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Microenvironment-driven tumor heterogeneity causes the limitation of immunotherapy of
sarcomas. Nonetheless, systematical studies of various molecular levels can enhance
the understanding of tumor microenvironment (TME) related to prognosis and provide
novel insights of precision immunotherapy. Three prognostic-related TME phenotypes
were identified by consensus clustering of the relative infiltration of 22 immune cells
from 869 samples of sarcomas. Additionally, integrative immunogenomic analysis is
applied to explore the characteristics of different TME groups. The results revealed that
most of the immune cell infiltration is higher in the better prognostic group, which are
more affected by lower DNA methylation levels and fewer copy number variations in the
worse prognostic group. The signaling pathway crosstalk analysis suggested that the
changes in the TME will cause considerable variation in the flow of information between
pathways, especially when the degree of relative infiltration of immune cells is low,
patient’s endocrine system may also be significantly affected. Also, the endogenous
competitive network analysis indicated that several differentially expressed long non-
coding RNAs (lncRNAs) associated with the prognosis or tumor recurrence of sarcoma
patients affected the regulatory relationship between miRNAs and different genes
when the sarcoma microenvironment changes. In summary, the significant relationship
between genetic alterations and prognostic-related TME characteristics in sarcomas
were determined in this study. These findings may provide new clues for the treatment
of sarcomas.

Keywords: sarcoma microenvironment, heterogeneity, immunogenomics, pathway, prognosis

INTRODUCTION

Sarcoma refers specifically to malignant tumors caused by problems in human muscle and
connective tissue, the characters of which are mainly rapid disease progression, short duration, and
high-frequency metastasis (Daw et al., 2015; Giuliano et al., 2016; Steele and Pillay, 2019; Deng et al.,
2020b). The molecular characteristics of sarcomas result in internal heterogeneity that influences
personalized medicine (Farzana and Haass, 2018; Deng et al., 2020a). At the molecular level, the
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tumor heterogeneity is mainly regulated by the features
of different subpopulations of cells with distinct genomic
transcriptome, epigenome, and proteome alterations (Tirosh
et al., 2016; Grzywa et al., 2017). Therefore, it is necessary
to distinguish the tumor types of patients accurately and then
identify critical biomarkers related to the survival rate.

Primary sarcomas contain varying numbers of tumor-
infiltrating lymphocytes, and the abundance of macrophages
and T cells is much lower than other malignant bone tumors,
so it is not possible to perform a comprehensive quantitative
characterization of the immune subpopulations in the tissue
by standard immunohistochemistry (Berghuis et al., 2016;
Paydas et al., 2016). The Cancer Genome Atlas (TCGA)
Research Network has comprehensively integrated genomic
characterization of adult soft tissue sarcomas, and previous
studies have used some sarcoma gene expression data to infer
the degree of infiltration (The Cancer Genome Atlas Research
Network,, 2017; Huang et al., 2019; Stahl et al., 2019). However,
these studies have only identified the associated characteristic
genes after inferring the relative infiltration abundance of
immune cells based on the level of single gene expression
data, without identifying microenvironment phenotypes from
the aspect of multiple dimensional data. As a result, it is
impossible to explore the pathogenic mechanism between
different microenvironment phenotypes in depth. Besides, due to
the small sample size of most experiments, there may be some
false positives in the inferred results, and it is neither universal
nor representative. Moreover, an increasing body of literature
suggests that genomic factors of cell-level and intercellular
relationships in tumor microenvironment (TME) play a vital role
in cancer progression and treatment response (Quail and Joyce,
2013; Kalluri, 2016; Mantovani et al., 2017; Zeng et al., 2019).
Meanwhile, the whole landscape of sarcomas microenvironment
phenotypes remains unknown, which results in a lack of
awareness of the microenvironment of sarcomas. Thus, there
is a tremendous need to comprehensively explore the TME
phenotypes of sarcomas from a multi-dimensional perspective.

Furthermore, the single genes are sensitive to environmental
or other factors, and genes often perform specific biological
functions in the form of pathways (Khatri et al., 2012; Kong
et al., 2014). Researchers have also proved the significance of
tumor-related structures and upregulated signaling pathways in
cancer cells and TMEs (Quail and Joyce, 2013; Kalluri, 2016).
Compared to pathways, the more microscopic perspective is
mutation performances on genes. Genetic profiling has revealed
that the mutation frequency of Dedifferentiated Liposarcoma
ranged across 0.1–3/Mb and Leiomyosarcoma ranged across 0.2–
9/Mb (The Cancer Genome Atlas Research Network,, 2017).
Some studies have analyzed the connection between mutation
alterations and immune filtration to discover those alterations
that influenced relative immune infiltration in several cancers
(Rooney et al., 2015; Safonov et al., 2017; Thorsson et al., 2018; Li
and Cai, 2019; Zeng et al., 2019). Incorporating link information
of microRNA and gene in feature selection was usually applied
to identify the potential tumor biomarkers (Yang et al., 2017,
2018; Liu and Yang, 2018). Meanwhile, the crosstalk between the
tumor cells and tumor-infiltrating immune cells is generally

modulated by the competing endogenous RNA (ceRNA)
networks composed of microRNAs (miRNAs), messenger RNAs
(mRNAs), and long non-coding RNAs (lncRNAs; Leonardo et al.,
2011; Deng et al., 2018b; Huang et al., 2019). However, few
studies conducted a differential genomic analysis of sarcomas
among different TMEs, and the comprehensive landscape of cells
infiltrating the TME of sarcomas has not yet been elucidated.

In this study, we extrapolated the relative infiltration
signatures of 22 immune cells based on the gene expression
profile of samples from multiple platforms and then extracted
three TME subtypes associated with the prognosis of sarcoma
patients. According to exhibiting the correlation of molecular
data in various dimensional spaces, the characteristics of different
TME were identified from signaling pathways, DNA methylation,
copy number variation (CNV), and ceRNA networks related to
differentially expressed genes (DEGs) among three TMEs.

MATERIALS AND METHODS

Sarcoma Datasets and Preprocessing
We systematically collected 869 sarcoma gene expression datasets
from the National Center for Biotechnology Information and
TCGA. Specifically, multiple types of 263 sarcoma samples
data under Illumina RNAseq technology and the corresponding
clinical information were acquired on the TCGA website1. For
the National Center for Biotechnology Information website,
the Medical Subject Headings (MESH) search was applied to
discover related datasets. The instruction of MESH is (((survival
OR prognosis OR prognostic OR outcome OR death OR
relapse OR recurrence))) AND ((tissue cancer [MeSH Terms])
OR ((((((tissue cancer[Title]) OR tissue sarcoma[Title]) OR
tissue neoplasm[Title]) OR tissue tumor[Title]) OR tissue
carcinoma[Title]) OR sarcoma[Title])]) AND (Homo sapiens).
Under this instruction, 126 subjects were obtained, and then
GSE75885 (Delespaul et al., 2017) and GSE71121 (Lesluyes et al.,
2016) that contain more clinical information were selected.
GSE71121 consists of GSE71118, GSE71119, and GSE71120. The
patients related to these five items were applied to estimate
fractions of TME cells, basic information of which was shown in
Table 1.

In order to make the data from different platforms more
similar and more comparable between samples, the fragments per
kilobase million (FPKM) value of microarray data were converted
to transcripts per million value.

Inference of Infiltrating Cells in the TME
In order to quantify the proportion of immune cells in samples of
sarcomas, CIBESORT algorithm and LM22 gene characteristics
were applied to analyze the infiltration ratio of 22 human immune
cell phenotypes, including B cells, T cells, natural killer cells,
macrophages, etc. CIBERSORT is a tool for deconvolution of
the expression matrix of immune cell subtypes based on the
principle of linear support vector regression (Newman et al.,
2015). At present, microarray and RNAseq data can be used to

1 https://portal.gdc.cancer.gov/
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TABLE 1 | Basic characteristics of patients used for estimating fractions of TME cells.

ID Platform No. of
patients

No. of
samples

Gender Age No. of
metastasis

No. of local
recurrences

Female Male Mean 95% CI

GSE75885 Illumina HiSeq 2000 (Homo
sapiens)

112 117 56 56 65 62–67 38/112 34/112

GSE71118 [HG-U133_Plus_2]
Affymetrix Human Genome

U133 Plus 2.0 Array

217 312 108 109 62 60–64 80/217 49/217

GSE71119 Illumina HiSeq 2000 (Homo
sapiens)

95 136 41 54 65 63–67 44/95 32/95

GSE71120 Illumina HiSeq 2000 (Homo
sapiens)

41 41 26 15 63 58–66 6/41 8/41

TCGA Sarcoma Illumina RNAseq 261 263 142 119 61 59–63 99/261 53/261

estimate the immune cell infiltration. Therefore, according to
the uploaded gene expression data and the default 22 immune
cell signatures, the infiltration of 22 immune cells in each
sample was inferred.

Consensus Clustering of Infiltrating Cells
in TME
An unsupervised clustering method was used to classify all
samples to represent different microenvironment groups after
obtaining the relative infiltrating of immune cells in all samples.
Consensus clustering is a commonly used research method for
the study of cancer subtype classification, and this clustering
method usually yields better results. The ConsensusClusterPlus
R package (Stefano et al., 2003) is simple to operate and
contains multiple methods, such as K-means, Pam, etc.
Therefore, in this study, all samples were clustered into
three clusters using consensus clustering with the K-means
and Pam methods.

DEGs Associated With TME Phenotypes
In order to identify DEGs between TME cell infiltration patterns,
the limma package (Ritchie et al., 2015) that can analyze both
microarray data and RNAseq data was used to obtain DEGs for
samples under three types of TME, where the selected threshold
was set to that significant P value is less than 0.01 and the
adjusted P value is less than 0.05. We performed an intersection
analysis of the three TME groups of DEGs using the Venn
diagram to observe the similarities and differences of DEGs
in types of TMEs.

Signaling Pathway Crosstalk Analysis
Exploring the differences only considers a single gene that ignores
the effects of mutual disturbances between genes. The dissimilar
enriched pathways in three TMEs indicate that there will also
exist some discrepancies in the crosstalk between the pathways.
Signaling pathway impact analysis defines the contribution of
each signaling pathway through two indicators of differential
gene overexpression (PNDE) and abnormal disturbance (PPERT)
in a given pathway, which were combined to define the global
probability, PG (Tarca et al., 2009; Deng et al., 2018a). The

smaller the PG, the higher the significance of the pathway.
All enriched pathways between every two groups were ranked
based on the DEGs between types of TMEs, and then those
significant signaling pathways with the global variable PG less
than 0.05 were extracted. Moreover, the distance correlation
method was utilized to calculate the crosstalk values between
high-contribution pathways that were recorded as Rm1 and
Rm2, where mi(i = 1,2) represents different comparison groups,
respectively, namely TME-A versus to TME-B, TME-A versus
to TME-C, and TME-B versus to TME-C. Then, the distinction
between Rm1 and Rm2 was calculated as the change of the
crosstalk in each pair of comparison groups, that is, Rd = Rm1–
Rm2, whose value ranges from –1 to 1. The absolute value
of Rd describes the significance of the correlation between
the two pathways, and the correlation gets stronger as the
value becomes larger.

Differential DNA Methylation Analysis
The corresponding methylation value, beta (β) represents the
ratio of the methylated probe intensity to the total probe
intensity. The DNA methylation data with a value of NA was
removed, and then the rest of the methylation data of 265
sarcoma samples was divided into three groups based on the
samples, including TME-A, TME-B, and TME-C. In order to
be consistent with the analysis of gene expression data, the
difference analysis of intergroup differential methylation probe
data was also carried out using the limma R package. Those
probes with the fold-change value greater than 1.25 and the
false discovery rate values less than 0.01 were identified as
hypermethylated, while those with fold-change values less than
0.8 and false discovery rate values less than 0.01 were identified
as hypomethylated.

In order to explore the genomic region distribution of
three TME groups, the performance on genomic region
distribution was obtained by gene annotation classification
and CpG annotation classification, including TSS1500, TSS200,
5’ untranslated region (UTR), 1st exon, Gene body, and
3’ UTR. After extracting all the significantly differential
methylation sites, we classified all CpG sites according to
region annotated information and calculated mean beta value
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for each classification in three TME groups. The differences
between TME groups were compared using the two-sample
T test. The number of common areas, the number of high
methylations, and low methylations were also counted. Then,
Fisher’s test and the chi-square test were applied to evaluate
the remarkable difference between TME comparison groups in
specific annotated regions.

CNV Analysis
In addition to DNA methylation, genomic structural variation as
one of epigenetic information is also crucial genetic information
to be considered. The performance on copy number mutations in
three microenvironment groups was explored in this study. CNV
data of TCGA-sarcoma patients included samples, chromosomes,
starting positions, ending positions of chromosomes, the number
of probes, and segment mean. The CNV annotation file is
downloaded from the UCSC Genome Browser: Annotation
Database2. If the regions of probes contain the annotated regions,
it is determined that the probe is located in the corresponding
gene region. Next, the variation of the copy number of the
region is determined according to the segment mean. Assuming
that the value of the segment means is x, then the copy
number is defined as copynum = 2ˆ(x + 1). According to the
range of copynum, five cases are including: (1) If the value
of copynum is greater than 3.5, the region is considered to
have amplified two or more copy numbers; (2) If the value of
copynum is greater than 2.5 and less than 3.5, it is considered
to have amplified one copy number in the region; (3) If the
value of copynum is greater than 1.5 and less than 2.5, it is
considered that there is no change in the region; (4) If the
value of copynum is between 0.5 and 1.5, it is considered to
have been deleted one copy number in the region; and (5) If
the value of copynum is less than 0.5, two copy numbers are
considered to be deleted in the region. Finally, the chi-square
test is used to evaluate the differences of CNVs among different
TME groups as well as the expression value and frequency of
annotated genes.

Construction of ceRNA Network
The ceRNA network mainly explores the regulation and
competition relationship of differential molecular composition
in every two groups of TMEs. We first calculated significantly
differentially expressed lncRNAs and miRNAs using the
limma R package, and then used the mircode database
(Jeggari et al., 2012) to find all the matching information
for differentially expressed lncRNA, that is, differentially
expressed miRNAs related to differentially expressed
lncRNAs. In order to find the targeted genes related to
differentially expressed miRNAs, the starbase database (Li
et al., 2014) was applied to perform 3p and 5p annotation
on miRNAs. For the labeled miRNAs, the corresponding
regulatory genes were matched from three databases, including
miRDB (Wong and Wang, 2015), miRTarBase (Chou et al.,
2016) and TargetScan (Garcia et al., 2011). Finally, the
ceRNA network between each pair of TME groups was

2https://genome.ucsc.edu/index.html

constructed using the relationship between three types of
differentially expressed RNAs.

RESULTS

Identification of TME Subtypes of
Sarcoma
In this study, 869 samples from 5 datasets were used to evaluate
the infiltration of 22 immune cells based on CIBERSORT to
eliminate the biased effects of different platforms. The results of
CIBERSORT was shown in Supplementary Table S1. In order
to select the best clusters, hierarchical clustering was applied to
perform unsupervised clustering analysis based on the immune
cell infiltration information of all samples. The partitioning
around medoid (pam) and K-means methods were also applied
to analyze the stability of several cluster numbers, as shown in
Figures 1A,B. The cumulative distribution function (CDF) curve
is used to determine the K value when the cluster analysis result
is most reliable. Generally, the K value with a small decline
slope of the CDF curve is taken. Additionally, the heatmap plot
was used to explore the distribution of samples between clusters
and the distribution of immune cell infiltration, as shown in
Figure 1C.

The heatmap obtained using the K-means clustering method
with k = 3 is clearest from Figure 1. The slope of the CDF
curve is also smaller than the others. Thus, the final cluster
number is set to 3 according to the performance on the consensus
clustering heatmap and CDF curve. These samples are divided
into three TME groups, of which the first type includes 379
samples, the second type includes 161 samples, and the third type
includes 329 samples. Also, the infiltration abundance of most
immune cells did not exceed 1. Several patterns were also revealed
among clustering results. Compared with other TME groups, the
infiltration degree of Macrophages M2 was significantly higher in
TME-A, while the infiltration abundance of T cells CD4 memory
resting and Mast cells resting was significantly lower. Moreover,
the infiltration degree of Macrophages M0 was higher in TME-B.
The distribution of T cells CD8, Macrophages M1, T cells gamma
delta, and Plasma cells in the samples was also significantly
different in TME-B compared with other TME groups.

All the samples have been accurately classified into three
subtypes of TME from the information from multiple data
sources. The TCGA samples were divided into three groups,
including 101 TME-A samples, 46 TME-B samples, and 109
TME-C samples. Considering that the TCGA-sarcomas data is
more comprehensive and contains a variety of molecular data
information of the sample from the same batch, the sarcoma
data from the TCGA platform is independently analyzed for
the transcriptome characteristics and clinical characteristics of
microenvironment subtypes. The characteristics of pathological
data, especially the subtypes of sarcomas, are also significantly
different among TME subtypes. In this study, the Pearson
chi-square test method was performed for clinical indicators
and subgroups. The results showed that three types of factors,
including metastasis, recurrence, and molecular type, were
significantly associated with subgroups with P value of less than
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FIGURE 1 | Consensus clustering of immune cell infiltration in 869 sarcoma samples. (A) Consensus clustering matrix for k = 3 to k = 5 using the K-means
clustering method. The three heatmaps denote the consensus matrices of sample pairs. Each matrix item calculates the proportion of times that the pair of samples
are clustered together across the resampling iteration. The consensus CDF curves are shown for different k from 2 to 6. (B) Consensus clustering matrix for k = 3 to
k = 5 using pam clustering method. (C) The Infiltration performance of 22 immune cell types in three TME clusters and five independent sarcoma cohorts. Rows
represent immune cells and columns represent samples. Euclidean distance and Ward linkage preform on the hierarchical clustering of all TME cells.

0.001, which indicates that there are also differences in metastasis
and local recurrence. It can also be clearly seen that the ratio
of leiomyosarcoma regard as one of the subtypes of sarcomas is
higher in TME-C.

Characteristics of Three TME Groups
The sarcomas contain over 10 histological subtypes in this study.
In order to verify whether the sarcoma histological types will
affect the overall results, the distribution of the samples in each
TME group is presented in Figure 2A. Each group contains
various histological types. The fisher’s test was also performed
on the distribution of sarcoma histological types in TME groups.

The results reveal the significant differences between TME-C and
other groups. Especially, TME-C mainly includes two histological
types, Leiomyosarcoma (55%), and Dedifferentiated liposarcoma
(22%). Leiomyosarcoma also comprises a high proportion of both
TME-A and TME-B.

Besides, the infiltration abundance of 15 immune cells is
differential among the three groups, as shown in Figure 2B. The
infiltration degree of Macrophages M2 in TME-A is significantly
higher than that in the other two groups, while the infiltration
abundance of T cells CD4 memory resting and Mast cells
resting was significantly lower. The relative infiltration degree
of Macrophages M0 is the highest in TME-B, while the relative
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FIGURE 2 | Characteristics of three TME groups. (A) The distribution of tumor histological types in three TME groups. The Fisher’s test was applied to verify the
difference in the distribution of sarcoma histological types in TME groups. The P value is labeled with asterisks in each grid (****P < 0.0001, ***P < 0.001,
**P < 0.01, *P < 0.05, and ns no significance). LMS: Leiomyosarcoma; DDLS: Dedifferentiated liposarcoma; UDS: Undifferentiated sarcoma; and FBS:
Fibromyxosarcoma. (B) The relative abundances of 22 immune cell types in three TME groups. Z-score transformed the original cell abundances. Two vertical lines
on each box represent Whisker upper and lower limits. The fork represents the mean and the horizontal line in the box represents the median. The points outside the
box indicate the outlier points. The Kruskal–Wallis test is performed on the three TME groups for each immune cell type, where P value is labeled with asterisks
above each box (***P < 0.001, **P < 0.01, *P < 0.05, and ns: no significance). (C) The Venn diagram of the overlapping DEGs between three groups.

infiltration degrees of Monocytes and Macrophages M1 are
lowest among three TME groups. Moreover, T cells CD4 memory
resting, B cell naïve, and Plasma cells showed higher relative
infiltration in TME-C, and the distribution of infiltration of Mast
cells resting, and T cells CD8 in the samples was also significantly
different from TME-A and TME-B.

Furthermore, the Venn diagram was applied to calculate
the acquisition of DEGs with the adjusted P value less
than 0.05, and 317 DEGs were obtained in Figure 2C. The
expression of most DEGs is a continuous decrease from TME-C
to TME-A to TME-B.

Survival Analysis of Three TME Groups
The Kaplan–Meier curves of overall survival were performed on
three TME groups in Figure 3A. Different solid color denotes
different group. The dashed line indicates a 95% confidence
interval. It revealed that there are also significant differences in
the prognosis effects among three TME groups by calculating
the survival rates of the three TME subtype samples, in which
TME-C with better, TME-A with intermediate, and TME-B with
worse prognoses.

In TME-C, more than half of the sarcoma histological types
are Leiomyosarcoma. To verify that the difference in survival
analysis was caused by sarcoma microenvironment rather than
histological types, survival analysis for the Leiomyosarcoma in

three TME groups was performed in Figure 3B. The result of
overall survival analysis was the same as pan-sarcoma analysis,
TME-C with better, TME-A with intermediate, and TME-B with
worse prognoses. We have also conducted a survival analysis of
Dedifferentiated liposarcoma samples in Figure 3C. However,
there is no significant difference among the three TME groups.
This may be due to the limitation of the small sample size of
Dedifferentiated liposarcoma.

Enrichment Performance and Pathway
Crosstalk Analysis Among Three TME
Groups
After obtaining 317 common significantly DEGs, the distribution
of gene expression levels among TME groups was performed,
as shown in Figure 4A. Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis was performed on all
genes using the clusterProfiler R package (Yu et al., 2012), where
significant pathways with adjusted P value less than 0.05 was
shown in Figure 4B. Besides, network topology-based analysis
was performed on all DEGs based on the background network
of TCGA sarcomas on the WebGestalt website (Zhang et al.,
2005), where the top 10 neighbors were selected based on
the probability of random walk method. All seeds and top-
ranking neighbors in the expanded sub-network can enrich
to 10 gene ontology (GO) biological process (BP) categories,
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FIGURE 3 | (A) The Kaplan–Meier curves of overall survival based on three TME groups. Different solid color denotes different group. The dashed line indicates a
95% confidence interval. (B) The Leiomyosarcoma samples in the three TME groups had significant differences in survival. (C) The Kaplan–Meier curves of overall
survival based on Dedifferentiated liposarcoma samples.

FIGURE 4 | (A) The expression performance of DEGs in three TME groups. Log10 transformed the transcripts per million values of all DEGs. Pearson correlation
used as a clustering distance method, and Euclidean distance was performed on the hierarchical clustering of all DEGs. Type represents the changes in expression
of DEGs from TME-C to TME-A to TME-B. “Up” represents a continuous increase, “Down” represents a continuous decrease, and “Other” represents increase first
then decrease or decrease first then increase. (B) The KEGG pathway enrichment network of DEGs. Orange circular nodes represent KEGG pathways. Diamond
nodes represent DEGs. The size of the circle denotes the number of DEGs enriched in the pathway. The color of diamond notes denotes the degree of difference
between TME-C and TME-B. (C) Enriched GO terms graph of DEGs and top-ranking neighbors. The yellow box represents the ancestor of enriched terms, and the
red box represents enriched GO terms. (D–F) The crosstalk relationship of pathways in three TME groups, and the color of line represents the change of significant
pathway correlation. (D) represents the crosstalk between TME-A and TME-B. (E) represents the crosstalk between TME-A and TME-C. (F) represents the crosstalk
between TME-B and TME-C.

as shown in Figure 4C. Also, the DEGs are only identified
from the perspective of a single gene. However, due to the
complexity of BPs, the analysis from the perspective of a
single gene ignores the correlation of genes and cannot explore
differences among TME groups from an overall perspective.

Therefore, signaling pathway crosstalk analysis is performed on
three TME groups from the level of the pathway, as shown in
Figures 4D–F.

The heatmap of Figure 4A clearly shows the expression
profiles of DEGs in three TME groups. It can be seen that most
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DEGs are downregulated genes, and the expression values are
higher in the TME-C. In other words, when the gene expression
value is higher, the survival rate is higher, but the group with
lower expression value has a lower survival rate. In contrast,
only a small number of DEGs expression values are lower, but
the survival rate is also higher. In addition, after performing
enrichment analysis on these DEGs, most of the KEGG pathways
in Figure 4B are immune-related pathways, including T-cell-
related pathways, immune deficiency-related pathways, PD-L1
expression, and PD-1 checkpoint pathway in cancer. The value
of fold-change also indicates that the genes enriched in these
pathways are all downregulated, and the GO enrichment analysis
in Figure 4C shows that the pathways enriched by these DEGs
are immune-related BPs. The shreds of evidence illustrated that
most of DEGs in different sarcoma TME groups are immune-
related genes, and most of the immune-related DEGs are highly
expressed in the better prognostic group, but the expression level
is lower in the worse prognostic group.

Moreover, signaling pathway crosstalk analysis shows that the
pathway crosstalk patterns are different between TME groups.
For TME-A and TME-B, the correlation between the pathways
in TME-A is lower than that in TME-B. The main nodes
are endocrine and other factor-regulated calcium reabsorption
and dilated cardiomyopathy. There are also several crosstalk
changes between multiple cancer-related pathways and immune
cell pathways. A comparison of the pathway crosstalk between
TME-A and TME-C shows that there is a higher correlation
between multiple cancer pathways and Huntington’s disease
pathway in TME-A. However, the correlation between antigen
processing and presentation pathway and other disease-related
pathways is lower in TME-C. Compared with TME-C, the higher
correlations between the pathways occur in TME-B, where the
largest node is the dorso-ventral axis formation pathway. The
correlation between the dorso-ventral axis formation pathway
and immune-related pathways is higher in TME-B. Therefore,
although there are several overlaps of the significant signaling
pathways in pairs of TME groups, most of them are not the same.
What’s more, crosstalk analysis between each pair of TME groups
reveals that information flow between the significant signaling
pathways also begins to occur great changes when the TME
changes. The crosstalk pathways in three comparison groups
contain different disease pathways and immune pathways. Both
of Fc gamma R-mediated phagocytosis and natural killer cell
mediated cytotoxicity pathways are included between TMEA and
TMEB, and between TME-B and TME-C. The difference is that
more B cell-related crosstalk pathways appear in TME-A versus
to TME-C. Also, more T-cell-related crosstalk pathways appear
in TME-B versus to TME-C.

As mentioned earlier, the survival rate of patients in TME-C is
higher, the survival rate of patients in TME-A is middle, and the
survival rate of patients in TME-B is the lowest. Therefore, during
the process of decreasing survival rate, the Antigen processing,
and presentation pathway and T cell pathways are more active.
B-cell-related pathways are more active in TME-A compared to
TME-B. In the large span from TME-C to TME-B, the T-cell-
related pathways and the natural killer cell pathway have been
pretty active. It is known to all that regulatory T cells help control

the immune response and prevent it from getting out of control.
Natural killer T cells also produce chemicals to help regulate the
immune response and prevent invaders and tumors. Therefore,
our study also suggests that this phenomenon is also the same in
different TME situations. The activity of immune cells changes as
the microenvironment changes. The crosstalk between significant
signaling pathways also changes following a specific law.

Analysis of DNA Methylation Between
Different TME Groups
In order to identify whether there is an absolute difference in
DNA methylation between TME subtypes, DNA methylation was
divided into six types according to the gene annotation. Figure 5
shows the distribution performance of gene annotation regions in
three TME groups, with particular attention paid to differential
DNA methylation between TME-B with worse prognosis and
TME-C with better prognosis, including differential methylation
positions corresponding to annotated upregulated genes or
downregulated genes. Figure 5A describes the probe distribution
of mean β value across differentially DNA methylated regions
classified by gene annotations. Figure 5B shows the mean
β values of probes annotated to upregulated genes in the
TME-B group versus the TME-C group across six genomic
regions. Figure 5C describes the mean β values of probes
annotated to downregulated genes in the TME-B group versus
the TME-C group across six genomic regions. At the same
time, the differential analysis between two TME groups was
used to divide the methylation sites into hypermethylation and
hypomethylation groups and to count the number distribution,
as shown in Figure 5D. The enrichment of the two types
of differential methylation data in microenvironment group
pairs has been shown in Figure 5E. The correlation between
the expression of methyltransferases DNMT3A and the beta
value of differential DNA methylation sites was also analyzed
by using MEXPRESS (Koch et al., 2015), as shown in
Figure 5F.

Compared with the other TME groups, TME-B shows lower
methylation levels in most of the gene annotation regions,
especially 3’utr, 5’utr, and body regions, as shown in Figure 5A.
This trend of the corresponding differential methylation data
of annotated genes has not been changed in Figures 5B,C,
which indicates that the gene expression changes will affect the
methylation of these three regions, no matter the expression of
genes is upregulated or downregulated. For TSS1500, TME-B
reveals a significantly lower level of methylation, especially when
the annotated gene is downregulated. This evidence indicates that
the decrease of gene expression levels may cause a significant
decrease in the methylation level of the gene TSS1500 region.
Moreover, the methylation levels in the 1stExon and TSS200
regions are not affected by changes in the gene expression levels.
The distribution of hypermethylated and hypomethylated probes
suggested that the proportion of hypermethylated in all three
TME groups is higher, especially between TME-B and TME-C
or TME-A and TME-B, as shown in Figure 5D. This result is
also consistent with that the overall methylation level of TME-
B is lower shown in the previous finding, which is the highest
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FIGURE 5 | DNA methylation differences among the three TME groups. (A) Probe distribution of mean β value across differentially DNA methylated regions classified
by gene annotations. The vertical axis represents the mean methylation value. (B) The mean β values of probes annotated to upregulated genes in the TME-B group
versus the TME-C group across six genomic regions. (C) The mean β values of probes annotated to downregulated genes in the TME-B group versus the TME-C
group across six genomic regions. (D) The number of hypermethylated and hypomethylated probes among TME groups. (E) The performance of hypermethylated
and hypomethylated probes on genomic region enrichment based on six pairs of TME groups. The number of hypermethylated, hypomethylated, and total probes
are calculated, and the odds ratio is calculated by Fisher’s test and Chi-square test shown by heatmap. The P value is labeled with asterisks in each grid
(****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, and ns: no significance). The horizontal axis indicates that hypomethylated probes or hypomethylated probes
in TME groups (AB represents that TME-A versus TME-B; AC represents that TME-A versus TME-C; BC represents that TME-B versus TME-C; Hype represents
hypermethylated probes; Hypo represents hypomethylated probes). (F) Correlation between DNMT3A expression and age, as well as between copy number and
DNA methylation CpG sites. The age is at initial pathologic diagnosis.

methylation level in TME-C, the intermediate methylation level
in TME-A and the lowest methylation level in TME-B.

Figure 5E also shows some impressive results. From the
perspective of regional classification, there is no significant
difference in the 1stExon region regardless of the group, and
there is no significant difference for hypermethylation in the body
and TSS200 regions. However, there are significant differences
in the distribution of hypomethylation in the TSS1500 region
among three TME groups. Between TME-A and TME-C, there
are almost no differences in the methylation sites, and only the
hypomethylated probes are significantly different in the TSS1500
region. Also, the TME-B group and the other two groups have
significant differences in hypermethylation and hypomethylation
in the 3’UTR region. The difference in hypomethylation is
noticeable, especially in other regions except 1stExon. These
results are consistent with the previous results that the changes in
gene expression level correlate strongly with the low methylation
level of most gene annotation regions.

DNA methyltransferase is an enzyme responsible for
transferring methyl to DNA. Gene epigenetics caused by defects
in DNA methylation transferase are often accompanied by tumor
occurrence and development. In this study, multiple significant
DNA methylation sites correspond to the same methyltransferase
DNMT3A in the comparison of TME-B with the other TME
groups. The expression of DNMT3A shows a significant negative
correlation with patient’s age and a significant positive correlation
with the expansion and deletion of the copy number. Besides, it is

noted that there are more significant differences between TME-B
and TME-C, the beta value of which is related to the expression
level of DNMT3A. The beta value of all significant differential
DNA methylation sites between TME-A and TME-B is negatively
related to the expression of DNMT3A. In addition, DNMT3A
regulates the expression level of the gene by controlling the
methylation status of the gene’s promoter region, which is also
in line with the significant differences in TSS200 and TSS1500
belong to promoter regions between TME-B and other TME
groups. Therefore, DNMT3A in different TMEs causes the
methylation status of gene promoter regions to be significantly
different, which affects gene expression.

Analysis of CNV Between Different TME
Groups
As the same as DNA methylation, CNV exerts an enormous
function on affecting gene expression. The mutation of the
CNV site is also one of the important pathogenic factors
of human diseases. In order to explore the discrepancies
in CNV under TME groups, the RCircos R package
(Zhang et al., 2013) was applied to plot the CNV on
22 chromosomes in three microenvironment states, as
shown in Figures 6A–C. At the same time, the Chi-square
test was used to calculate the significant difference in
the distribution of CNV in different TMEs, as shown in
Figures 6D–F.
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FIGURE 6 | Copy number differences among the three TME groups. (A–C) The circular visualization of copy number performance across 22 autosomes in TME-A
(A), TME-B (B), and TME-C (C). The outermost ring represents the human chromosome data. The scatter plot represents the CNV labeled with several annotated
representative genes symbols. Blue dots denote deletion, black dots denote amplification, and null denotes that there is no CNV. The heatmap represents the mean
expression levels of annotated genes. The line plot represents the frequency of annotated genes. (D) The mutation number of different CNVs among three TME
groups. (E) The mutation number of different CNVs annotated to genes that are upregulated in the TME-B versus TME-C. (F) The mutation number of different CNVs
annotated to genes that are downregulated in the TME-B versus TME-C (****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, ns: no significance; +2: homozygous
deletion, -1: single copy deletion, 0: diploid normal, +1: low-level amplification, +2: high-level amplification).

There were more variations on chromosome 1 and
chromosome 12 than those on other chromosomes in three
TMEs. Compared with the other two groups, the frequency
of copy number amplification of TME-B is significantly
higher than the frequency of copy number deletion (deletion:
amplification = 1: 1.8). In contrast, the frequency of amplification
and deletion is similar in the other two cases (TME-A: 1: 1.1,
TME-B: 1: 1.3). For the genes annotated by CNV, the gene
expression data of TME-C was lower than that of the other two
groups through the heatmaps. The line plot revealed that the
mutation frequency of the genes was significantly higher than
that of the other two groups. It indicates that the low-expressed
genes may be more prone to CNV in the microenvironment with
a better prognosis.

According to the results of Chi-square test, the distribution
of the number of different CNVs is also significantly different
in the three groups of microenvironments, which is also
consistent with those above that the frequency of copy
number deletion in TME-B is significantly higher than the
frequency of copy number amplification. Considering that
Dedifferentiated liposarcoma is heavily controlled by CNV,
we have studied the CNV performance of Dedifferentiated
liposarcoma, as shown in the Supplementary Figure S1. The
results revealed the mutation performance of Dedifferentiated
liposarcoma is different from the overall mutation performance.
For Dedifferentiated liposarcoma, the frequency of copy
number amplification in each TME groups is significantly

higher than the frequency of copy number deletion, which is
consistent with the previous studies on mutational profiles and
genomic alterations in the Dedifferentiated liposarcoma
(The Cancer Genome Atlas Research Network,, 2017).
Furthermore, there is no significant difference between
each pair of TME groups, although there are significant
differences between the three groups in the CNV associated
with the upregulated genes. On the other hand, compared with
TME-C, the number of high-level amplifications is greater
than the number of low-level amplifications in TME-B, which
indicates that the CNV of highly expressed genes is more likely
to occur at high levels of amplification in the TME with a
worse prognosis.

Analysis of ceRNA Networks Between
Different TMEs
Long non-coding RNAs can regulate the interaction
between tumor cells and microenvironment and then
affect tumorigenesis, development, and metastasis. Besides,
lncRNA with the same miRNA response element can also
bind to miRNA, so that the mRNA will compete with
lncRNA to a certain degree, which indirectly regulates the
expression level of mRNA and thus regulates cell function.
In order to explore the competition mechanism between
RNAs in three TMEs, this study uses DEGs, lncRNA, and
miRNA between each pair of TME groups to build an
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FIGURE 7 | The Sankey plot of the endogenous competitive network in three TME groups. The rectangle size of miRNA represents the number of DEGs and
lncRNAs. Panel (A) represents the ceRNA network of differentially expressed miRNA, lncRNA, and genes in the TME-A versus TME-B. Panel (B) represents the
ceRNA network of differentially expressed miRNA, lncRNA, and genes in the TME-A versus TME-C. Panel (C) represents the ceRNA network of differentially
expressed miRNA, lncRNA, and genes in the TME-B versus TME-C. Panel (D) represents the correlation of differentially expressed miRNA and lncRNAs between
TME-B and TME-C. The “Diff” is defined as the differential correlation in TME-B versus TME-C. Signal plot shows the degree of correlation. The P value is labeled
with asterisks below signal plot (***P < 0.001, **P < 0.01, *P < 0.05). (E,F) The Kaplan–Meier survival analysis for differentially expressed lncRNAs in TME-B versus
TME-C. Red (blue) line represents the survival probability of patients with sarcomas when the expression level of RNAs is high (low).

endogenous competitive network as shown in Figure 7
to observe those differentially expressed molecules and
the mechanism of how molecules competitively combine
miRNAs, which in turn affects tumor development in the
microenvironment.

As a whole, there are several overlapped competitive miRNAs
among three TME groups, mainly including has-mir-199a, has-
mir-23b, and has-mir-27b. It can be seen that mir-27b-3p
regulates 5 same lncRNAs in TME-A versus to TME-B and
TME-B versus to TME-C. Compared with others, the expression
level of mir-27b-3p and C20orf197 are lower, but the expression
level of KIF25-AS1, MIR137HG, LINC00163, and LINC00491
are higher in TME-B. However, when the microenvironment
changes from TME-B to TME-C, the affected genes in the ceRNA
network are not the same, but the same lncRNA will affect
the same gene through different miRNAs. For example, TNPO1
will be regulated by mir-23b-3p and mir-27b-3p, as shown in
Figure 7C. When AC009093.1, MDS2, and LINC00426 compete
with two miRNAs, the expression value of miRNAs will decrease,
which will inhibit the negative regulation of TNPO1, resulting in
increased expression of TNPO1. This is also consistent with that
lncRNA can indirectly inhibit the negative regulation of target

genes by miRNAs by competitively binding with the 3’UTR of
the target gene mRNA. The expression levels of mir-27b and
mir-23b are higher in TME-C compared with TME-B. From the
correlation diagram of miRNA and lncRNA, mir-27b and mir-
23b show the same trend, which is consistent with that both
belong to the same family with only one different nucleotide
that has the effect of inhibiting tumor development. Compared
with mir-27b/23b, the expression level of mir-199a is lower in
TME-C, and the performance on correlation with lncRNA is also
significantly different from the other two miRNAs. It indicates
that different miRNAs have the same effect of inhibiting tumor
growth, but the expression of miRNA in different TMEs also has
individual differences, which regulated the expression value of
downstream molecular.

In particular, the survival curve analysis of differentially
expressed lncRNAs is performed using the “survival” R package.
This univariate survival analysis was evaluated based on Kaplan–
Meier curve analysis, and a P value of less than 0.05 was
considered significant. The expression values of the two lncRNAs
have a significant correlation with the survival time of patients.
When the expression values of lncRNA C20orf197 and MDS2 are
higher, the overall survival rate of patients is higher, consistent
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with the low expression of lncRNA in the worst prognostic
group. Also, C20orf197 and MDS2 are at the hub of the ceRNA
network, linking all miRNAs and multiple competing lncRNAs
and genes. Therefore, two RNA molecules with a potential
prognostic value play a role key role when the microenvironment
changes significantly.

DISCUSSION AND CONCLUSION

In this study, it is the first time to use gene expression data of over
800 sarcomas samples to identify the subtypes of TMEs and to
analyze the difference from multiple dimensional molecular data.
The infiltration degree of 22 kinds of immune cells in each sample
was estimated, which was applied to divide all samples into three
TME groups. Furthermore, the difference between five aspects,
including DEGs, pathway crosstalk, DNA methylation, CNV, and
endogenous completive network were identified.

Interactions between tumor cells and TME can help determine
tumor progression. The distribution of immune cells in the TME
determines the fate of tumor cells, which influences the survival
of sarcoma patients. The present study divided these patients into
three TME groups. The results revealed significant differences
in the survival of sarcoma patients of different TME groups of
sarcomas. Moreover, different B cells and T cells do not show
strong consistency, but there is a particular bias in different types
of TMEs. The relative abundances of T cells CD4 memory resting
and B cell naïve are higher in the better prognostic group, which
is consistent with the function of T cells CD4 memory resting
that are likely to fulfill a vital facilitator role in the maintenance
and control of protective immune responses (Stockinger et al.,
2006). Also, the B cell naïve belongs to mature B cells, the increase
of which promotes the secretion of more plasma cells to fight
the antigen. Petitprez et al. have confirmed that B cells are the
strongest prognostic factor, even in the context of high or low
CD8+ T cells and cytotoxic contents (Petitprez et al., 2020).
There is no significance for other T cells and B cells in the better
prognostic group versus the worse prognostic group. Besides,
the Macrophages M0 is significantly more active in the worst
prognostic group, and the Macrophages M2 is significantly more
active in the intermediate prognostic group. The Macrophages
are the first line of defense against external infections, but
recent studies have proved that tumor-associated macrophages
accelerated tumor development, metastasis, and relapse (Hughes
et al., 2015; Chen et al., 2017; Samaniego et al., 2018). The pieces
of evidence are consistent with the relative higher abundances of
macrophages cells.

The gene expression levels determine the relative immune
cell abundances of each sample. It can be found that most
of the common DEGs among three TME groups of sarcomas
are immune-related genes, the gene expression levels of which
change significantly in different TME groups. Most genes have
higher expression values in the TME-C group with a better
prognosis. The prognostic effect worsens, the expression levels
of these genes also begin to show a downward trend. What’s
more, the KEGG enrichment analysis revealed the relationship
between these genes and enriched pathways. It is evident that

these pathways are all immune-related, and all genes enriched in
these pathways are downregulated genes in the worse prognostic
group versus the better prognostic group. The enriched GO terms
of DEGs and their top-ranking neighbors are evolved from the
ancestor “immune system process.” These results are consistent
with the immune cell inference results, as most of the immune
cell infiltration is higher in the TME-C group with a better
prognosis than that in the TME-B group with a worse prognosis.
In addition, over 78% of downregulated genes are enriched the
autoimmune diseases. For example, CD19 is widely present in B
lymphocytes, and it has also been widely used in CART targeted
therapy of B cell lymphoma (Ying et al., 2019).

Immune genes exert an enormous function in immune-related
pathways and BPs among TMEs of sarcomas. However, these
immune-related genes do not work in pathological processes
alone but are regulated by upstream genes, which in turn
affect the function of downstream genes (Deng et al., 2018a).
Therefore, our study analyzes the level of crosstalk between
signaling pathways in different microenvironments from the
perspective of pathway levels to overcome the limitations of
merely obtaining DEGs and analyzing them. According to the
signaling pathway impact analysis, more cancer-related or tumor-
related pathways were extracted, besides those immune-related
pathways consistent with the results of the over-representing
analysis. The pathways crosstalk relationships between the better
prognostic group and intermediate prognostic group focus on
the pathway of antigen processing and presentation, which is
related to several signaling pathways. The information exchange
between antigen processing and presentation pathway and other
signaling pathways becomes more active in the worse prognostic
TME group. Also, the crosstalk relationship between endocrine
and other factor-regulated calcium reabsorption pathway and
immune-related pathways or cancer-related pathways is more
variable. These crosstalk relationships become weaker in the
worst prognostic microenvironment. This evidence reveals that
the differences in the TME will cause significant changes in
the flow of information between pathways, especially when the
degree of relative infiltration of immune cells is low, and the
patient’s endocrine system may also be greatly affected, such as
the absorption of trace molecules.

Mutation information exists in every region of the human
chromosome, and these mutations regulate gene expression.
The present study analyzes the performance of genetic variation
information among three TME groups of sarcomas. DNA
methylation sites and CNVs are significantly different in the
three groups, and the common point is that the differentially
expressed downregulated genes are more affected in the worse
prognostic group versus better prognostic group. Separately, the
worse prognostic group displayed the lowest DNA methylation
level, especially in 3’UTR, 5’UTR, and body regions annotated to
DEGs. Moreover, the expression level of DNA methyltransferase
genes, DNMT3A, correlated negatively with age at initial
pathologic diagnosis and correlated positively with copy number.
Also, DNMT3A was related to many significantly differential
DNA methylation CpG sites in different TMEs. A previous
study has found that there is blastic plasmacytoid dendritic cell
neoplasm with an unusual morphology, MYC rearrangement,
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TET2, and DNMT3A mutations (Kurt et al., 2018). Thus,
different TMEs may cause the methylation status of gene
promoter regions to be significantly different, which in turn
affects gene expression. In addition, the CNV shows more
amplification than deletion in the worse prognostic group.
Although there were significant differences in the distribution
of CNV among all DEGs, only the CNV corresponding to the
downregulated genes was significantly different in the better
prognostic group versus worse prognostic group. These results
revealed that mutations in genetic information are more likely
to have lower levels of methylation and fewer CNVs in the TME
group with a worse prognosis than other TME groups.

Significant differences in different TMEs were found
from both gene expression data and genetic variation data.
Furthermore, the gene expression value is not only regulated
by DNA methylation and CNV but also influenced by other
molecules, such as miRNA and lncRNA. According to the
endogenous competitive network constructed in three TME
groups, it can be found that mir-27b differs between different
TMEs and regulates different genes and lncRNAs. Previous
studies have identified that miR-27b targets several genes to
inhibit growth, tumor progression, and inflammatory response
(Lee et al., 2012; Jin et al., 2013). The expression of mir-23b and
mir-199a were also differentially expressed in osteosarcoma and
regulated several signaling pathways to participate in various BPs
of tumor cells (Duan et al., 2011; Liu et al., 2018). Notably, the
correlation between miRNAs and lncRNAs was calculated and
compared in a better prognostic group and worse prognostic
group. Since mir-23b and mir-27b belong to the same family,
the expression levels of the two miRNAs also showed a very high
positive correlation. Several lncRNAs have been identified as the
signatures of prognosis or tumor recurrence, such as AC092811.1,
LINC00326, and C20orf197 (Yin et al., 2018; Zhu et al., 2019;
Zhao et al., 2020). The correlation between miRNA and lncRNA
is weaker in the TME with a worse prognosis than the TME with a
better prognosis. It may be caused by the reason that the lncRNA
becomes less competitive with the lncRNA expression level
decreases, which causes miRNA to regulate more mRNA in turn.

Unfortunately, we performed Fisher’s test on the drug
response of the different TME groups of patients and found no
significant differences. The reason is owing to the sample size of
the drug information used in this study is not enough so that
the experimental results are too limiting. Therefore, in future
experiments, this study will expand the sample and explore the
situation in different TMEs from the level of immunotherapy
and drug response.

In summary, a reasonable microenvironment classification
mechanism was applied for a large amount of sarcoma data
to divide samples into three TME phenotypes according to
the relative infiltration of various immune cells. According to
integrate multiple dimensional data, the present study revealed
that there were many differences of multi-molecular levels among
three TME groups related to prognosis. These findings can
enhance our understanding of the prognostic factors in the TME
of sarcomas. Furthermore, these prognostic molecules identified
in this study have potential value in biomarker development and
personalized medicine.
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