both
barriers. Therefore, methods for enhancing the targeting of
liposomes to brain tumors were developed.

According to our search, liposomes actively targeting
strategies for CNS delivery of anticancer drugs across the
BBB are basically divided into adsorptive-mediated transcy-
tosis (AMT) and receptor-mediated transcytosis (RMT). AMT
is trigged by electrostatic interactions between the negatively
charged surface of brain endothelial cells and the positively
charged moieties of macromolecules. AMT-based drug
delivery for glioma therapy was performed using the cationic
cell-penetrating TAT peptide to functionalize the surface of
liposomally encapsulated DOX.?*® The authors demonstrated
that the TAT peptide could penetrate the BBB, since DOX was
efficiently delivered to brain tumor-bearing rats.>*® However,
this cationization strategy suffers from several limitations,
such as instability of the system in the serum, nonspecific
interactions, immunogenicity, and toxicity.?**?*

RMT-based drug delivery has been widely explored
for liposome targeting to the brain. This strategy relies
on liposomal ligand interaction with the very spe-
cific receptor-mediated transport system in the BBB.
In fact, there are several kinds of receptors that are expressed
on the surface of endothelial cells of the barrier, such as trans-
ferrin and lactoferrin, that have been explored to facilitate the
crossing of liposomes into the brain. Transferrin liposomes
have been reported to be able to deliver borocaptate (BSH)
and small interfering RNA (siRNA) into the CNS, which is
highly significant, because these compounds do not readily
cross the BBB.?#4246263 [n the same way, the covalent binding
of lactoferrin to the liposome surface proved to be an effective
strategy for the treatment of brain tumors.?*

In glioma therapy, similarly to the BBB, the BBTB also
represents a challenge for glioma-targeted delivery.’® Fortu-
nately, many kinds of receptors are highly expressed in the
BBTB (tumor vessels and/or glioma cells), and these receptors
have been explored for the design of actively targeting lipo-
somes for brain delivery of anticancer drugs across the BBTB.

For example, such ligands as chlorotoxin,?*¢2!>22! TR peptide,>*
RGERPPR peptides,?'* folate,**% anti-EGFR antibody,??? and
IL-13,23 have been successfully attached to the surface of
liposomes. As a result, these decorated liposomes were able
selectively to bind, target, and enhance uptake by glioma cells.
In the same way, hemagglutinating virus of Japan liposomes
have successfully delivered foreign genes into murine glioma
cells, representing a good system for gene delivery.??’

More recently, researchers have developed liposomes
that can penetrate the BBB and targeting brain-cancer cells.
This new system, known as dual-targeting liposomes, was
produced to deliver DOX,?!!21323 DNR,?? epirubicin,?*’
topotecan,”' plasmids,?¢ and siRNA,?'? and for codelivery
of synergistic two-drug combinations.?®*2!1® All of these
dual-targeting liposomes proved to be effective in crossing
the BBB and targeting glioma cells. It was also demon-
strated that just angiopep-2 peptide was able to target BBB
and glioma cells at the same time,?"* and RGD peptide
targeted both BBTB and tumor cells.?*207209

PDT uses photosensitizing agents, such as Photofrin, for
brain tumors, along with light of appropriated wavelength to
kill glioma cells. The PDT cell-killing mechanism is directly
related to the production of reactive oxygen species, which
leads to cell apoptosis, with minimal side effects.>*! Unfor-
tunately, the efficiency of this therapy for gliomas is limited
by the BBB. Just like for chemotherapy, the efficacy of
PDT for the treatment of brain tumors was greatly improved
when Photofrin was encapsulated into liposomes, since
the photosensitizing agent was efficiently delivered within
brain tumors.?**2% Finally, it is worth mentioning here that
although the preferred route for delivery of liposomes seems
to be intravenous injection, alternative routes of administra-
tion, such as convection-enhanced delivery and intracranial,
intracarotid, and intraperitoneal injections, have been also
considered.

Conclusion

The BBB is the most important obstacle to effective brain
drug delivery. There has been great interest in this area,
especially in the development of targeted liposomes to cross
the BBB and to deliver therapeutic molecules only to the
disease site within the brain. From the reported articles, we
could see that liposomes can get into the brain via different
mechanisms. Examples of these mechanisms are: 1) transport
of liposomes via RMT, followed by their internalization by
neurons or glial cells and release of therapeutic molecules
within those cells; 2) adsorption of cationic liposomes in
the endothelial cells, which enhanced the concentration of
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therapeutic molecules within the brain cells; 3) antibody- or
peptide-conjugated liposomes used to transport and target
encapsulated drugs into the brain via transcytotic path-
ways; 4) inhibition of efflux transporters, such as PgP, by
coating liposomes with transporter-inhibitory substances;
and 5) disruption of the BBB. In fact, liposomes have the
potential to revolutionize drug development for therapy
and/or diagnosis of neurological diseases. By their unique
physicochemical properties, liposomes have shown great
ability to compartmentalize and solubilize hydrophilic and
hydrophobic drugs (Figure 4). Furthermore, liposomes are
biocompatible and biodegradable systems, which make them
suitable for neuromedicine.

Also, the functionalization of liposomes surface modi-
fied with antibodies, peptides, aptamers, and other small
molecules has shown promise in delivering a huge range of
therapeutic molecules to targeted sites in the body (Figure 4).
Liposomes usually improve the therapeutic index of new
or established drugs by prolonging biological half-life and
reducing their side effects. More importantly, liposomes
may provide an excellent therapeutic tool for treatment or
diagnosis of neurological disorders, due to their ability to
cross the BBB and efficiently deliver drugs and/or contrast
agents into the CNS, as discussed in this article. Addition-
ally, theranostic liposomes have been developed, allowing

real-time therapeutic efficacy. Also, high efficacy in using
liposomes to deliver a drug in a spatial and temporal manner
has been demonstrated (Figure 4), which we believe may be
critical for the success of more effective therapy for neuro-
logical diseases.

Unfortunately, most advances and breakthroughs in
liposome-based approaches have just happened for glioma
therapy. The development of effective therapy for AD, PD,
and stroke has been largely constrained. This might be due
to our deficiency in understanding the neurological mecha-
nisms and pathogenesis of these disorders. Increasing our
comprehension about these diseases will contribute to the
development of novel potential therapeutic strategies. This is
essential, since we are living in a modern aging society and
an effective spectrum of treatments is urgently needed.

By crossing the BBB, achieving efficient drug delivery
into the brain is possible, which leads to an intensive search
for alternative administration routes for liposomes. In
this review, various studies used different administration
routes to access the brain for the therapeutic delivery of
liposomes (Figure 4). Intravenous injection of liposomes
was the preferred route in the majority of the works cited
here. Alternatively, intranasal injections offered a direct
mode of drug delivery into the brain for AD and PD.
Convection-enhanced delivery provided interesting results

Neuron

Figure 4 Delivery of therapeutic molecules or imaging agents to the brain by liposomes (m) is highly challenging.

Notes: Liposomes can be administered to the central nervous system via systemic delivery (a), intracarotid (b), intracranial (c), intranasal (), and intraperitoneal (f) injections,
or via convection-enhanced delivery (d/n). Liposome-based strategies consist in encapsulating the molecules of interest in liposomes (V). The ability to increase their blood-
circulation time is created with the ligation of polyethylene glycol on the liposome surface (lll). Liposomes can also be targeted to cross the blood-brain barrier (1), target
the site of disease (IX), or both (ll). Surface modification of liposomes can be achieved by covalent ligation of antibodies (IX), RNA aptamers (VI), or peptides (XII). Cationic
lipids can be incorporated into the bilayer, facilitating their association with nucleic acids for gene therapy (VI and XI). This figure also summarizes therapeutic mechanisms,

such as hyperthermia (IV), temperature increase (VII), and ultrasound (X).
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for efficient delivery of liposomes for drug delivery to
tumor-bearing animal models (Tables 3—5). Administration
of liposomal formulation via nonparenteral routes is highly
desirable, since effective strategies for crossing the BBB
are urgently needed.

Disclosure
The authors report no conflicts of interest in this work.
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