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Utilization of a combined EEG/NIRS 
system to predict driver drowsiness
Thien Nguyen1,*, Sangtae Ahn2,*, Hyojung Jang3, Sung Chan Jun3 & Jae Gwan Kim1,3

The large number of automobile accidents due to driver drowsiness is a critical concern of many 
countries. To solve this problem, numerous methods of countermeasure have been proposed. However, 
the results were unsatisfactory due to inadequate accuracy of drowsiness detection. In this study, we 
introduce a new approach, a combination of EEG and NIRS, to detect driver drowsiness. EEG, EOG, ECG 
and NIRS signals have been measured during a simulated driving task, in which subjects underwent 
both awake and drowsy states. The blinking rate, eye closure, heart rate, alpha and beta band power 
were used to identify subject’s condition. Statistical tests were performed on EEG and NIRS signals 
to find the most informative parameters. Fisher’s linear discriminant analysis method was employed 
to classify awake and drowsy states. Time series analysis was used to predict drowsiness. The oxy-
hemoglobin concentration change and the beta band power in the frontal lobe were found to differ 
the most between the two states. In addition, these two parameters correspond well to an awake to 
drowsy state transition. A sharp increase of the oxy-hemoglobin concentration change, together with a 
dramatic decrease of the beta band power, happened several seconds before the first eye closure.

In 2010, the foundation for traffic safety in US reported that 16.5% of fatal crashes occurring between 1999 
and 2008 were related to driver drowsiness1. Drowsiness involves a decrease in the level of alertness. Although 
drowsiness can result from fatigue, they are different conditions. Fatigue is a cumulative process, which gradually 
impairs alertness, while drowsiness fluctuates rapidly over a period of several seconds2. Each fluctuation during 
drowsiness corresponds to a microsleep episode and is associated with the loss of attention3. During a microsleep 
episode, the lowered attention reduces the driver’s ability to judge and react to an unexpected situation and an 
accident is more likely to occur. In addition, Boyle et al. suggested microsleep episodes as a potential indicator of 
sleep onset4. Therefore, early identification of the microsleep episode could be helpful to detect the onset of driver 
drowsiness and consequently prevent automobile accidents.

Current methods for detecting driver drowsiness follow three directions, which are vehicle based performance 
monitoring5, driver behavior recording6 and driver physiological signal measuring7. Among them, the first two 
approaches are highly affected by external environments such as vehicle model and traffic condition, while the 
last one solely depends on subject condition; therefore, it shows a higher capability of detecting driver drowsiness. 
Measurement of the physiological signals includes neuronal electrical activity using EEG, eye movement using 
EOG, heart rate using ECG, muscle activity using EMG and tissue oxygenation using NIRS. Alteration of biosig-
nals during drowsiness compared to normal condition has been examined in many studies. For instance, Patel et al.  
utilized ECG signal to show an increase in heart rate variability when mental workload decreases8. Slow eye 
movement in EOG data was found to be an indicator of drowsiness9. In addition, EEG has been widely applied 
and proven as a promising method for drowsiness studies7.

Among all modalities being used to measure brain signals, EEG is the most frequently used because of its high 
temporal resolution, portability and reasonable cost. Many advanced techniques have been developed to analyze 
EEG signals; including time domain analysis, frequency domain analysis, time-frequency analysis and a variety 
of classification techniques. The time domain analysis (time series analysis) is the most often chosen method 
because it provides the most important information that we want to measure. In addition, the time series analysis 
was proven to be more effective in processing EEG signals10,11. Due to the popularity of the EEG signal and its 
analysis methods, many works have been done to investigate drowsiness detection. In order to analyze the data, 
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some studies focused on the analysis of frequency change between the awake and drowsy states12–14, while most 
other studies intended to classify the two states13,15–19. In our study, we used (1) frequency domain analysis to 
investigate the physiological signals in each state, (2) Fisher’s linear discriminant analysis (FLDA) to classify the 
awake and drowsy states, and (3) time series analysis to predict driver drowsiness.

In addition to EEG, NIRS was also employed to study driver drowsiness. Several studies have been conducted 
to investigate the hemodynamics response in the drowsy state20,21. Khan et al. attempted to classify the awake and 
drowsy states using NIRS signal22. In order to complement the information on hemodynamic response of NIRS 
to EEG, we utilized a combined EEG/NIRS system to study neuronal electrical activity and cerebral oxygenation 
change during the awake and drowsy states. The combination of these two modalities has been proven to be 
more efficient than each individual modality in brain computer interface applications23,24, seizures, epilepsy25–28, 
language studies29 and fatigue research30. Our study purpose is to investigate the potential of the combined EEG/
NIRS system to detect drowsiness. In addition, we want to find the most informative parameters that can identify 
a drowsy state most accurately, such that we can minimize the signals used for a real time application.

Results
Subject’s state identification. The blinking rate, eye closure, heart rate, alpha band power and beta band 
power of the nine subjects are shown (Fig. 1). All five parameters vary from time to time. However, with the 
exception of the beta band power, the variations of the eye-blinking rate, heart rate and alpha band power do not 
match with the variation of the eye closure. On the other hand, in most cases, the beta band power maintains a 
high value when the eye closure is zero and it decreases to a lower value when the eye closure increases. Hence, 
the identification of the subject’s state was primarily based on the beta band power and the eye closure. The awake 
state (5 min-awake, Fig. 1, blue shaded region) associates with a zero eye closure and high beta band power, while 
the drowsy state (5 min-drowsy, Fig. 1, red shaded region) corresponds to a positive eye closure and low beta band 
power. The nine subjects were in the awake state starting from the beginning of the experiment. However, the 
starting point of the drowsy state varied among subjects with the earliest time at 12 minutes and the latest time at 
25 minutes after the experiment started.

EEG band power in the awake and drowsy states. Figure 2 shows the grand-averaged and standard 
deviation topographies of five band relative power level (RPL) of the nine subjects for 64 channels. Due to the 

Figure 1. Subjects’ state identification using blinking rate (BR), eye closure (EC), heart rate (HR), alpha 
band power (AP) and beta band power (BP). The blue shaded region marks a 5 min-awake state and the red 
shaded region indicates a 5 min-drowsy state.
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diverse amplitude of each spectral band, different scales were applied. In the drowsy state, there is an increase in 
the RPL values in the lower frequency bands (delta, theta and alpha bands) and a decrease of the RPL values in the 
higher frequency bands (beta and gamma bands). The RPL values of the delta and theta bands are higher in most 
brain regions. The alpha band RPL values are higher in the parietal lobes. The beta band RPL values are lower in 
the frontal lobe and the gamma band RPL values are lower in both temporal lobes during the drowsy state. Except 
for the delta band power in the frontal cortex during the awake state, the low standard deviations in other regions, 
bands, and states indicate a small variation between subjects.

The results (p-values) from the unconnected statistical t-test are displayed in Table 1. All p-values are higher 
than the p-value of significance (0.002). However, the p-values from the frontal delta, the frontal and temporal 
beta and the central gamma are smallest among all obtained p-values. This implies that between the awake and 
drowsy states, there are some mild differences of the delta band in the frontal cortex, the beta band in the frontal 
and temporal cortex, and the gamma band in the central cortex, but not in the other bands and/or other brain 
regions.

Hemodynamic response in the awake and drowsy states. The mean values of the oxy- and deoxy- 
hemoglobin concentration (HbO and Hb) changes were calculated for each subject in each state (Table 2). The 
average from all nine subjects results in a positive HbO change with a negative Hb change in the awake state and 

Figure 2. The grand-averaged and standard deviation topographies of the RPL values of five EEG bands of 
nine subjects in the awake and drowsy states. 

Brain regions

Frontal Central Temporal Parietal OccipitalEEG band

Delta 0.06 0.20 0.80 0.48 0.86

Theta 0.52 0.66 0.88 0.50 0.38

Alpha 0.44 0.66 0.24 0.16 0.34

Beta 0.10 0.20 0.10 0.38 0.22

Gamma 0.14 0.08 0.60 0.80 0.22

Table 1.  The p-value from the unconnected statistical t-test of each band in each brain region between two 
states.
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a negative HbO change with a positive Hb change in the drowsy state. The p-values of the t-tests for the HbO and 
Hb changes are included in the last line of Table 2. The low p-value (< 0.05) indicates a significant difference of 
the HbO mean values between the awake and drowsy states. However, the p-value calculated from the Hb mean 
is higher than 0.05, which implies no statistical difference in the Hb change between two states.

Classification accuracy. FLDA was employed to classify the awake and drowsy states using EEG alone, 
NIRS alone and combined EEG/NIRS. The classification accuracy is shown in Table 3. In most cases, when both 
EEG and NIRS signals were used together, the accuracy increases compared to the EEG alone (except for S3, S8, 
S10) or NIRS alone (except for S6, S8). The mean accuracy of the combined EEG/NIRS increases 8.7 percent 
compared to EEG alone and 5.5 percent compared to NIRS alone.

Beta band RPL and HbO change during an awake to drowsy transition. The representative data 
from S3 and S4 are displayed (Fig. 3). The red shaded regions in the graphs indicate the first eye closure (more 
than two seconds). Data from both S3 and S4 show a higher beta RPL and a relatively constant HbO change 
before the red shaded regions. However, between ten to fifty seconds before the red shaded regions, the beta 
RPL decreases and the HbO change increases dramatically. Data samples, including the red shaded regions, are 
enlarged in the right plots. A decrease in the beta RPL and an increase in the HbO change happens before the 
first eye closure. A similar trend was found in seven other subjects. This trend suggests the potential of these two 
parameters in the prediction of driver drowsiness.

Drowsiness detection. For NIRS signals, the sharp increase of the HbO change during an awake to drowsy 
state transition (HbO-A-D) (Table 4, column 2) is used to predict drowsiness. Since during the awake state, the 
HbO was not constant but varied from time to time, the maximum variation of the HbO change during the awake 
state (HbO-A-max) is considered (Table 4, column 3). Based on the HbO-A-D and HbO-A-max of all subjects, 
a threshold of 0.05 is set. The subject is predicted to be in a drowsy state when the variation of the HbO change 
is greater than 0.05. The time difference between the HbO change-based predicted time and the first eye closure 
time (HbO-time) is shown in Table 4, column 4. With a threshold of 0.05, the HbO change can predict a drowsy 
state with 100% true positive (correctly detect drowsiness) and 22% false negative (misdetection of awake as 
drowsy state). In addition, the HbO change can predict the drowsy state earlier than the first eye closure with an 
averaged time of 4.3 seconds.

For EEG signals, the percentage change of the beta RPL during an awake to drowsy state transition (%Δ  
beta-A-D) (Table 4, column 5) is utilized to predict a drowsy state. Similar to the HbO change, the beta RPL 
exhibited some dramatic changes in the awake state. Hence, the maximum percentage change of the beta RPL 
during the awake state (%Δ  beta-A-max) is taken into account (Table 4, column 6). Considering these two 
parameters, a threshold of 20% is set. The driver is predicted to be drowsy when the percentage change of the 
beta RPL is greater the threshold. The time difference between the beta RPL-based predicted time and the first 
eye closure (beta-time) is displayed in Table 4, column 7. On average, the beta RPL can predict the drowsy state 

Hemodynamic response HbO (mM/DPF) Hb (mM/DPF)

Subject Awake Drowsy Awake Drowsy

S1 0.022 − 0.002 − 0.007 0.009

S2 0.073 − 0.001 − 0.024 0.016

S3 0.005 − 0.017 − 0.013 − 0.017

S4 − 0.011 − 0.027 0.003 0.016

S5 0.017 − 0.057 − 0.009 − 0.004

S6 0.036 − 0.003 0.019 0.007

S7 0.022 − 0.016 − 0.011 0.009

S8 0.023 0.003 0.009 − 0.001

S10 − 0.013 − 0.031 0.003 0.011

Mean 0.019 (± 0.026) − 0.017 (± 0.019) − 0.003 (± 0.013) 0.005 (± 0.010)

p-value 0.002 0.159

Table 2.  Mean values of the HbO and Hb concentration changes from nine subjects in the awake and 
drowsy states and p-value from statistical t-test. DPF: differential pathlength factor.

Subject

S1 S2 S3 S4 S5 S6 S7 S8 S10 MeanModality

NIRS 70.0 85.7 68.3 69.2 86.2 77.0 70.8 70.9 64.9 73.7 (± 7.6)

EEG 72.4 62.2 90.4 56.8 71.0 63.0 67.1 77.9 73.4 70.5 (± 9.9)

EEG/NIRS 74.5 99.5 84.1 78.6 86.4 72.6 74.5 70.5 71.7 79.2 (± 9.4)

Table 3.  The classification accuracy using EEG alone, NIRS alone and combined EEG/NIRS for each 
subject and the mean values of the nine subjects.
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4.8 seconds earlier than the first eye closure. However, with the threshold of 20%, the beta RPL can predict the 
drowsy state with 100% true positive, but 78% false negative.

The investigation of the entire data set showed that the sharp decrease of the beta RPL together with the 
intense increase of the HbO change was unique for an awake to drowsy transition. During the awake state, a sharp 
decrease of the beta RPL sometimes happened and an intense increase of the HbO change occurred several times. 
However, these sudden changes did not happen at the same time point in the awake state. Hence, the combination 
of the beta RPL with the HbO change can decrease false negatives to 0% and keep true positives at 100% for the 
detection of the drowsy state.

Drowsiness detection index. A drowsiness detection index (DDI), a binary variable, is derived to predict 
the drowsy state (equation (1)).

Figure 3. The time course of the beta RPL and the HbO change during an awake to drowsy state transition 
of S3 and S4. The red shaded regions indicate the first eye closure.

Subject HbO -A-D HbO -A-max HbO -time %Δ beta -A-D %Δ beta -A-max Beta - time

S1 0.09 0.03 5s 30 6 6s

S2 0.06 0.04 6s 24 26 3s

S3 0.08 0.01 4s 61 51 5s

S4 0.12 0.04 6s 33 35 4s

S5 0.13 0.05 5s 57 18 5s

S6 0.08 0.04 3s 27 23 5s

S7 0.16 0.10 5s 42 22 6s

S8 0.10 0.10 3s 33 33 4s

S10 0.06 0.03 2s 33 9 5s

Mean 0.10 (± 0.03) 0.05 (± 0.03) 4.3s (± 2s) 38 (± 13) 25 (± 14) 4.8s (± 1s)

Table 4.  Parameters of the HbO change and the beta RPL in the awake state and during an awake to drowsy 
state transition.
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= ∆ − . ∆ −DDI [ HbO 0 05] && [% beta 20] (1)v

where, Δ HbOv =  HbOc − HbOl, HbOc is the current HbO change, HbOl is HbOc when HbO change decreases and 
HbOl is the preceding lowest HbO change when the HbO change increase continuously. %Δ  beta =  (betah − betac)/ 
betah, betac is the current beta RPL, betah is betac when the beta RPL increases and betah is the preceding highest 
beta RPL when the beta RPL decreases continuously.

The DDI is 1 when both (HbOv–0.05) and (%Δ  beta–20) are positive. This means the drowsy state is predicted 
when the variation of the HbO change is greater than 0.05 and the percentage change of the beta RPL is higher 
than 20%. Figure 4 plots the eye closure and DDI during 30 minutes driving of S3. S3 first closed his eye at around 
18 minutes after starting driving. The next eye closure was around 21 minutes. The DDI detects both times cor-
rectly, with four seconds earlier for the first time and three seconds earlier for the second time. Similarly, the DDI 
was capable of predicting eight other subjects’ drowsiness. The mean time of early prediction for nine subjects was 
3.6 seconds, with a standard deviation of 1.4 seconds.

Discussion
This study explored EEG and NIRS parameters that can indicate an awake to drowsy state transition. The neu-
ronal electrical activity and the cerebral hemodynamic response were monitored simultaneously using EEG and 
NIRS in a simulated driving task, with subjects experienced both awake and drowsy states. The experimental 
results showed a good correspondence between the beta RPL and HbO change with the transition from the awake 
to drowsy state.

The increase of the lower frequency bands and the decrease of the higher frequency bands were previously 
observed for EEG in the drowsy state12–19. Studies of general drowsiness, which included the transition from 
awake to sleepy states, demonstrated an increase of the alpha rhythm12,15,16. Similarly, the change in the alpha 
activity was a common outcome found during drowsiness in both simulated and actual driving conditions17. In 
addition to the alpha rhythm, some researchers presented a decrease in the beta band13, while others claimed an 
increase in the delta and theta activities during low alertness level14,18,19. Similar to previous studies, our drowsy 
state EEG yielded a higher power in the delta, theta and alpha bands, and a lower power in the beta and gamma 
bands compared to the awake EEG data.

Instead of EEG, some studies used NIRS to monitor cerebral blood oxygenation during driving task. Li et al. found 
a significant reduction in the cerebral oxygen saturation when driver’s performance deteriorated20. Yoshino et al.  
showed no significant change in the cerebral oxygen exchange in the prefrontal cortex during constant velocity 
driving on an expressway21. Our study showed that in the prefrontal lobe, the HbO change had positive values and 
the Hb change had negative values in the awake state, while in the drowsy state, opposite changes were observed. 
In addition, several previous studies reported an increase of the HbO change in the frontal lobe at the beginning 
of the drowsy states22,31. In our case, the sharp increase of the HbO change was detected before the first eye clo-
sure. The increase of the HbO change can be due to the low oxygen consumption rate of the brain during the 
transition from an awake to drowsy state.

Even though we collected multimodal data of EEG, EOG, ECG and NIRS, we only used EEG and NIRS for 
further analysis because the variation of the blinking rate and heart rate did not correspond well with the subjects’ 
states. In addition, in order to approach an online drowsiness detection method, the signals from the frontal cor-
tex should be targeted. From the statistical test, the delta and beta bands showed some mild differences between 
the awake and drowsy states among five EEG bands from the frontal lobe. However, during the awake state, the 
delta band exhibited high variation among subjects. In addition, the beta band power presented a high corre-
spondence with the eye closure. Hence, the frontal beta band was selected as the most informative parameter for 
EEG. For NIRS, the HbO change was chosen as the most informative parameter because of its significant differ-
ence between the awake and drowsy states. For further study, we are now designing a small wireless EEG/NIRS 
system, with EEG and NIRS channels covering only the forehead.

The sharp increase of the HbO change and the dramatic decrease of the beta RPL was used to derive the 
DDI. Although the DDI can predict all subjects’ drowsiness correctly, it is still an ad-hoc index because of the 
chosen formula and thresholds. The thresholds for both beta RPL and HbO change could be altered depending 

Figure 4. Eye closure and drowsiness detection index for S3 in 30 minutes. 
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on the subjects and systems used. In addition, with two parameters, the beta RPL and the HbO change, different 
approaches can be suggested to build an index for drowsiness detection. Therefore, in our study, the DDI was 
proposed as an example to illustrate the effectiveness of the utilization of the beta RPL and HbO change to predict 
drowsiness.

With a substantial increase of the classification accuracy between the awake and drowsy states when a com-
bined EEG/NIRS was used, our study proved the usefulness of a multimodal system to study drowsiness. In addi-
tion, we found that the beta RPL from EEG and the HbO change from NIRS are the most informative parameters 
to predict drowsiness. Furthermore, a drowsiness detection index based on the distinct alteration of the beta RPL 
and HbO change before the first eye closure was proposed in this study.

However, there are still some limitations in this study. Firstly, we only did off-line analysis. Therefore, real-time 
data analysis needs to be developed in order to apply a combined EEG/NIRS system in actual driving conditions. 
Secondly, although we used both EEG and NIRS signals for the classification, the classification accuracy was 
not high enough (less than 80%). In the future, we should consider other EEG analysis techniques, such as com-
plex network analysis10,11,32–34, to examine if we can get a better result. By using the complex network analysis, 
Gao et al. was able to obtain 100% accuracy in the classification of the healthy subjects and epilepsy patients11. 
Even though the small number of subjects (n =  9) in this study may limit our conclusion, the preliminary results 
demonstrated the capability of the combined EEG/NIRS system to predict the driver drowsiness in advance so 
that it can prevent motor vehicle collision caused by driver drowsiness.

Materials and Methods
Participants. Subjects were recruited from the students at the Gwangju Institute of Science and Technology 
(GIST). All procedures in the experiment were performed in accordance with the guidelines and regulations from 
the approval of the Institutional Review Board at GIST (20150615-HR-18-02-06). Eleven healthy subjects (S1 to 
S11, 1 female, aged from 24 to 28) agreed to participate in the study. All the subjects signed an informed consent 
agreement before the experiment. The night before the experiment, the subjects were asked to take enough sleep 
(at least seven hours) and not to consume any alcohol or caffeine-containing substances. When the subjects 
arrived for the experiment, the purpose of the study and experimental procedure were explained. After signing 
the document, the subjects were guided to practice driving to become familiar with the system. Before and after 
the measurements, the subjects were instructed to fill in a questionnaire to determine his/her alertness level.

Experimental setup. The simulated driving system consisted of a racing wheel, including a brake and an 
accelerator (G27 Racing Wheel, Logitech, Switzerland) and a comfortable chair (GTS plus, PNS racing incorpo-
rated, South Korea) (Fig. 5a). A large screen was set up 1.5 m away from the chair. Commercial driving simulation 
software was used (Gran Turismo 5 on a PlayStation 3). The driving track had an oval shape with four curves, 
with two short and two long paths. The total time for a circuit was approximately three minutes with a velocity of 
80 km/hour. The speed of the simulated system was limited to 100 km/hour.

A camera (HD Pro Web-Cam C920, Logitech, Switzerland) was attached on the top of the screen to record 
the subject’s behavior. An observer seated outside the experimental room monitored the subject’s behavior and 
decided the end time of the experiment. The experiment time ranged from 30–90 minutes depending on the sub-
ject’s condition. The shortest experiment time was 30 minutes, when a subject exhibited drowsy signs (more than 
two seconds eye closure and head nodding) during the first 30 minutes of driving. From the 30th to 90th minute, 
the experiment was ended ten minutes after the observer saw signs of drowsiness. In case a subject did not show 
any signs of drowsiness, the experiment was stopped after 90 minutes of measurement, and data from the subject 
were excluded from further analysis. During the experiment time, ten subjects (S1–S10) expressed the signs of 

Figure 5. Experimental setup. (a) The simulated driving system and (b) the placement of EEG, EOG, ECG 
electrodes, and NIRS channels, which includes photodetector (PD) and LED.
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drowsiness within the first 30 minutes of driving, while one subject (S11) stayed awake throughout 90 minutes 
of driving without eye closure or head nodding. In addition, S9 was sleepy at the beginning of the experiment. 
Therefore, for further analysis, we used the data from nine subjects (S1–S8 and S10) and rejected the data from 
S9 and S11.

Electrophysiological data were recorded using a Biosemi Active Two system with 64 EEG electrodes covering 
the head, 2 EOG electrodes attached near to the eyes and 2 ECG electrodes placed above the chest (Fig. 5b). The 
system acquired the signal using BCI 2000 software35 sampled at a rate of 512 Hz. The NIRS data, including oxy-, 
deoxy-, and total- hemoglobin concentration (HbO, Hb, and THb) changes, were collected in the prefrontal area, 
at a rate of 10 Hz, using a custom-built, 8 channel NIRS system (Fig. 5b). The detailed description of the NIRS 
system design and multimodal system synchronization can be found in an earlier work30.

Data analysis. Data preprocessing. The acquired data were passed through a notch filter (60 Hz) to remove 
power line noise. After that, the signals were visually inspected. The EEG and NIRS channels, which contained 
abnormal noise, were excluded from analysis. Thereafter, EEG data were band-pass filtered from 1 Hz to 50 Hz, 
and NIRS data were low-pass filtered at 0.2 Hz. Then, independent component analysis (ICA) was applied to the 
EEG signal to decompose it to sixty-four ICA components. Each ICA component was manually checked. The 
components that contained artifacts such as eye blinking and movement artifacts, were selected to reject later. 
After rejecting bad components, the remaining components were used to reform a processed EEG signal. ECG 
and EOG signal were detrended to remove noise interference.

EEG relative power level and hemodynamic response. The preprocessed EEG data were decomposed into five 
frequency bands, delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–50 Hz) bands. 
The power spectral density of a band was computed. Subsequently, RPL was calculated by dividing a band power 
with the summation of the power from five bands to reduce the variability between subjects36–38.

The NIRS modality used in our experiment was a continuous wave system. Therefore, the hemodynamic 
responses found were the relative changes of the HbO, Hb, and THb compared to a baseline. The baseline was 
set to be the first 10-second of data of each measurement. While the HbO and Hb changes were converted from 
the detected light intensity directly, the THb change was derived as the summation of the HbO and Hb changes. 
Hence, for further analysis, only the HbO and Hb changes were considered. In addition, due to the similar 
response from the eight frontal NIRS channels, the HbO and Hb changes were averaged over the eight channels.

Subject’s state identification. Driver drowsiness has been found to be characterized by increased blinking rate, 
decreased heart rate with more than two seconds of eye closure, increased alpha band power in the occipital lobe 
and decreased beta band power in the frontal lobe2,20–22,24. Hence, in our experiment, blinking rate, eye closure 
(more than two seconds), heart rate, alpha band power in the occipital lobe and beta band power in the frontal 
lobe were used to identify the subject’s current state. Eye blinking rate was derived from the EOG signal and heart 
rate was calculated by counting the number of ECG peaks. The recorded video was used to count the number of 
times a subject closed his/her eyes for more than two seconds. Alpha band power was averaged through 10 occip-
ital channels and beta band power was averaged through 17 frontal channels. The five parameters were computed 
for each minute during thirty minutes of measurement. A condition of higher blinking rate2 with more than two 
seconds of eye closure, lower heart rate2, higher alpha band power20–22 and lower beta band power24 was consid-
ered to be a drowsy state. On the other hand, the condition with constant or opposite parameters was identified as 
the awake state. Five-minute data sections of EEG and NIRS in the awake state (5 min-awake) and in the drowsy 
state (5 min-drowsy) were selected for further analysis.

Statistical test. In order to find the most informative parameters that can be used to detect a drowsy state, we 
applied a simple, two-tailed student statistical test (t-test) to the hemodynamic response and five EEG bands’ 
power between the awake and drowsy states. For hemodynamic response, t-test was performed on the mean 
values of the HbO and Hb changes of the nine subjects. For EEG band power, the test was conducted for each 
band power in each brain region. Five brain regions, frontal (17 EEG channels), central (14 channels), temporal 
(6 channels), parietal (17 channels), and occipital (10 channels) regions, were defined using the EEG electrode 
placement map from Biosemi Active Two system.

Subject’s state classification. The frontal beta band RPL and the HbO change were used as the feature vectors 
for EEG and NIRS, respectively. The five-minute EEG and NIRS data were divided into 60 trials, each containing 
5 seconds of data, for each state (awake and drowsiness). Data from the 120 trials were divided into 10 groups of 
12 trials each. Among the 10 groups, 7 groups were randomly chosen for training and 3 groups were randomly 
chosen for testing. After then, each feature vector of training and testing data was fed into the classifier. The clas-
sifier, based on FLDA, was made using training group data, and testing groups were used as input to the FLDA 
classifier to generate classification accuracy. This procedure was repeated 120 times by choosing 7 training groups 
randomly thus 120 classification accuracies were estimated to obtain an average of classification accuracy. To 
investigate the combined effect of the classification using EEG and NIRS data, a combination of modalities with 
respect to classifiers’ outputs were performed. For the combination of classifiers in each modality, each classifier’s 
outputs (EEG and NIRS) were regarded as inputs of the next classifier. Thereafter, the outputs of the next classifier 
yield the results of the combined classifiers.
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Detection of an awake to drowsy state transition. An awake to drowsy state transition was identified by the first 
eye closure. Based on the recorded video, the time point that a subject first closed his/her eyes for more than two 
seconds was marked. Ten-minute data samples, including the marked time, were extracted for further analysis. 
The beta band RPL and HbO change during the ten-minute data samples were investigated. The overall EEG and 
beta band power were calculated with a moving window of two seconds and one second overlap. Hence, the EEG 
power had a temporal resolution of 1 Hz. The beta band RPL was then computed by dividing the beta band power 
to the overall EEG power. The HbO change was down sampled to 1 Hz to have the same temporal resolution as 
the beta band RPL.
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