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SUMMARY

Omega-3 fatty acid prescription drugs, Vascepa (R96% eicosapentaenoic acid
[EPA] ethyl ester) and Lovaza (46.5% EPA and 37.5% docosahexaenoic acid ethyl
ester) are known therapeutic regimens to treat hypertriglyceridemia. However,
their impact on glucose homeostasis, progression to type 2 diabetes, and pancre-
atic beta cell function are not well understood. In the present study, mice were
treated with Vascepa or Lovaza for one week prior to six weeks of high-fat diet
feeding. Vascepa but not Lovaza led to reduced insulin resistance, reduced fasting
insulin and glucose, and improved glucose intolerance. Vascepa improved beta cell
function, reduced liver triglycerides with enhanced expression of hepatic fatty acid
oxidation genes, and altered microbiota composition. Vascepa has protective ef-
fects on diet-induced insulin resistance and glucose intolerance in mice.

INTRODUCTION

Chronic diseases including obesity, cancer, cardiovascular disease and type 2 diabetes (T2D) have increased

rapidly over the past several years (World Health Organization, 2002) with T2D alone estimated to affect

510.8million individuals by 2030 (Basu et al., 2019). T2D is characterized by chronic hyperglycemia in part caused

by insulin resistance and impaired insulin secretion relative to the level of glycemia (American Diabetes Associ-

ation, 2014). Obesity is highly linked to T2D risk and important factors such as diet and nutrition can reduce the

risk of the incidence of diabetes. For many years, fish oil (FO) supplements have been viewed as beneficial to

human health mainly due to the long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA, 20:5n-3) and do-

cosahexaenoic acid (DHA, 22:6n-3). In fact, both preclinical and clinical studies have shown that EPA and DHA

exert health benefits on both cardiovascular disease and dyslipidemia (Arca et al., 2018; Khawaja et al., 2014;

Skulas-Ray et al., 2019; van den Elsen et al., 2012). Thus, the World Health Organization recommends a daily

intake of 0.25–2 g EPA + DHA in adults (Food and Agriculture Organization of the United Nations., 2010).

The effects of pure omega-3 fatty acid prescription drugs on glucose homeostasis and prediabetes/T2D have

been previously investigated. In rodents, improvements in insulin resistance have been reported (De Castro

et al., 2015; Kalupahana et al., 2010) through amelioration of oxidative stress (Molinar-Toribio et al., 2015),

exertion of anti-inflammatory effects (Oh et al., 2010), reduction of hepatic fat accumulation, modulation of

transcription factors involved in lipid metabolism and fatty acid oxidation (Jump, 2011; Kuda et al., 2009; Mat-

suura et al., 2004; Tanaka et al., 2010) and suppression of adipocytokines (Kalupahana et al., 2010). A recent

randomized controlled trial in humans has also shown that omega-3 fatty acids alone reduced fasting blood

glucose and HbA1c (Wang et al., 2019). However, systematic reviews and meta-analysis studies have shown

that omega-3 fatty acid supplementation, seafood consumption, or circulating omega-3 biomarkers have

no effect on biomarkers of glucose or insulin homeostasis including HbA1c, fasting, and postprandial plasma

glucose in subjects with T2D (Brown et al., 2019; Chen et al., 2015; Montori et al., 2000; O’Mahoney et al., 2018;

Wu et al., 2012; Zhou et al., 2012). In fact, omega-3 fatty acids have been reported to have different responses

based on different ancestries (Li, 2015) and FO supplementation has moderately increased blood glucose and

insulin resistance in a small cohort (Mostad et al., 2006). The opposing results could in part be due to dosing,

composition, and purity of the FO used (Lalia and Lanza, 2016).

Recently, omega-3 fatty acid prescription drugs have been formulated and are being given to metabolic

syndrome and cardiovascular patients to reduce triglyceride (TG) levels and improve cardiovascular
iScience 24, 102909, August 20, 2021 ª 2021 The Authors.
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Table 1. Clinical and metabolic characteristics of study population

Characteristic Normal (N = 28) T2D (N = 25) p Value

Sociodemographic characteristics

Sex Male Male

Age (years) 40.1 G 1.2 48.5 G 1.2 <0.000001

Height (cm) 171.7 G 0.9 170.6 G 1.1 0.350

Weight (kg) 74.2 G 1.5 74.8 G 2.2 0.610

BMI (kg/m2) 25.2 G 0.5 25.6 G 0.6 0.734

Clinical variables

Fasting plasma glucose (mmol/L) 5.1 G 0.1 8.9 G 0.6 0.001

2 hr plasma glucose (mmol/L) 5.8 G 0.1 13.2 G 0.9 <0.000001

HbA1c (mmol/L) 5.4 G 0.1 8.5 G 0.4 0.009

TG (mmol/L) 1.7 G 0.2 2.4 G 0.4 0.552

HDL (mmol/L) 1.0 G 0.05 1.8 G 0.2 0.496

LDL (mmol/L) 3.2 G 0.2 2.2 G 0.2 0.395

Data are represented as mean GSEM. TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein.

See also Figure S1
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disease outcomes (Bradberry and Hilleman, 2013). Unlike FO supplements, prescription omega-3 fatty acid

drugs are FDA-approved for the treatment of hypertriglyceridemia. The two common prescription formu-

lations available are Vascepa (Amarin), a high purity formulation of EPA ethyl ester (R96%) (Jacobson, 2012;

Kim and McCormack, 2014), and Lovaza (GlaxoSmithKline), an FO prescription drug containing EPA and

DHA ethyl esters (46.5 and 37.5%, respectively) (Koski, 2008). In clinical trials, both Vascepa and Lovaza low-

ered TG levels of statin-treated and non-statin-treated patients with hypertriglyceridemia (Ballantyne et al.,

2012; Bradberry and Hilleman, 2013; Davidson et al., 2007).

The actions of highly pure omega-3 fatty acid-enriched prescription drugs show promising effects in

reducing the complication of metabolic diseases as shown in the JELIS trial, in which EPA treatment

reduced the incidence of coronary artery disease in patients with impaired glucose metabolism (Oikawa

et al., 2009; Saito et al., 2008; Yokoyama et al., 2007). Other clinical trials, such as the ASCEND and the

ORIGIN trials, reported that omega-3 ethyl esters did not reduce cardiovascular events in patients with dia-

betes (Bosch, 2012; Bowman et al., 2018). Recently, the REDUCE-IT trial (Bhatt et al, 2019, 2020) reported

positive results in patients with diabetes in which treatment with Vascepa reduced TG and improved car-

diovascular outcomes (Bhatt et al, 2019, 2020; Tajuddin et al., 2016; Tummala et al., 2019). Given that dys-

lipidemia and cardiovascular disease are closely linked to T2D, the protective effects of omega-3 prescrip-

tion drugs on glucose homeostasis and beta cell function need to be further studied. Here, we tested the

potential protective effects of two FDA-approved omega-3 fatty acid prescription drugs, Vascepa and Lov-

aza, in a prediabetic mousemodel. This study sought to identify the protective effects of omega-3 prescrip-

tion drugs on glucose homeostasis and pancreatic beta cell function.

RESULTS

EPA and docosapentaenoic acid are increased in the serum of type 2 diabetic patients

Owing to the current controversial effects of omega-3 fatty acids in T2D, glucose homeostasis, and pancre-

atic beta cell function, we first determined whether circulating fatty acids are altered in patients with T2D.

Fatty acid analysis was performed in healthy vs patients with T2D. Clinical characteristics are presented in

Table 1. The omega-3 fatty acid, EPA, had the highest increase in patients with T2D compared with con-

trols. In addition, the intermediate metabolite docosapentaenoic acid (DPA), was also elevated in patients

with T2D compared with controls (Figure S1A).

Vascepa mitigates high-fat diet-induced glucose intolerance and insulin resistance in vivo

To determine the effects of omega-3 fatty acids on glucose homeostasis and insulin resistance, we have

utilized Vascepa and Lovaza, two highly pure omega-3 ethyl ester prescription drugs containing primarily
2 iScience 24, 102909, August 20, 2021



ll
OPEN ACCESS

iScience
Article
EPA or EPA & DHA, respectively. The composition of the omega-3 ethyl ester prescription drugs was

confirmed by mass spectrometry. As anticipated, Vascepa contained only EPA ethyl ester (mw =

330.51g/mol) without the presence of DHA, whereas Lovaza contained both EPA (mw = 330.51g/mol)

and DHA (mw = 356.55 g/mol) ethyl esters in the capsule (Figures S1B and S1C). These studies confirmed

the high purity of Vascepa and Lovaza, indicating their suitability for further in vivo studies on glucose ho-

meostasis. Because FO treatment is associated with improvements in circulating lipids and insulin resis-

tance (Lalia and Lanza, 2016), we first examined the effects of the highly purified omega-3 ethyl ester pre-

scription drugs Vascepa or Lovaza on high-fat diet (HFD)-induced glucose intolerance and insulin

resistance. Since Lovaza contains only 46.5% EPA and other components such as DHA could contribute

to the effects seen, the Lovaza dosage, which was given at an equivalent of 2g/day in humans, was calcu-

lated to contain the same level of EPA as Vascepa. The chow and HFD controls were the same for both the

Vascepa and Lovaza group (Figures 1 and S2). Mice treated with Vascepa for 7 days, followed by HFD

feeding for 6 weeks (Figure 1A), had significantly lower weight compared to control-HFD mice (Figure 1B).

However, Vascepa-treated mice had no differences in food intake, respiratory exchange ratio, energy

expenditure or oxygen consumption compared with control-HFD mice (Figures 1C–1F). Vascepa-treated

mice also had significantly reduced fasting blood glucose and insulin (Figures 1G and 1H) and had

improved glucose tolerance compared with control-HFD mice with no changes in area under curve above

baseline (Figure 1J). Consistent with improved glucose tolerance, Vascepa-treated mice also had reduced

insulin secretion (Figure 1K). To determine whether the reduction in insulin secretion was due to improve-

ments in insulin resistance, an insulin tolerance test was performed. Treatment with Vascepa indeed

improved HOMA-IR (Figure 1I) and insulin sensitivity with no changes in area under curve below baseline

(Figure 1L) in comparison to control-HFD mice. In comparison, the effects of mice treated with Lovaza con-

taining both omega-3 fatty acids EPA and DHA were less pronounced (Figure S2). Treatment with Lovaza

(Figure S2A) had no net effect on weight (Figure S2B) or fasting insulin (Figure S2D) associated with HFD. It

was also less effective than Vascepa in improving fasting glucose and correcting glucose intolerance (Fig-

ures S2C and S2F) and had no effect on HFD-induced insulin resistance, insulin secretion or HOMA-IR (Fig-

ures S2E, S2G and S2H). Interestingly, improvements in glucose homeostasis with either Vascepa or Lovaza

treatment were only apparent under conditions of HFD. Both Lovaza or Vascepa did not have any remark-

able effect on glucose homeostasis or insulin resistance under a standard chow diet on short-term studies

(7 days oral gavage) or after a post-treatment period of 6 weeks (Figures S3 and S4).

Vascepa reduces basal insulin secretion ex vivo but does not appear to directly affect islet

function in vitro

To look more closely at insulin secretion and pancreatic islet function, glucose stimulated insulin secretion

(GSIS) was performed on islets isolated from mice treated with Vascepa for 7 days followed by 6 weeks of

HFD feeding. Interestingly, Vascepa-treated mice had marked reductions in basal insulin secretion

compared with control-HFD (Figure 2A). There was no change in high glucose stimulated secretion or total

insulin content in the Vascepa-treated group compared with control-HFD (Figures 2A and 2B). Pancreatic

islet morphometry analysis revealed a significant increase observed in the number of small islets in the Vas-

cepa-treated group compared with control-HFD (Figures 2C and 2D). However, total pancreatic insulin-

positive area and beta cell mass was unchanged between the groups as determined by pancreatic immu-

nostaining (Figures 2E and 2F). In comparison, Lovaza treatment had no effect on GSIS, islet morphology

analysis or beta cell mass (Figures S2I–S2M).

To determine whether EPA or DHA ethyl ester, components of Vascepa or Lovaza, can acutely and directly

affect islet function, islets and the glucose-responsive beta cell line MIN6K8 cells were treated with Vas-

cepa, Lovaza, EPA ethyl ester, or DHA ethyl ester. In vitro, islets treated for 48 hr with Vascepa had no

change in GSIS or total insulin content compared with the control group (Figures 2G and 2H). Treatment

with Vascepa, Lovaza, EPA, or DHA ethyl ester for 24 hr did not affect GSIS in islets (Figures S5A–S5C)

or MIN6K8 cells (Figures S5D–S5F).

Vascepa reduces liver TG and upregulates genes involved in the PPAR-a signaling pathway

Given the improvements in diet-induced insulin resistance with Vascepa treatment and since the liver is

highly susceptible to insulin resistance associated with HFD feeding, we next looked specifically at the ef-

fects of Vascepa on liver function.Mice treated with Vascepa for 7 days followed by HFD feeding for 6 weeks

had significantly reduced liver TG content compared with control-HFD (Figure 3A). To determine changes

in liver morphology, H&E and oil red O staining were performed on livers isolated after 6 weeks of HFD
iScience 24, 102909, August 20, 2021 3



**** ****

H
ou

rly
 F

oo
d 

C
on

su
m

ed
 (k

ca
l)

****
60

40

20

0

A B

F G

J

K

15

10

5

0

5

4

3

2

1

0

4000

3000

2000

1000

0

30

20

10

0 20         40        60         80       100      120

5

4

3

2

1

0 10         20       30

250

200

150

100

50

0

1500

1000

500

0

15

10

5

0 20         40         60         80        100      120

W
ei

gh
t (

g)
G

lu
co

se
 (m

M
)

G
lu

co
se

 (m
M

)

In
su

lin
 (n

g/
m

L)

AU
C

AU
C

AU
C

G
lu

co
se

 (m
M

)

In
su

lin
 (n

g/
m

L)

********

******

******

**
*

******

****

**
*

****

**
***

**

*

60

40

20

0

******

H
O

M
A

-IR

H I

C

L

R
es

pi
ra

to
ry

 E
xc

ha
ng

e 
R

at
io 1

0.8

0.6

0.4

0.2

0

Full Day   Dark     Light

Full Day   Dark      Light  

0.03

0.02

0.01

0

)g/ruoh/lack(
erutidnepxE

ygrenE Full Day  Dark     Light

6000

4000

2000

0O
xy

ge
n 

C
on

su
m

pt
io

n 
(m

l/h
r) 0.15

0.1

0.05

0

**** ****

* **

*

Full Day   Dark     Light

7 Days Oral Gavage

C57 Male mice 
(9 Weeks of Age)

Vehicle

Vascepa

6 weeks on Chow or HFD

Con-Chow

Con-HFD

Vascepa-HFD

HFD

HFD

Chow

Time (Minutes)

Time (Minutes) Time (Minutes)

D E

0                         7Weeks

3000

2000

1000

0AU
C

 a
bo

ve
 b

as
el

in
e

1500

1000

500

0AU
C

 b
el

ow
 b

as
el

in
e

****

Figure 1. Vascepa reduces HFD-induced weight gain and protects from HFD impaired glucose intolerance and insulin resistance

(A–L) (A) Schematic diagram of study design (B) weight (n = 21,22,24) (C) respiratory exchange ratio (D) energy expenditure (E) oxygen consumption (F) food

intake (n = 4/group) (G) fasting glucose levels (H) fasting insulin levels (I) calculated HOMA-IR (J) oral glucose tolerance test with area under curve and area

under curve above baseline (K) insulin secretion during oral glucose tolerance test with area under curve (L) intraperitoneal insulin tolerance test with area

under curve and area under curve below baseline (n = 21,22,24) *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. con-HFD. All error barsGSEM. See also

Figures S2–S4.
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Figure 2. Vascepa reduces basal insulin secretion after 6 weeks of HFD feeding

(A–H) (A) Ex vivo glucose stimulated insulin secretion and (B) total insulin content (n = 8–10) (C) pancreatic histology of

insulin staining slides (Scale bar 200mm) (D) islet size distribution (E) total insulin positive area (F) beta cell mass (n = 3–4)
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secretion and (H) total insulin content (n = 3). LG, low glucose; HG, high glucose. *p < 0.05, **p < 0.01 vs con-HFD. All error

bars GSEM. See also Figures S2 and S5.
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feeding. No differences were observed in the lipid droplet area and size in Vascepa-HFD compared with

control-HFD mice (Figures 3B–3E). As well, no change was observed in the levels of hepatic injury markers

(alanine aminotransferase (ALT) and aspartate aminotransferase (AST)), TG, cholesterol, high-density lipo-

protein (HDL), low-density lipoprotein (LDL), or very low-density lipoprotein (VLDL) in the serum (Figures 3F

and 3G).
iScience 24, 102909, August 20, 2021 5
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To gain an understanding of the potential mechanism through which Vascepa could reduce liver TG and

change liver morphology, microarray analysis was performed (filter criteria of p < 0.05 and a fold change

of 1.5). From a possible 34,472 genes that could be examined, 524 passed the filter criteria (1.52%) in which

238 genes (45.42%) were upregulated and 286 (54.58%) were downregulated. Using string network analysis

to determine pathways that were differentially regulated, we found that PPAR-a signaling was the most

differentially expressed pathway, followed by retinol metabolism, rheumatoid arthritis, and arachidonic
6 iScience 24, 102909, August 20, 2021
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Figure 4. Vascepa upregulates hepatic genes involved in PPAR-a signaling pathway

(A) Hepatic upregulated (red) or downregulated genes (green) in Vascepa-HFD group compared with control-HFD.

(B) Differentially regulated pathways in Vascepa-HFD group compared with control-HFD (n = 3/group). Color boxes

represent genes involved in each pathway in Figure 4A. (C) Differentially regulated gene expression levels using qPCR (n =

13–15/group). *p < 0.05 vs con-HFD. All error bars GSEM.
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acid (AA) metabolism (Figures 4A and 4B). qPCR analysis confirmed that PPAR-a expression is significantly

increased in the Vascepa-HFD group compared with control-HFD along with significant upregulation in

Cyp4a31, a fatty acid oxidation gene (Figure 4C). This indicates that Vascepa treatment increases expres-

sion of PPAR-a and CYP4a31 likely leading to increased fatty oxidation which reduces liver TG and improves

insulin resistance.
Vascepa alters fecal microbiota composition and increases the Bacteroides to Firmicutes

ratio

Since the omega-3 ethyl esters were delivered orally and changes in the composition of the microbiome can

impact weight gain and liver function (Machado and Cortez-Pinto, 2016), we next wanted to determine whether

Vascepa treatment could affect microbiota composition. 16s rRNA sequencing was performed on fecal samples
iScience 24, 102909, August 20, 2021 7
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Figure 5. Vascepa treatment protects from HFD-induced changes on microbiota composition
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obtainedafter 7 days of treatment or after 6weeks ofHFD feeding. For all analysis, Operational TaxUnits (OTUs),

clusters which represent bacterial species, were filtered and <25% of prevalent and abundant OTUs were

removed. From a total of 1033 OTUs, 687 OTUs were identified. There were no differences in the microbiota

composition between Vascepa and control after 7 days of treatment in alpha diversity indicating that number

of species is not different. Beta diversity which demonstrates the diversity in microbial community was also

not significantly different after 7 days of treatment (Figure S6). Therefore, Vascepa treatment did not have any

immediate effects on microbiota composition with the chow diet.

Although treatment with Vascepa for 7 days followed by HFD feeding for 6 weeks resulted in no

change in alpha diversity (Figure 5A), it showed significant clustering in beta diversity determined by

weighted UniFrac PCoA plot (Figure 5B). Looking at the Phylum level, Vascepa treatment was associated
8 iScience 24, 102909, August 20, 2021
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with higher levels of Bacteroides and lower levels of Firmicutes compared with control-HFD (Figures 5C

and 5D). At the Class level, Vascepa treatment had lower levels of Clostridia with an increase in Bacter-

oidia compared to control-HFD and an increase in Bacteroides at the Genus level (Figure 5C). To look

more specifically at species that were significantly changed, MetagenomeSeq revealed a significant

reduction in 5 species of Clostridia and 1 species of Verrucomicrobiae (Akkermansia) in Vascepa treat-

ment compared with control-HFD (Figure 5E). This trend was confirmed using linear discriminant analysis

effect size (LEfSe) analysis. Therefore, Vascepa treatment altered the microbiota composition and

increased the ratio of Bacteroidetes to Firmicutes after HFD feeding with reductions in Clostridia and

Verrucomicrobiae.

Vascepa alters serum metabolites 6 weeks after HFD feeding and reduces AA/EPA ratio

Since we have shown that omega-3 fatty acid levels are elevated in patients with T2D in Figure S1, we next

determined whether Vascepa can alter the omega-3 and omega-6 fatty acid levels and circulating metab-

olites in mice. We first confirmed that Vascepa administration in mice for 7 days increased serum EPA and

the intermediate metabolite, DPA (Figure 6A). In comparison, after 6 weeks of HFD feeding, circulating AA,

DPA, and DHA metabolites were reduced in Vascepa-treated group (Figure 6B). In particular, the AA/EPA

ratio, an indicator of inflammation, decreased in the Vascepa-treated group compared with control-HFD

(Figure 6C). To determine whether other metabolites are changed in the Vascepa-treated group after

6 weeks of HFD feeding, high-throughput metabolomics was performed. Hexose was found to be

decreased in the Vascepa-treated group. In addition, we showed a consistent trend of elevated amino

acids in the Vascepa-treated group compared with HFD, such as Arg, Ile, His, Phe, Leu, Gly, and Tyr (Fig-

ure 6D). Although we did not see significant changes in specific phospholipids or sphingolipids, we found

that the pathway of sphingolipid metabolism is significantly altered (Figure 6E). No significant changes in

specific metabolites were observed in biogenic amines or acyl carnitines. Therefore, even though Vascepa

treatment increased plasma EPA and DPA immediately after oral intake, the levels of omega-3 fatty acid

and the AA/EPA ratio decreased after 6 weeks of HFD feeding. The pathways of sphingolipid and branched

chain amino acid (BCAA) metabolism were affected.

DISCUSSION

In the present study, we sought to determine the effects of omega-3 fatty acids on glucose intolerance and

pancreatic beta cell function in mice. We have utilized highly pure omega-3 prescription drugs, Vascepa

and Lovaza, and reported the protective effects of Vascepa on diet-induced glucose intolerance and insulin

resistance. Interestingly, using a small observational human cohort, we have shown that circulating EPA and

DPA are increased in subjects with T2D, as well as in previous studies in women with gestational diabetes

(Prentice et al., 2014).

It is unclear whether the increase in omega-3 fatty acids contributes to or is a consequence of T2D.

Although several studies have reported no effect of omega-3 fatty acids on glucose homeostasis and

T2D (Montori et al., 2000; O’Mahoney et al., 2018; Wu et al., 2012; Zhou et al., 2012), a dose response

meta-analysis of prospective observational studies revealed a significant decrease of T2D incidence in

Asian populations and a significant increase in T2D in US populations associated with omega-3 fatty acids

with no significant change in linear dose-response meta-analyses (Neuenschwander et al., 2020). However,

a recent large population-based prospective study of 392,287 individuals showed that oily fish and FO sup-

plements are associated with a lower risk of T2D (Chen et al., 2021). Another systematic review and meta-

analysis report showed that replacing carbohydrates or short chain fatty acids (SCFAs) with polyunsatu-

rated fatty acids had more favorable effects on glycemia and insulin resistance (Imamura et al., 2016).

The genetic heterogeneity in the human population, the medications used to treat diabetes or the

compensatory mechanisms occurring in response to dysmetabolism are all factors that could affect the re-

sults reported in human studies and how they correlate to mouse studies. Therefore, further studies are

required to address whether such changes could influence the results reported.

Vascepa and to a much lesser extent Lovaza were shown to improve underlying insulin resistance in HFD-

treated mice (Figure 1L). It is well known that insulin resistance is associated with hepatic TG content and a

fatty liver (Perry et al., 2014). The reduction in liver TG and reduced lipid droplet size are likely in part due to

upregulation of the PPAR-a signaling triggering lipid oxidation. This is in part supported by increased

expression of the fatty acid oxidation genes, PPAR-a and Cyp4a31 (Figure 4). In addition, insulin resistance

is exacerbated by hepatic inflammation (Chen et al., 2017) and EPA, a key anti-inflammatory molecule, can
iScience 24, 102909, August 20, 2021 9
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compete with AA, a precursor to pro-inflammatory mediators, to form less inflammatory mediators/metab-

olites. Therefore, the AA/EPA ratio is frequently used as a marker of chronic inflammation and it is

decreased by EPA intake (Nelson and Raskin, 2019). The CYP enzymes metabolize polyunsaturated fatty

acids including AA, EPA, and DHA (Arnold et al., 2010). The increased CYP expression we observed in

the liver could be responsible for the decreased circulating polyunsaturated fatty acids. In our study, the
10 iScience 24, 102909, August 20, 2021
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AA metabolism pathway was upregulated in the liver with decreased circulating levels of AA and AA/EPA

ratio suggesting reduced inflammation (Figures 6B and 6C). Together, increased lipid oxidation and

reduced inflammation associated with exposure to Vascepa would explain the positive effects to reduce

HFD-induced insulin resistance.

It is still unknown why the positive effects of EPA persist weeks after Vascepa treatment and remains to be

determined. Omega-3 fatty acids can change the composition of membrane phospholipids through dis-

placing AA and increasing the membrane composition of EPA and DHA. Thus, they could change the pro-

duction of lipid mediators, important small molecules involved in inflammatory processes. Altered fatty

acid composition in cell membranes could also have multiple effects on improving lipid raft formation,

membrane fluidity, and cell membrane environment important for cell signaling and protein function.

The different outcomes generated from Vascepa (EPA) compared with Lovaza (EPA + DHA) could be

due to the different mechanisms of action of EPA and DHA. EPA inhibits the delta-5-desaturase enzyme

that produces AA which generates pro-inflammatory eicosanoids. EPA can also compete with AA to

bind to phospholipase A2 enzyme which releases AA from phospholipids. Therefore, EPA can decrease

AA production which reduces pro-inflammatory eicosanoids and decreases cellular inflammation. Since

inflammation is closely related with insulin resistance, EPA’s effects could influence insulin resistance. In

contrast, DHA is an inhibitor of the delta-6-desaturase which produces gamma-linolenic acid. Gamma-li-

nolenic acid reduction leads to reduced dihomo gamma linolenic acid which is important for generating

anti-inflammatory eicosanoids. EPA and DHA have distinct effects on gene transcription in insulin sensitive

tissues. In the liver, EPA moderately enhanced lipid oxidation and reduced liver lipid overload, whereas

DHA reduced expression of genes involved in liver stiffness and fibrosis. In skeletal muscle, EPA upregu-

lated cell cycle genes compared with DHA which upregulated apoptosis and cellular stress response-

related genes (Kunz et al., 2019). In addition, a recent paper has also shown that EPA and DHA have distinct

effects in response to LPS in ex vivo monocytes, whereas EPA is useful in balancing inflammation profiles

against cytokine IL-10, DHA inhibited pro-inflammatory cytokines (So et al., 2021). Therefore, even though

DHA has many reported beneficial effects and similar actions to EPA, in the context of inflammation, EPA

alone may serve as a better potent omega-3 fatty acid than when it is combined with DHA.

With the significantly improved insulin resistance in liver, one would expect reduced demand on the beta

cell to maintain glucose homeostasis. Indeed, we showed that Vascepa supplementation improved

glucose homeostasis, reduced fasting glucose and insulin in vivo, and reduced insulin secretion under

low glucose conditions in isolated islets ex vivo (Figures 1G–1K and 2A). Importantly, we did not observe

any effects of EPA or DHA treatment onGSIS directly in vitro. We also observed a greater frequency of small

islets in Vascepa-HFD mice compared with control-HFD (Figure 2D). Even though there is no direct evi-

dence that determines the impact of insulin resistance on islet morphology, we believe that reduced insulin

resistance alleviates stress on the beta cell and reduces insulin demand. It was previously shown that small

islets actually secrete insulin more efficiently than large islets which would likely improve glucose homeo-

stasis (Farhat et al., 2013; Lehmann et al., 2007).

Altered gut microbiota was previously linked to obesity and diabetes; changes in the microbiome lead to

changes in SCFAs, affecting insulin resistance, lipogenesis, and liver function (Saad et al., 2016). A recent

study has determined the beneficial effects of gut microbiome on euglycemia through the regulation of

hepatic gluconeogenesis (Krisko et al., 2020). Therefore, after observing changes in weight gain and insulin

resistance in the Vascepa-treated mice, we further explored the microbiota composition. Here, we show

data consistent with previous publications in which there is a higher Firmicutes to Bacteroidetes ratio in

the HFD-treated group (Gurung et al., 2020). However, there have been discrepancies in the Firmicutes

to Bacteroidetes ratio in several studies (Magne et al., 2020). For example, an increase in Bacteroides

was revealed in T1D patients (Jamshidi et al., 2019). In our study, Vascepa had higher Bacteroidetes to Fir-

micutes ratio compared with control-HFD. Administration of Bacteroides in diabetic mice improved

glucose tolerance and insulin resistance which indicates the beneficial role of Bacteroides in glucose ho-

meostasis and supports our findings (Gauffin Cano et al., 2012; Yang et al., 2017). It has also been reported

to be reduced in patients with T2D (Zhang et al., 2013). Even though the mechanism through which gut mi-

crobiota can influence obesity is not completely understood, one mechanism through which Bacteroidetes

could influence T2D is through modulating inflammation and suppressing TNF-a (Gurung et al., 2020). It

has been previously suggested that an increase in Firmicutes leads to higher calorie absorption and weight

gain (Kallus and Brandt, 2012). It is important to note, however, that Firmicutes are butyrate producing
iScience 24, 102909, August 20, 2021 11
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bacteria that are important for maintaining energy homeostasis and insulin sensitivity. Butyrate is a major

source of energy for enterocytes, and it has been associated with reduced intestinal leakage, reduced in-

testinal inflammation and regulation of tight junctions (Canani et al., 2011). It has also been reported to

attenuate fat gain in db/db mice and improve insulin sensitivity and energy expenditure (Gao et al.,

2009; Oh et al., 2019). Similar to our results, it was reported that mice fed an omega-3 fatty acid-enriched

diet lowered Firmicutes (Yu et al., 2014) and reduced the abundance of Clostridia species comparedwith an

omega-6 fatty acid-enriched diet (Ghosh et al., 2013). Another study reported a decrease of Bacteroidetes

in short fatty acid-rich diet compared with an omega-3 fatty acid-enriched diet (Liu et al., 2012). Although

omega-3 fatty acids are beneficial in reversing the microbiota composition and restoring the Firmicutes/

Bacteroidetes ratio in states of dysbiosis, the gut microbiome changes are inconclusive and remain poorly

understood (Costantini et al., 2017). In our study, we reported no differences in food intake, oxygen con-

sumption, and respiratory exchange ratio between control-HFD and Vascepa-HFD. We have also not

observed a clear metabolic distinction between light and dark cycles in the respiratory exchange ratio.

Since we have conducted the comprehensive lab animal monitoring system (CLAMS) experiment after

6 weeks of HFD for only 2 days, we cannot conclude that the food intake and oxygen consumption do

not have an effect on the results seen. Even though the mechanisms of how microbiome alterations affect

diabetes are not clear, the changes in microbiota composition may lead to changes in energy absorption

and SCFAs which could overall impact liver function, induce PPAR-a signaling pathway and lead to im-

provements in insulin resistance and enhancement in insulin secretion.

To summarize, we find that Vascepa administration could improve HFD-induced glucose intolerance. This

effect could be due to the upregulation of fatty acid oxidation leading to a reduced hepatic TG, changed

metabolism of BCAA and sphingolipids and mitigated inflammation. Importantly, Vascepa did not have

negative impact on pancreatic beta cell. On the other hand, due to the reduced insulin demand, a conse-

quence of improved insulin resistance, the beta cell was preserved and, in some degree, improved. Overall,

our study provides novel insight into the effects of omega-3 prescription drugs on glucose homeostasis

and beta cell function in mice. Yet, more studies need to be done on omega-3 fatty acids in humans

with proper measures of glucose homeostasis.
Limitations of the study

In this study, we have only utilizedmales in our human study andmale mice. However, we acknowledge that

sex-based differences can contribute to the effects reported. In the human study, we have used a small

observational cohort with a significant difference in the age between individuals with T2D compared

with controls which could have confounding effects on our findings and reduce our ability to draw firm con-

clusions. The lack of dietary intake in the human study makes it difficult to conclude the cause of the eleva-

tion in circulating omega-3 fatty acids. In addition, patients with T2D have comorbidities and are on med-

ications such as Metformin; therefore the differences in the lipid profiles could in part be due to

medications or pre-existing conditions. The mice selected for microbiome analysis were housed together

which could be a confounding effect to the results observed.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human Plasma Shanghai 6th People’s Hospital in China N/A

Chemicals, peptides, and recombinant proteins

Vascepa Amarin Pharma N/A

Lovaza GlaxoSmithKline N/A

EPA ethyl ester Cayman Cat#86227-47-6

DHA ethyl ester Cayman Cat#81926-94-5

Chow Diet Research Diets Inc D12450J

High Fat Diet Research Diets Inc D12492

Deposited data

Microarray Data This paper GEO: GSE171107

16s rRNA sequencing Microbiome Data This paper BioProject: PRJNA720966

Experimental models: cell lines

Mouse: MIN6 K8 Prof. S. Seino (Kobe

University, Japan) and Prof. J.

Miyazaki (Osaka University, Japan)

N/A

Experimental models: organisms/strains

Mouse: C57BL/6 Charles River Laboratories 027

Oligonucleotides

Primers for qPCR, see Table S1 This paper N/A

Software and algorithms

CalR (Mina et al., 2018) https://calrapp.org/

Aperio ImageScope Leica Biosystems https://www.leicabiosystems.com/digital-

pathology/manage/aperio-imagescope/

NDP.view Hamamatsu Photonics K.K. https://www.hamamatsu.com/us/en/

product/type/U12388-01/index.html

ImageJ (Schneider et al., 2012) https://imagej.nih.gov/ij/

Transcriptome analysis console Thermofisher Scientific https://www.thermofisher.com/ca/

en/home/global/forms/life-science/

download-tac-software.html

Cytoscape (Shannon et al., 2003) https://cytoscape.org/

MetaboAnalyst 4.0 (Xia et al., 2009) https://www.metaboanalyst.ca/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Michael B. Wheeler (michael.wheeler@utoronto.ca).
Materials availability

This study did not generate new unique reagents.
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Data and code availability

� The microarray data generated during this study are available at GEO database under accession

number GSE171107. The 16s rRNA sequencing data are available at SRA database under BioProject

accession number PRJNA720966.

� This paper does not report original code.

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human study design

Plasma samples were obtained from male normal glucose tolerant (NGT) control and individuals with T2D

after overnight fasting at the Sixth People’s Hospital in Shanghai, China and stored at �80�C. The human

study was approved by the Ethics Committee of Shanghai Sixth People’s Hospital East Campus. Patients

who do not have previous serious medical conditions (i.e., autoimmune disease such as Crohn’s, Lupus,

Type 1 diabetes, or other) were enrolled in this study. Each participant underwent 2-hr 75-g oral glucose

tolerance test (OGTT), and they were classified by glucose tolerance as follows: diabetes based on the

American Diabetes Association diagnostic criteria for the 75-g OGTT (fasting R 126 mg/dL and/or 2 hr

R 200 mg/dL). Written informed consent was received from participants prior to inclusion in the study.

All the participants enrolled in this study were included in the analysis. We have only included male indi-

viduals, however we acknowledge that sex and gender could have an influence on the results reported.
Animal study design

MaleC57BL/6mice (8weeksold)wereobtained (CharlesRiver Laboratories, USA) andacclimatized foroneweek.

Micewere housed in temperature controlled 12-hr light/dark cycle in groups of four per cage andhad access to a

standard chowdiet andwater ad libitum.No randomization or blindingprocedureswere carried out. TheUniver-

sity of Toronto animal care committee approved all experiments and methods, and the Canadian Council of

Animal Care guidelines and standard were followed. The doses of Vascepa (Amarin Pharma, Inc. Bedminster,

NJ, USA) or Lovaza (GlaxoSmithKline, Research Triangle Park, NC, USA) were chosen and calculated based on

clinical trial regimens administering these doses in humans (1-4g/day). The mouse dosage was calculated using

surface area conversion. Mice were treated with either Vascepa (190.65mg/kg/day (�2ul)) or Lovaza (410mg/kg/

day (�4ul)) for 7 days through oral gavage. 50 mL of olive oil (O1514, SigmaAldrich) was used for each of the con-

trol-chow, control-HFD, Vascepa or Lovaza treated group. At the end of the treatment period, mice were fed

either a 60 kcal % fat HFD (D12492; Research Diets Inc., USA) or 10 kcal% fat chow diet (D12450J, Research Diets

Inc., USA) for 6 weeks. Onlymalemice were utilized, however the effect of sex hormones on glucosemetabolism

and insulin secretion could influence the results reported.
Cell lines

MIN6K8 cells were incubated at 37�C in 5%CO2 in Dulbecco’s Modified Eagles Medium 57 (D-MEM)media

(D5796, Sigma Aldrich) with 1.75uL beta-Mercaptoethanol, 1% penicillin/streptomycin (Pen/Strep) and 10%

Fetal Bovine Serum (FBS).
METHOD DETAILS

Oral glucose tolerance test and intraperitoneal insulin tolerance test

AnOGTT and an intraperitoneal insulin tolerance test (IPITT) were performed as described previously (Liu et al.,

2016;Mohan et al., 2019; Prentice et al., 2014). Following a 15 hr overnight fast, anOGTTwas performed inwhich

mice were orally gavagedwith glucose (Cat# 50-99-7, SigmaAldrich) at 2g/kg andglucose levels weremeasured

for 2 hr at time points 0, 10, 20, 30, 60, 90 and 120 min using a glucometer (Bayer Contour NEXT ONE Glucose

meter, Ascensia Diabetes Care, Canada). 20mL of blood were collected using EDTA coated blood collection

tubes (Microvette CB 300 K2E, STARSTEDT, Germany) at time points 0, 10, 20 and 30 min. Insulin levels were

measured from serum samples using mouse ultrasensitive insulin ELISA kit (80-INSMSU-E01, ALPCO, USA).

Following a 5 hr fast, an IPITT was performed in which mice were injected with either 1IU/kg insulin (Humulin

R U-500, Eli Lilly, Indianapolis, IN, USA) for HFD-fed mice or 0.5IU/kg for Chow-fed mice. Blood glucose was

measured for 2 hr at time points 0, 15, 30, 60, 90 and 120 min. HOMA-IR was calculated using the

equationserum insulin ðmU=LÞ3blood glucose ðmmol=LÞ
22:5 (Matthews et al., 1985).
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Comprehensive lab animal monitoring system

Mice were housed in CLAMS chambers (Oxymax, Columbus Instruments, USA) as described previously

(Mohan et al., 2019; Prentice et al., 2018). Briefly, mice were placed individually in metabolic chambers

and monitored for food intake, water intake, activity, oxygen consumption, and carbon dioxide production

in a room with standard 12-hr light-dark cycle. The mice were continued on the same diet provided before

they were placed in the chambers. Data from the first 24 hr in which the mice were acclimatized was

removed and the average was calculated from a total of 48 hr. CalR (https://calrapp.org/) software was

used for calorimetry analysis (Mina et al., 2018).

Islet isolation

Mouse islets were isolated from C57BL/6 male mice as described previously (Batchuluun et al., 2018; Liu

et al., 2016; Luu et al., 2013; Mohan et al., 2019; Prentice et al., 2014). Pancreas were perfused via the com-

mon bile duct with 0.6mg/mL collagenase, the pancreas were extracted, submerged in a tube containing

collagenase and incubated at 37�C for 10 min. Digestion is stopped using RPMI-1640 media (R8758, Sigma

Aldrich) with 10% FBS. Islets were picked three times in media (RPMI-1640, Sigma Aldrich with 10% FBS, 1%

PenStrep, 1% L-glutamine), incubated at 37�C overnight and treated the following day.

In vitro preparation and treatment

Lovaza, Vascepa, EPA ethyl ester (Cat# 86,227-47-6, Cayman) or DHA ethyl ester (Cat# 81,926-94-5,

Cayman) were conjugated with free fatty acid BSA (Cat# A8806, Sigma Aldrich) at a ratio of 3:1 for 4 hr

in RPMI-1640 media at 37�C. Islets isolated from male C57BL/6 mice (aged 8–12 weeks) or MIN6K8 cells

were treated with Lovaza, Vascepa, EPA ethyl ester (100mM of EPA) or DHA ethyl ester (70mM of DHA)

for 24 hr or 48 hr.

Glucose stimulated insulin secretion assay

GSIS was performed as previously described (Batchuluun et al., 2018; Liu et al., 2016; Mohan et al., 2019;

Prentice et al., 2014). Briefly, islets or MIN6K8 cells were incubated at Low Glucose (LG) (2.8mM) for 1 hr.

Islets or MIN6K8 cells were incubated for 20 min in each of LG Krebs-Ringer Bicarbonate buffer (KRB)

(2.8mM), High Glucose (HG) KRB (16.7mM) and HG KRB (16.7mM) with KCl (30mM) successively. The super-

natant was collected, islets were placed in acid ethanol and stored at 4�C for 24 hr. To measure DNA con-

centration and total insulin content, islets were speed vacuumed to remove the acid ethanol and resus-

pended in 30mL ultrapure water. For MIN6K8 cells, the cells were frozen in �80�C and thawed at room

temperature three consecutive times to measure DNA concentration and total insulin content. To read in-

sulin measurements, homogeneous time resolved fluorescence (HTRF) assay (Insulin Ultrasensitive kit, Cat#

62IN2PEH, Cisbio, Bedford, MA) was used and the plate was read on a BMG PheraStar plate reader (BMG

Labtech, Cary, NC).

Tissue histology and analysis

Histological analysis of pancreas and liver were performed as described previously (Mohan et al., 2019;

Prentice et al., 2018). Briefly, pancreas and liver samples were fixed in 4% paraformaldehyde and

embedded in paraffin. Thick sections (4mm) were used for H&E staining. A liver section was embedded

in Optimal Cutting Temperature (OCT) compound and flash frozen for staining with Oil Red O. Samples

were sent to Toronto Center for Phenogenomics (Mount Sinai Hospital, Toronto, Canada) for processing.

Pancreatic and liver images were analyzed and quantified using ImageJ (Schneider et al., 2012), Aperio Im-

ageScope and NDP.view software.

Liver and serum lipid analytes

TG levels in liver and serum samples were measured as described previously (Mohan et al., 2019; Prentice

et al., 2018). Serum and liver samples were obtained frommice sacrificed after overnight fasting and stored

at �80�C. Frozen mouse liver samples were flash frozen using liquid nitrogen, immediately ground and

then homogenized in 5%NP-40. TG levels weremeasured from the liver and serum samples using BioVision

Incorporated Triglyceride Quantification Colorimetric/Fluorometric Kit (K622-100, BioVision, USA) as per

the manufacturer’s instructions. PHERAstar FSX microplate reader was used to measure the absorbance

of the plate at 570nm. Piccolo Lipid Panel Reagent disc (Cat# A400-0030, Piccolo Lipid Panel Plus) was

loaded into the Piccolo blood chemistry analyzer (Piccolo Xpress, Abaxis, USA) to obtain the following

data: cholesterol, TG, LDL, HDL, VLDL, AST and ALT levels.
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Microarray and quantitative PCR

RNA extraction andmicroarray analysis were performed on ground frozen liver samples as previously described

(Mohan et al., 2019). RNA was extracted using RNeasy Mini Plus kit (Qiagen, Hilden, Germany). The microarray

was performedat TheCenter for AppliedGenomics (TheHospital for Sick Children, Toronto,ON,Canada) using

MouseGene2.0 STArray Format. 100ng of total RNAwas used in aAffymetrixWTPlus assay kit and5.5 mg cDNA

was used for Mouse Gene 2.0 ST Array. Biotin Allonamid Triphosphate was used for labeling, GeneChips were

washed and stainedusingAffymetrix Fluidics Station 450 and hybridizationwasperformed for 16hr at 45�C.Gen-

eChips were scanned using the Affymetrix GeneChip Scanner 3000. Transcriptome analysis console and Cyto-

scape (Shannon et al., 2003) were used for analysis of microarray data.

qPCR were performed as described previously (Gyulkhandanyan et al., 2006; Hardy et al., 2009) for PPAR-a,

Cyp4a31, Cd36, Fabp5 and Cyp2c38 genes. RNA was extracted from frozen liver samples using RNeasy

Mini Plus kit (Qiagen, Hilden, Germany). Reverse transcription was performed using total RNA, dNTP cock-

tail (Cat# 10,297-018, Invitrogen), Oligo dT (Cat# 18418012, Invitrogen) and M-MLV reverse transcriptase

(Cat# M1302-40KU, Sigma Aldrich) as per the manufacturer’s instructions. qPCR was performed using

SYBR green (Cat# 4385612, ThermoFisher Scientific). 30 ng of cDNA (4mL/well) was added to a qPCR

mixture (6mL/well) of SYBR green and primers for amplification. Primers were designed using Primer BLAST

software (NCBI, Bethesda, ML, USA) and PrimerQuest (IDTDNA, USA). Primer sequences are listed in Table

S1. A standard curve was created from Mouse XpressRef Universal Total RNA (Cat# 338114, Qiagen) and

data was normalized to mouse b-actin mRNA (Wijesekara et al., 2010). QuantStudio 7 Flex Real-Time

PCR system (Cat# 4485701, ThermoFisher Scientific) was used to read the plate.
Microbiota composition and 16S rRNA gene sequencing

Fecal samples were obtained from mice treated with Vascepa at the 7-day time point and after being fed with

HFD for 6 weeks. Eachmouse was placed in a sterile box individually and allowed to defecate, fecal pellets were

collected and stored at�80�C.DNAwas extractedusingNucleoSpin Soil (Cat# 740780.50,MACHEREY-NAGEL,

Düren, Germany). The samples were sent to the Center for the Analysis of Genome Evolution and Function (Uni-

versity of Toronto, Toronto, ON, Canada) for 16S rRNA sequencing and analysis.
Mass spectrometry analysis

All mass spectrometric fatty acid analysis and metabolomics were performed in The Analytical Facility for

Bioactive Molecules (The Hospital for Sick Children, Toronto, ON, Canada). Quantification of long-chain

fatty acids was performed by GC-MS (Biocrates Life Sciences, Innsbruck, Austria) using the AbsoluteIDQ

p180 plate covering a total of 188 metabolites as described previously (Lai et al., 2020). Briefly, the Abso-

luteIDQ p180 Kit was used and the samples were prepared as per the manufacturer’s specifications. Ana-

lytes with >40% of measurements below limit of detection (LOD) were excluded from the analysis and the

remaining ‘‘<LOD’’ values were imputed using the 1/2 minimum value for each specific analyte. Pathway

analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa Labora-

tories, Kyoto, Japan) Mus musculus database with Metabolite Set Enrichment Analysis (MSEA) method

on platform MetaboAnalyst 4.0 (Xia et al., 2009).
Human T2D metabolome

NGT control and T2D plasma samples were obtained from individuals fasted overnight at the Sixth Peo-

ple’s Hospital in Shanghai, China and stored at �80�C. Targeted metabolomics platform was performed

by Metabolon Inc which assessed over 400 metabolites from different classes of analytes including polyun-

saturated fatty acids.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was assessed using Student’s t-test, one-way ANOVA or two-way ANOVA for

repeatedmeasures, and the data were checked for normality. Post-test comparisons were performed using

Bonferroni, Dunnett and Tukey. P < 0.05 was considered significant. All data are presented asmeanGSEM.
20 iScience 24, 102909, August 20, 2021


	ISCI102909_proof_v24i8.pdf
	Vascepa protects against high-fat diet-induced glucose intolerance, insulin resistance, and impaired β-cell function
	Introduction
	Results
	EPA and docosapentaenoic acid are increased in the serum of type 2 diabetic patients
	Vascepa mitigates high-fat diet-induced glucose intolerance and insulin resistance in vivo
	Vascepa reduces basal insulin secretion ex vivo but does not appear to directly affect islet function in vitro
	Vascepa reduces liver TG and upregulates genes involved in the PPAR-α signaling pathway
	Vascepa alters fecal microbiota composition and increases the Bacteroides to Firmicutes ratio
	Vascepa alters serum metabolites 6 weeks after HFD feeding and reduces AA/EPA ratio

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Human study design
	Animal study design
	Cell lines

	Method details
	Oral glucose tolerance test and intraperitoneal insulin tolerance test
	Comprehensive lab animal monitoring system
	Islet isolation
	In vitro preparation and treatment
	Glucose stimulated insulin secretion assay
	Tissue histology and analysis
	Liver and serum lipid analytes
	Microarray and quantitative PCR
	Microbiota composition and 16S rRNA gene sequencing
	Mass spectrometry analysis
	Human T2D metabolome

	Quantification and statistical analysis






