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Abstract
Purpose Extensive inter-individual variability exists in the production of flavan-3-ol metabolites. Preliminary metabolic 
phenotypes (metabotypes) have been defined, but there is no consensus on the existence of metabotypes associated with 
the catabolism of catechins and proanthocyanidins. This study aims at elucidating the presence of different metabotypes in 
the urinary excretion of main flavan-3-ol colonic metabolites after consumption of cranberry products and at assessing the 
impact of the statistical technique used for metabotyping.
Methods Data on urinary concentrations of phenyl-γ-valerolactones and 3-(hydroxyphenyl)propanoic acid derivatives from 
two human interventions has been used. Different multivariate statistics, principal component analysis (PCA), cluster analysis, 
and partial least square-discriminant analysis (PLS-DA), have been considered.
Results Data pre-treatment plays a major role on resulting PCA models. Cluster analysis based on k-means and a final con-
sensus algorithm lead to quantitative-based models, while the expectation–maximization algorithm and clustering according 
to principal component scores yield metabotypes characterized by quali-quantitative differences in the excretion of colonic 
metabolites. PLS-DA, together with univariate analyses, has served to validate the urinary metabotypes in the production of 
flavan-3-ol metabolites and to confirm the robustness of the methodological approach.
Conclusions This work proposes a methodological workflow for metabotype definition and highlights the importance of 
data pre-treatment and clustering methods on the final outcomes for a given dataset. It represents an additional step toward 
the understanding of the inter-individual variability in flavan-3-ol metabolism.
Trial registration The acute study was registered at clinicaltrials.gov as NCT02517775, August 7, 2015; the chronic study 
was registered at clinicaltrials.gov as NCT02764749, May 6, 2016.
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Introduction

Flavan-3-ols are characteristic polyphenols of tea, cocoa, 
wine, pome fruits (as apple and pear), berries, and nuts, 
but they are also found in stone fruits and legumes [1, 2]. 
This subclass of compounds is the main dietary source of 
flavonoids in Western diets [3–5] and has been associated 
with beneficial effects on the prevention of cardiometa-
bolic diseases [6–9]. In addition, other putative benefits 
have been observed against cognitive decline [10, 11] and 
urinary tract infections [12, 13]. In plant-based foods, they 
occur as simple monomers or as oligomers and polymers 
of up to 190 units (also known as proanthocyanidins or 
condensed tannins) [14]. When ingested, both mono-
meric and high molecular weight flavan-3-ols are poorly 
absorbed and metabolized in the first gastrointestinal tract, 
reaching the colon and becoming a suitable substrate for 
the local microbiota [15]. These compounds undergo an 
extensive microbial metabolism leading to the formation 
of specific metabolites, namely phenyl-γ-valerolactones 
(PVLs) and phenylvaleric acids (PVAs), as well as of com-
mon end-products of (poly)phenol colonic catabolism, 
such as phenylpropanoic, phenylacetic, and benzoic acid 
derivatives [16–19]. The microbial metabolites are then 
absorbed by colonocytes before reaching the liver and are 
converted into phase II conjugated derivatives. Conjugated 
PVLs (sulfate, glucuronide, methoxy, and combinations 
thereof) are the main colonic circulating metabolites after 
ingestion of monomeric and polymeric flavan-3-ols by 
humans [19–23] and, in particular, sulfate and glucuronide 
derivatives of 5-(3ʹ,4ʹ-dihydroxyphenyl)-γ-valerolactone 
have been proposed as biomarkers of flavan-3-ol intake 
[23, 24]. These metabolites may be responsible for the 
health effects attributed to flavan-3-ols, as they are circu-
lating molecules potentially available to target tissues and 
organs prior to be excreted in urine [19].

An extensive inter-individual variability is reported in 
the production of flavan-3-ol metabolites [20–23, 25–29], 
possibly affecting, at individual level, the health ben-
efits associated with this class of compounds [19]. This 
variability might be due to personal differences in gut 
microbiota composition, resulting in different metabolic 
phenotypes or metabotypes (i.e., different profiles of cir-
culating and consequently excreted metabolites), likely 
impacting their effects on health, as it happens for other 
phenolic metabolites of colonic origin. Well-described 
examples of these differences are equol production from 
isoflavones and urolithin production from ellagitannins 
[30–32]. Stratification of individuals according to their 
equol/urolithin metabotype has proven to be necessary 
to understand the health effects associated to isoflavone 
and ellagitannin intake [33–35]. However, the information 

on flavan-3-ol colonic metabolites is much less defined. 
In vitro anaerobic incubations of (−)-epicatechin revealed 
inter-individual differences in its colonic metabolism and 
the formation of certain metabolites was correlated with 
specific microbial phyla [36]. In a recent preliminary 
study, three putative metabotypes after green tea flavan-
3-ol consumption were defined in vivo on the basis of a 
different urinary production of PVLs and 3-(hydroxyphe-
nyl)propanoic acids (HPPs), through explorative partial 
least squares-discriminant analysis (PLS-DA) models [26]. 
Similar results were obtained after consumption of nut 
proanthocyanidins in nearly free living conditions, using 
the k-means clustering algorithm [25], but the authors did 
not associate the different profiles of PVLs and HPPs to 
metabotypes as they adhered to a more restrictive defini-
tion of phenolic metabotypes, characterized by the pres-
ence/absence of specific metabolites. However, the urinary 
profiles there described could be defined as flavan-3-ol 
colonic metabotypes when considering a broader defini-
tion of the term, commonly accepted in the nutrition field 
as “subgroups of individuals sharing the same metabolic 
profile” [37]. Beyond terminology, it is clear that there is 
a lack of information on how to handle the inter-individual 
variability in the production of phenolic metabolites to 
define metabotypes in those cases where all the subjects 
produce all the phenolic metabolites of a catabolic path-
way, but in different proportions, as it happens for flavan-
3-ols and for the main dietary classes of (poly)phenols.

The primary aim of the present study was to evaluate the 
existence of metabotypes, based on the urinary excretion 
of flavan-3-ol metabolites after consumption of flavan-3-ols 
from cranberry products, to shed light on this key aspect 
associated with the metabolism of these major phenolics. 
Secondly, this work aimed at investigating the impact of 
the statistical techniques used for the definition of phenolic 
metabotypes, defining an approach to specifically seek 
for metabotypes when they are not characterized by the 
dichotomic production/non-production of specific phenolic 
metabolites.

Materials and methods

Intervention studies

The dataset for this study consisted of urinary concentra-
tions of several gut microbiota-derived metabolites of 
flavan-3-ols,  namely monohydroxyPVLs (isomers 3ʹ and 
4ʹ), dihydroxyPVLs (3ʹ,4ʹ), and HPPs, quantified in urine 
samples collected in two different cranberry feeding studies, 
one with an acute design and one chronic. These metabolites 
were chosen according to previous evidence [26].
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The acute study was a crossover, randomized, controlled 
intervention trial registered under the NIH ClinicalTrials.
gov website (NCT02517775). The study was conducted in 
accordance with the guidelines stated in the current revi-
sion of the Declaration of Helsinki, and informed consent 
was obtained for all subjects. All procedures involving 
human subjects were approved by the University of Dussel-
dorf Research Ethics Committee (ref: 14–012). Briefly, ten 
healthy men had to consume a cranberry drink containing 
increasing amounts of total flavan-3-ols (TF) or an isocaloric 
control (0 mg TF) drink with one-week washout [23, 38]. 
Participants were instructed to follow a low-(poly)phenol 
diet for 3 days before and during the study day and had to 
fast for 12 h before the study day. Urine samples were col-
lected at baseline, between 0–8 h and 8–24 h after drink 
intake. For the study purpose, data on cumulative urinary 
excretion (0–24 h) of the metabolites after higher flavan-3-ol 
intake (716, 1131, 1396, and 1741 mg TF) were considered, 
for a total of 40 observations. Quantitative data on the uri-
nary excretion of PVLs have been previously reported [23], 
while data on HPPs are novel.

The chronic study was a parallel, randomized, controlled 
trial in which 22 healthy participants were asked to consume 
a cranberry powder containing 0.5 mg of flavan-3-ol mono-
mers and 374 mg of proanthocyanidins every day for one 
month, without any other dietary restriction or recommenda-
tion. The study was registered under the NIH ClinicalTrials.
gov website (NCT02764749) and was conducted according 
to the guidelines laid down in the current revision of the 
Declaration of Helsinki. Informed consent was obtained for 
all participants and all procedures involving human subjects 
were approved by the University of Dusseldorf Research 
Ethics Committee (Ref: 5360R). Cumulative 24-h urine 
samples from the first (v1) and the last (v2) intervention 
day were collected and analyzed to obtain data on metabolite 
concentration, for a total of 43 observations (1 sample from 
v1 was missing). In this case, both data on PVLs and HPPs 
are new. To sum up, a reasonable number of observations 
(n = 83) was used for subsequent statistical analyses.

Sample analysis

Urine samples were prepared according to a previous report 
[39] and then analyzed through UHPLC DIONEX Ultimate 
3000 fitted with a TSQ Vantage triple quadrupole mass 
spectrometer, equipped with a heated-electrospray ioniza-
tion (H-ESI-II) source (Thermo Fisher Scientific Inc., San 
Jose, CA, USA). Chromatographic and ionization param-
eters were set following a validated method optimized for 
the analysis of PVLs [39]. Metabolite identification was 
carried out by comparison of the retention time with in-
house synthesized standards and/or MS/MS fragmentation 
patterns. Up to 76 compounds among PVLs, PVAs and 

HPPs were simultaneously monitored in selective reac-
tion monitoring (SRM) mode. Eleven metabolites were 
quantified in urine samples from the two interventions, 
namely 5-phenyl-γ-valerolactone-3ʹ-sulfate, 5-phenyl-γ-
valerolactone-3ʹ-glucuronide, 5-phenyl-γ-valerolactone-
4ʹ-glucuronide, 5-(3ʹ,4ʹ-dihydroxyphenyl)-γ-valerolactone, 
5-(hydroxyphenyl)-γ-valerolactone-sulfate (3ʹ,4ʹ isomers), 
5-(4ʹ-hydroxyphenyl)-γ-valerolactone-3ʹ-glucuronide, 
5-(3ʹ-hydroxyphenyl)-γ-valerolactone-4ʹ-glucuronide, 
5-phenyl-γ-valerolactone-methoxy-sulfate isomer 
(3ʹ,4ʹ), 5-phenyl-γ-valerolactone-sulfate-glucuronide 
isomer (3ʹ,4ʹ), 3-(phenyl)propanoic acid-sulfate and 
3-(phenyl)propanoic acid-glucuronide. This nomen-
clature follows the current recommendations for (poly)
phenol catabolites [40]. Quantification was performed 
with calibration curves of standards, when available. 
When not available, metabolites were quantified with 
the most structurally similar compound, as in the case 
of 5-phenyl-γ-valerolactone-4ʹ-glucuronide, quantified 
as its isomer 5-phenyl-γ-valerolactone-3ʹ-glucuronide; 
5-(4ʹ-hydroxyphenyl)-γ-valerolactone-3ʹ-glucuronide, 
5-(3ʹ-hydroxyphenyl)-γ-valerolactone-4ʹ-glucuronide 
and 5-phenyl-γ-valerolactone-sulfate-glucuronide isomer 
(3ʹ,4ʹ), quantified as 5-(5′-hydroxyphenyl)-γ-valerolactone-
3′-glucuronide; 5-phenyl-γ-valerolactone-methoxy-sulfate 
isomer (3ʹ,4ʹ), quantified with 5-(3′-hydroxyphenyl)-γ-
valerolactone-4′-sulfate (prepared in-house using reported 
procedures, [39]); and the 3-(phenyl)propanoic acid-sul-
fate and –glucuronide, quantified as 3-(4ʹ-hydroxyphenyl)
propanoic acid-3ʹ-sulfate and 3-(4ʹ-hydroxyphenyl)
propanoic acid-3 ʹ-glucuronide (Toronto Research 
Chemicals, Toronto, Canada), respectively. Sums of 
metabolites belonging to the same aglycone compound 
were calculated, namely 5-phenyl-γ-valerolactone-3ʹ-
sulfate and 5-phenyl-γ-valerolactone-3ʹ-glucuronide for 
5-(3′-hydroxyphenyl)-γ-valerolactone aglycone; 5-phenyl-
γ-valerolactone-4ʹ-glucuronide for 5-(4ʹ-hydroxyphenyl)-
γ -va le ro lac tone ;  5 - (3 ʹ , 4 ʹ -d ihydroxyphenyl ) -γ -
valerolactone, 5-(hydroxyphenyl)-γ-valerolactone-sulfate 
(3ʹ,4ʹ isomers), 5-(4ʹ-hydroxyphenyl)-γ-valerolactone-3ʹ-
glucuronide, 5-(3ʹ-hydroxyphenyl)-γ-valerolactone-4ʹ-
glucuronide, 5-phenyl-γ-valerolactone-methoxy-sulfate 
isomer and 5-phenyl-γ-valerolactone-sulfate-glucuronide 
isomer for 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone; and 
3-(phenyl)propanoic acid-sulfate and 3-(phenyl)propanoic 
acid-glucuronide for 3-(hydroxyphenyl)propanoic acid 
aglycone. This way, two different datasets, one consisting 
of 83 observations (samples) and 11 variables correspond-
ing to individual metabolites, and one consisting of 83 
observations (samples) and 4 variables corresponding to 
the sums of metabolites belonging to the same aglycone, 
were considered. All the metabolite data are expressed as 
μmol excreted in 24 h.
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Unsupervised analyses

Principal component analysis

Principal component analysis (PCA) was performed using 
SIMCA 16.0.1 software (Sartorius Stedim Data Analytics, 
Umea, Sweden). Both datasets were subjected to several 
transformations (no transformation, logarithmic transfor-
mation, and power transformation) and four mean center-
ing plus scaling methods: 1) neither centering nor scaling, 
2) only centering, 3) centering plus unit variance scaling 
or autoscaling, and 4) centering with Pareto scaling) of the 
variables, resulting in a total of 24 PCA models. In par-
ticular, logarithmic transformation applied was a 10-based 
logarithm Log (C1*X + C2) where C1 = 1 and C2 = 0 and 
the power transformation was (C1*X + C2)C3 with C1 = 1, 
C2 = 0 and C3 = 2 [41]. No scaling was taken into consid-
eration as many variables already presented values close to 
zero. Centering converted all the data to variations around 
zero instead of around the mean of the data; unit variance 
scaling used standard deviation as scaling factor, while 
Pareto scaling used the square root of standard deviation 
[42]. All models were presented by default with two prin-
cipal components (PC). The parameters used to assess the 
quality of each model and subsequent data interpretability 
were  R2(X) and  Q2, namely the model fit (or explained vari-
ation) and the predictive ability, respectively.

Cluster analysis: cluster identification and consensus

The two datasets, individual metabolites or the sums of 
metabolites belonging to the same aglycone compound, 
were separately submitted to cluster analysis after being 
centered and unit variance scaled. The cluster analysis 
was carried out using R version 3.6.1. [43]. The cluster 
analysis was performed using nine different algorithms, 
namely hierarchical clustering on principal components 
(HCPC) [44], hierarchical k-means (H-Kmeans), hierar-
chical partition around medoids (H-PAM), hierarchical 
fuzzy (H-fuzzy), partition around medoids (PAM) [45], 
k-means (Kmeans) [46], fuzzy c-means [47], hierarchical 
[48] and expectation–maximization (EM) [49]. The number 
of clusters between two and ten clusters was experimented. 
To maintain results stability, the process was repeated for 
five times. Twenty-five internal cluster indexes such as 
Ball Hall, Banfield Raftery, and C index were applied to 
measure how compact the clusters were. The optimal num-
ber of clusters were selected based on the majority voting 
scheme. Using the identified optimal number of clusters, we 
developed nine clustering models using the aforementioned 

algorithms. Majority voting was used to identify the final 
cluster assignments (final consensus, FC). In addition, clus-
tering was carried out taking into account the scores of each 
observation for each principal component (PC) after con-
ducing PCAs with autoscaled data.

Supervised analysis: partial least 
square‑discriminant analysis

PLS-DA on both datasets was performed using SIMCA 
16.0.1 software (Sartorius Stedim Data Analytics, Umea, 
Sweden). Observations were assigned to classes based 
on the results of cluster analysis and their PC scores. 
Variables of both datasets were centered and unit vari-
ance scaled (autoscaled). Model validity was assessed by 
 R2(X),  Q2, the random permutation test, and CV-ANOVA 
within the SIMCA package. The identification of the 
most relevant metabolites from the whole set of metabo-
lites (variable selection) was performed using the Vari-
able Importance in Projection (VIP) scores, estimating the 
importance of each variable in the projection used in a 
PLS model [50]: variables with VIP scores greater than 1 
were considered important in the given model.

Univariate statistics

The urinary excretion of individual metabolites, sums of 
metabolites belonging to the same aglycone compound, 
and sums of sulfate or glucuronide metabolites per each 
cluster defined after applying different clustering methods 
(FC, EM, Kmeans, and PC score-based) were expressed 
as mean ± standard deviation. The normality of data dis-
tribution was checked through the Kolmogorov–Smirnov 
test. Data homoscedasticity was tested with Levene’s 
test. Comparisons between two clusters were performed 
using independent sample t test for normally distributed 
variables or non-parametric Mann–Whitney U test for 
non-normally distributed variables. Comparisons among 
three clusters were investigated by one-way ANOVA with 
post hoc Dunnett’s test (all variables were heteroscedas-
tic) for normally distributed variables or non-parametric 
Kruskal–Wallis test with post hoc pairwise multiple com-
parison for non-normally distributed variables. Differences 
were considered significant at p value < 0.05. Boxplots 
were built using the urinary excretion of sums of metabo-
lites belonging to the same aglycone compound. All these 
univariate statistical analyses were performed using IBM 
SPSS Statistics version 26 (IBM, Chicago, IL, USA).
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Results

Effect of data pre‑treatment on resulting PCA 
models

To evaluate the influence of data pre-treatment on the 
resulting PCA models and derived biological outcomes, 
several transformations and scaling methods were applied 
to the two distinct datasets.

Considering individual metabolites, applying no data 
transformation resulted in better models compared to 
logarithmic and power transformations, which yielded 
worse  R2(X) and  Q2 values than non-transformed models 
(Table 1). In fact, logarithmic transformation of variables 

returned many missing values, due to its inability to deal 
with zero value [42], while power transformation increased 
data skewness, which is not advisable. This was likely due 
to the presence of many excretion values close to zero, 
as it happened for minor excreted metabolites. Regarding 
scaling methods, for every applied transformation, higher 
quality models were obtained when using, in order, no 
scaling > centering > centering with Pareto scaling > cen-
tering with unit variance scaling (UV) (or autoscaling) 
(Table 1). Looking at every model, it was possible to 
identify patterns of metabolite (variable) distribution in 
the loading plot (Fig. 1 and Figure S1A-L). Three types 
of patterns were observed (Table 1): (1) one reflecting 
differences in phase II metabolism (P), as sulfate and 

Table 1  Statistics of computed 
PCA models illustrating 
the effect of transformation 
and scaling methods on the 
datasets considering individual 
metabolites and sums of 
metabolites belonging to the 
same aglycone compound

The two parameters  R2X (cum) and  Q2 (cum) represent, respectively, the model fit (or explained variation) 
and the predictive ability. The higher these values, the better the model. Abbreviations: UV: Unit Variance. 
Centering + UV is so-called autoscaling
*  “Pattern” stands for “pattern of metabolite distribution”: P, data distribution on the basis of the phase II 
metabolism; C, distribution on the basis of the colonic metabolism; R, random distribution (no biological 
explanation)

Individual metabolites

Data pre-treatment Model quality parameters Pattern*

Transformation Mean centering + scaling R2X (cum) Q2 (cum)

None None 0.965 0.781 C
Centering 0.935 0.681 P
Centering + UV 0.621 0.247 C
Centering + Pareto 0.818 0.551 P

Log None 0.862 0.622 P
Centering 0.704 0.303 R
Centering + UV 0.622 0.230 R
Centering + Pareto 0.648 0.257 R

Power None 0.991 0.527 P
Centering 0.990 0.511 P
Centering + UV 0.621 -0.070 C
Centering + Pareto 0.926 0.560 P

Sums of metabolites
Data pre-treatment Model quality parameters Pattern*
Transformation Mean centering + scaling R2X (cum) Q2 (cum)
None None 0.999 0.282 C

Centering 0.998 0.094 C
Centering + UV 0.715  − 0.139 C
Centering + Pareto 0.949 0.076 C

Log None 0.933 0.396 C
Centering 0.728  − 0.210 C
Centering + UV 0.705  − 0.210 C
Centering + Pareto 0.704  − 0.210 C

Power None 1.00 0.063 C
Centering 1.00 0.045 C
Centering + UV 0.720  − 0.210 C
Centering + Pareto 0.998  − 0.020 C
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glucuronide metabolites grouped separately in the load-
ing plot (Fig. 1B); (2) one reflecting differences in colonic 
metabolism (C), on the basis of the derivatives originating 
from a certain aglycone (Fig. 1D); and (3) one resembling 
a random distribution (R), as a biological interpretation 
was not found. A phase II metabolism-based distribution 
pattern was mainly observed after applying centering or 
centering with Pareto, while a colonic metabolism-based 
pattern was shown after autoscaling, regardless of the 
transformation used (Table 1). This colonic metabolism 
pattern accounted for the existence of potential flavan-3-ol 
colonic metabotypes. Interestingly, random distribution 
was only seen after applying logarithmic transformation. 
No pattern was associated with the intervention study 

(acute or chronic) or the treatment/visit type, indicating 
that these aspects did not influence the variability regis-
tered in our data (Fig. 1A and 1C and Figure S1A-L).

The best PCA model showing a phase II metabolism-
based distribution was obtained after non-transforming and 
centering data (Fig. 1A and B). Samples in the top right 
quadrant (Fig. 1A) were characterized by a more abundant 
excretion of 5-(hydroxyphenyl)-γ-valerolactone-sulfate 
(3ʹ,4ʹ isomers) (Fig.  1B), while samples in the bottom 
right quadrant by a higher excretion of glucuronide deriva-
tives of 5-(3ʹ,4ʹ-dihydroxyphenyl)-γ-valerolactone, namely 
5-(4ʹ-hydroxyphenyl)-γ-valerolactone-3ʹ-glucuronide and 
5-(3ʹ-hydroxyphenyl)-γ-valerolactone-4ʹ-glucuronide. These 
three compounds are the most excreted after consumption of 

Fig. 1  Score (A, C, E) and loading (B, D, F) plots resulting after 
PCA analysis on non-transformed, centered data for individual 
metabolites (A, B), non-transformed, centered and unit variance 

scaled data for individual metabolites (C, D), non-transformed, cen-
tered data for sums of metabolites belonging to the same aglycone 
compound (E, F)
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flavan-3-ols [19, 23, 24] and probably phase II metabolism 
of some individuals favours sulfation, while in some others 
glucuronidation is predominant [25, 51]. As a matter of fact, 
when looking at every subject during the different treatments 
(acute study) or intervention days (chronic study), it was 
possible to observe that most of the related samples appeared 
close together, suggesting that the pattern of conjugation of 
flavan-3-ol catabolites is preserved in different subjects (as 
for example samples 44 and 54, 50 and 60, 45 and 55, 47 and 
67 in Fig. 1A). On the other hand, the best PCA model repre-
senting a colonic metabolism pattern was obtained after non 
transforming and autoscaling the data (Fig. 1C and D ). In 
this case, samples in the top right quadrant were character-
ized by a higher urinary concentration of 3-(hydroxyphenyl)
propanoic acid and 5-(hydroxyphenyl)-γ-valerolactone (both 
3′ and 4′) derivatives, while samples in the bottom right 
quadrant were described by a more abundant excretion of 
5-(3′,4′-dihydroxyphenyl)-γ-valerolactone derivatives, sug-
gesting differences in the microbial production and urinary 
excretion of flavan-3-ol catabolites. As in the previous case, 
samples belonging to the same person fell close and within 
the same quadrant (as for example samples 49, 59 and 69, 
32 and 42, 50 and 60, 44 and 54, 45 and 55, 56 and 66, 47 
and 67 in Fig. 1C). This was relevant as it accounted for the 
conservation of the metabolic pattern in the short time.

When considering sums of metabolites belonging to the 
same aglycone, the information about phase II metabolism 
was obviously lost, but it served to better highlight differ-
ences in the colonic metabolism of flavan-3-ols. Also, in 
this case, not transformed data returned higher quality mod-
els compared to logarithmic- and power-transformed data 
(Table 1). Power transformation resulted in overfitted mod-
els, especially when coupled to any scaling or centering. 
Better models were obtained when applying, in order, no 
scaling > centering > centering with Pareto scaling > center-
ing with unit variance scaling (or autoscaling) to data matrix 
(Table 1), as for the individual metabolite dataset. All the 
models showed a colonic metabolism-based distribution 
pattern, even though not all the models displayed similar 
distributions for samples and metabolites in the score and 
loading plots, respectively (Fig. 1E, F and Figure S2A-M). 
The model resulting after non-transforming and centering 
the variables in the dataset is shown in Fig. 1E, F, as an 
example of a high quality PCA model considering sums of 
metabolites belonging to the same aglycone. The informa-
tion gathered from these plots was that the samples placed 
in the top right quadrant were characterized by a higher 
excretion of 3-(hydroxyphenyl)propanoic acids and those 
placed in the bottom right quadrant by a higher excretion 
of 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone derivatives, 
while 5-(hydroxyphenyl)-γ-valerolactones (both 3′ and 4′ 
isomers) did not account for sample variability (Fig. 1E, F). 
In general, the conservative pattern of metabolite production 

among subjects was also observed using the sum of metabo-
lites (i.e., samples 49, 59 and 69, 46 and 56, 50 and 60, 45 
and 55, 44 and 54 in Fig. 1E).

In all these unsupervised analyses, samples out of the 
Hotelling’s circle (as visible in Fig. 1A, C, and E) were not 
defined as outliers to be removed, since there are no pro-
files of metabolite excretion that can be judged as correct 
and incorrect when it comes to the individual production of 
flavan-3-ol metabolites.

Cluster definition

Once PCA highlighted a notable variability in the production 
of PVLs and HPPs, attention was paid into sample group-
ing. Testing several clustering criteria on nine clustering 
algorithms identified two clusters as the optimal number 
of groups best describing the data. This was done when 
considering both datasets (individual metabolites, Fig. 2A, 
and sums of metabolites belonging to the same aglycone 
compound, Fig. 2B) and all the clustering methods tested 
performed similarly, except for the EM algorithm when indi-
vidual data were taken into account (Fig. 2A). Then a FC on 
clustering was voted, based on each observation frequency to 
fall within a group (Table S1). The results of three cluster-
ing methods were then selected to be used for the PLS-DA, 
namely EM, since it performed differently to the rest of the 
clustering algorithms; Kmeans, as it is widely applied [37, 
52] and has already been used when studying the potential 
metabotypization of flavan-3-ol colonic metabolites [25] 
and FC, because it merged and summarized all the results 
obtained after testing all the different clustering algorithms. 
Regarding the distribution of the observations between clus-
ters, one cluster was larger than the other (about 60 obser-
vations vs about 20) for all the three algorithms chosen. Of 
note, a subject allocated in a group after applying a cluster-
ing method on the dataset with individual metabolites was 
not necessarily then allocated in the same group when the 
same clustering method was applied to the dataset with sums 
of metabolites belonging to the same aglycone.

Clustering was also carried out according to the scores of 
each observation for the PCA models obtained after autos-
caling. In particular, two (PC score-based, 2 groups) and 
three clusters (PC score-based, 3 groups) were defined for 
both datasets. Two clusters were obtained by allocating the 
observations with a positive PC2 in a group and the observa-
tions with a negative PC2 in another group, the two clusters 
including a similar number of samples. The three clusters 
were set by allocating the observations with positive PC1 
and PC2 scores in one group, the observations with a posi-
tive PC1 and a negative PC2 score in a second group, and 
the observations with a negative PC1 score in a third group. 



1306 European Journal of Nutrition (2022) 61:1299–1317

1 3

Of these three groups, one was notably more numerous than 
the other two.

PLS‑DA models to explore differences 
between clustering methods and the biological 
relevance of each group

All the PLS-DA models performed with individual metab-
olites taking into account the groups from the selected 
clustering methods showed a good explained variance 

 (R2X) (Table 2). The models performed upon grouping 
by clustering algorithms (FC, EM, Kmeans) showed a 
better predictive ability  (Q2 > 0.5) than the models clus-
tering observations using PC scores  (Q2 < 0.5). All the 
models passed cross-validation by CV-ANOVA (p value 
in Table 2) and by random permutation (Figure S3A-E). 
These results asserted model validation and excluded data 
overfitting. The two PLS-DA models performed using 
the classes defined by FC and Kmeans were very simi-
lar (Fig. 3A, C). In both models, the distribution of the 

Fig. 2  Two-classes cluster plot 
resulted from the application 
of different clustering methods 
on the datasets with individual 
metabolites (A) and with sums 
of metabolites belonging to the 
same aglycone compound (B)
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clusters was due to the amount of metabolites excreted 
(high vs. low) (VIP values for all the models are reported 
in Table S2). Differently, the PLS-DA model performed 
using the classes defined by EM clustering (Fig. 3B) iden-
tified two groups characterized by the excretion of dif-
ferent metabolites: group 1 presented a higher excretion 
of 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone metabolites, 
while group 2 had a higher excretion of 3-(hydroxyphenyl)
propanoic acid derivatives and 5-phenyl-γ-valerolactone-
4′-glucuronide, these differences being attributed to differ-
ences in the colonic metabolism of flavan-3-ols. A simi-
lar trend was observed in the PLS-DA models performed 
using groups defined according to the PC scores (Fig. 3D 
and E), as they were described by the excretion of differ-
ent colonic metabolites. When 2 groups were considered 
(Fig. 3D) (PC score-based, 2groups), group 1 showed a 
higher excretion of (monohydroxyphenyl)-γ-valerolactone 
(both 3′ and 4′) and 3-(hydroxyphenyl)propanoic acid 
derivatives, while group 2 presented a higher excretion 
of 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone metabolites. 
When 3 groups were taken into account (Fig. 3E) (PC 
score-based, 3groups), group 1 was characterized by a 
greater excretion of 5-(hydroxyphenyl)-γ-valerolactone 
(both 3′ and 4′) and 3-(hydroxyphenyl)propanoic acid con-
jugates, group 2 by a higher excretion of mono-conjugated 
5-(3′,4′-dihydroxyphenyl)-γ-valerolactones and group 3 by 
a limited excretion of metabolites. None of the 5 PLS-DA 

models showed a distribution of the observations within 
each group due to phase II metabolism (Fig. 3A-E).

When considering sums of metabolites belonging to 
the same aglycone, all the PLS-DA models exhibited good 
explained variance  (R2X) (Table 2), even better than what 
observed for the PLS-DA models with individual metabo-
lites (Table 2). The models performed using classes defined 
by FC and EM also showed quite good predictive ability 
 (Q2 > 0.5), differently from Kmeans and clustering by PC 
scores  (Q2 < 0.5). All the models passed cross-validation by 
CV-ANOVA (p value in Table 2) and by random permuta-
tion (Figure S4A-E). These results validated the model and 
excluded overfitting of the data.

The idea behind sums of metabolites is to highlight 
colonic metabolism by hiding individual differences attrib-
uted to phase II metabolism. Nevertheless, PLS-DA models 
performed using classes defined by clustering algorithms 
(FC, EM, Kmeans) yielded similar outputs and presented 
data distributions based mainly on the amount of metabolites 
excreted (Table 2, Figure S5A-C, VIP values in Table S2). 
Briefly, most of the samples were characterized by a low 
excretion of metabolites whereas a smaller group showed a 
higher excretion of all of them. A distribution into groups 
reflecting a different colonic metabolism was, however, 
observed in the PLS-DA models obtained using clusters 
defined by the PC scores (Figure S5D, E). When 2 groups 
were defined, one group of observations was characterized 

Table 2  Statistics of computed 
PLS-DA models, considering 
the class resulted from different 
clustering methods and 
individual metabolites or sums 
of metabolites belonging to the 
same aglycone compound

The two parameters  R2X (cum) and  Q2 (cum) represent the model fit (or explained variation) and the pre-
dictive ability, respectively. The higher these values, the better the model
Abbreviations: p value CV-ANOVA is the p value resulting from cross-validation analysis assessing the 
reliability of the model. The model is valid for p value < 0.05
*  “Pattern” stands for “pattern of metabolite distribution”: A, data distribution on the basis of the amount 
of metabolites excreted (high vs. low); C, data distribution on the basis of the colonic metabolism

Individual metabolites

Clustering method Model quality Model reliability Pattern*

R2X (cum) Q2 (cum) p value CV-ANOVA

FC 0.562 0.518 4.2e−12 A
Kmeans 0.565 0.590 4.6e−15 A
EM 0.583 0.538 9.6e−14 C
PC score-based, 2 groups 0.594 0.481 2.3e−10 C
PC score-based, 3 groups 0.618 0.451 3.8e−20 C
Sums of metabolites
Clustering method Model quality Model reliability Pattern*

R2X (cum) Q2 (cum) p value CV-ANOVA
FC 0.712 0.601 6.1e−14 A
Kmeans 0.635 0.492 3.4e−10 A
EM 0.711 0.58 2.5e−13 A
PC score-based, 2 groups 0.713 0.402 1.0e−08 C
PC score-based, 3 groups 0.713 0.452 4.3e−11 C
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by the prevalent excretion of 5-(3′,4′-dihydroxyphenyl)-γ-
valerolactones and 5-(3ʹ-hydroxyphenyl)-γ-valerolactones, 
while the other group was characterized by the excretion 
of 5-(4ʹ-hydroxyphenyl)-γ-valerolactone and 3-(hydroxy-
phenyl)propanoic acid derivatives (Figure S5D). When 
observations were clustered into 3 groups (Figure S5E), 
one group showed a high excretion of 5-(4ʹ-hydroxyphenyl)-
γ-valerolactone and 3-(hydroxyphenyl)propanoic acid 
derivatives, a second group of 5-(3′,4′-dihydroxyphenyl)-γ-
valerolactones and 5-(3ʹ-hydroxyphenyl)-γ-valerolactones, 
and a third larger group was associated to a scarce excretion 
of metabolites.

Univariate statistics confirm the differences 
in metabolite excretion between groups

Results from PLS-DA models and information on discrimi-
nating metabolites were confirmed by univariate statistics. 
Considering individual metabolites (Table 3), after clus-
tering on the basis of FC and Kmeans, the small group of 
high excretors of flavan-3-ol catabolites showed statistically 
significant differences in the urinary excretion of most of 
the metabolites in comparison with the larger group of low 
excretors (Table 3), except for 5-phenyl-γ-valerolactone-4′-
glucuronide (and 5-phenyl-γ-valerolactone-3′-glucuronide 
in the case of the Kmeans-based groups). On the contrary, 
EM clustering identified significant differences only in 
the quantities of 5-phenyl-γ-valerolactone-4′-glucuronide, 
5-(3′-hydroxyphenyl)-γ-valerolactone-4′-glucuronide and 
3-(phenyl)propanoic acid-glucuronide, these compounds 
being excreted at higher levels in the group with a lower 
number of observations. PC score-based clustering into two 
groups distinguished a cluster of subjects excreting higher 
amounts of 5-(hydroxyphenyl)-γ-valerolactones (both 3′ and 
4′ derivatives) and 3-(phenyl)propanoic acid-glucuronide 
and lower quantities of some 5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone derivatives, while the other cluster showed an 
inverse excretion pattern, clearly marked by the differential 
colonic metabolism of flavan-3-ols (Table 3). When three 
PC score-based groups were considered, one larger group 
was characterized by a low excretion of all metabolites (low 
excretors), another smaller group by a high excretion of 
5-(hydroxyphenyl)-γ-valerolactone (both 3′ and 4′ isomers) 
and 3-(hydroxyphenyl)propanoic acid conjugates, as well as 
a moderate excretion of main 5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone derivatives, and a third small group by a low/
moderate excretion of 5-(hydroxyphenyl)-γ-valerolactone 

(3′/4′) and 3-(hydroxyphenyl)propanoic acid conjugates, 
and a high excretion of main 5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone derivatives (Table 3). In this model, all the 
metabolites reported statistically significant differences 
among groups.

To favor comparisons between data processing strategies, 
data for individual metabolites were also pooled, once clus-
ters were defined. Results for sums of metabolites belonging 
to the same aglycone reflected the same trend previously 
described for individual metabolites on the basis of each 
clustering approach (Fig. 4). The general trend described for 
the dataset with individual metabolites was also confirmed 
when clustering was performed on the datasets with sums 
of metabolites belonging to the same aglycone. Neverthe-
less, some differences in comparison to the previous results 
were observed. In particular, 5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone was not significant between the two clusters 
for FC model, while differences in 5-(4′-hydroxyphenyl)-γ-
valerolactone were statistically significant (Fig. 4). For the 
Kmeans model, 5-(3′-hydroxyphenyl)-γ-valerolactone and 
5-(4′-hydroxyphenyl)-γ-valerolactone were significantly 
different between the two clusters. 5-(3′-hydroxyphenyl)-
γ-valerolactone was significantly different as well in 
EM model. PC score-based model with 2 groups did not 
yield statistically significant differences for the sum of 
5-(3′-hydroxyphenyl)-γ-valerolactones. Differences in 
5-(3′,4′-dihydroxyphenyl)-γ-valerolactone excretion between 
groups for the PC score-based model with 3 groups were 
the same as reported when individual data was considered, 
while for the other aglycones some differences in their excre-
tion were found (Fig. 4).

The sum of metabolites was also conducted by consid-
ering phase II metabolism (sulfation and glucuronidation) 
using the dataset for individual metabolites. After clustering 
by FC and Kmeans, the small observation groups presented 
higher excretion of sulfate and glucuronide derivatives 
(Table 3). Something similar was seen for the PC score-
based model on 3 groups, with 2 groups having a higher 
excretion of phase II conjugates than the third group, but 
without differences between the 2 groups with a high excre-
tion of PVLs and HPPs. The PC score-based model on 2 
groups did not yield differences in the rate of conjugations 
between groups, while EM clustering returned a group char-
acterized by the higher excretion of glucuronide (Table 3).

Sulfate/glucuronide ratio as proxy of individual 
variability in phase II metabolism

To investigate deeper the inter-individual variability in phase 
II metabolism, an aspect that was previously described [25, 
51], the sulfate/glucuronide ratios of the sums of all metabo-
lites (Fig. 5A), 5-(3′,4′-dihydroxyphenyl)-γ-valerolactones 
(Fig. 5B), 5-(hydroxyphenyl)-γ-valerolactones (Figure S6A) 

Fig. 3  A-E PLS-DA models (score and loading plots) consider-
ing individual metabolites and the clusters obtained from different 
clustering methods: (A) final consensus  –– FC  ––, (B) k-means  –– 
Kmeans ––, (C) expectation–maximization — EM — and PC score-
based models for 2 (D) or 3 (E) groups

◂
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and 3-(hydroxyphenyl)propanoic acids (Figure S6B) were 
calculated. 5-phenyl-γ-valerolactone-sulfate-glucuronide 
isomer (3ʹ,4ʹ) was excluded from the calculation. In general, 
the sulfate/glucuronide ratio of the sums of all metabolites 
(Fig. 5A) and of the sums of aglycones (Fig. 5B, Figure 
S6A and B) was in favor of glucuronide conjugates. Just 
very few subjects (n = 2 for the sum of all metabolites, n = 7 
for 5-(3′,4′-dihydroxyphenyl)-γ-valerolactones) presented a 
ratio higher than 1.1, meaning higher excretion of sulfate 
conjugates. This observation was in line with one of the 
PCA models characterized by a more abundant excretion 
of 5-(hydroxyphenyl)-γ-valerolactone-sulfate (3ʹ,4ʹ isomers, 
Fig. 1A,B).

A positive linear correlation was clearly observed 
(r = 0.977, p < 0.001) between the sulfate/glucuronide ratio 
of the sums of all the metabolites and the sulfate/glucuro-
nide ratio of 5-(3′,4′-dihydroxyphenyl)-γ-valerolactones 
(Fig. 5C), suggesting that the ratio of the sums of all the 
sulfate or glucuronide metabolites is mainly influenced by 
the sulfate/glucuronide ratio of 5-(3′,4′-dihydroxyphenyl)-
γ-valerolactones, which were actually the main excreted 
metabolites. Weaker correlations were observed between 

the sulfate/glucuronide ratio of the sums of metabolites and 
the sulfate/glucuronide ratio of both 5-(hydroxyphenyl)-
γ-valerolactones (r = 0.547, p < 0.001, Figure S6C) or 
3-(hydroxyphenyl)propanoic acids (r = 0.724, p < 0.001, 
Figure S6D).

Discussion

When flavan-3-ols are consumed, different patterns of pro-
duction and excretion of their main colonic metabolites, 
namely PVLs and HPPs, can be observed due to the unique 
genetic asset and microbiota composition of each individual 
[20–23, 25–29]. For instance, some subjects may be more 
efficient in metabolizing flavan-3-ols and producing higher 
quantities of metabolites compared to others [25, 53], or 
glucuronidation may be favored in some individuals rather 
than sulfation [25, 51]. Metabotyping may be a strategy to 
manage this individual variability and to further investigate 
its consequences in the impact on the observed health effects 
attributed to flavan-3-ols. This work demonstrates that, by 
applying different strategies of multivariate data analysis, 

Fig. 4  Mean urinary excretion (µmol) over 24 h of sums of metabo-
lites belonging to the same aglycone compound (3ʹOH-PVLs, sum of 
conjugates from the aglycone 5-(3′-hydroxyphenyl)-γ-valerolactone; 
4ʹOH-PVLs, 5-(4ʹ-hydroxyphenyl)-γ-valerolactone; 3ʹ,4ʹdiOH-PVLs, 
5-(3′,4′-dihydroxyphenyl)-γ-valerolactone; HPPs, 3-(hydroxyphe-
nyl)propanoic acid), calculated both before and after cluster analysis 

(“Individual” and “Sums”, respectively). Clustering has been per-
formed on the basis of: Final Consensus (first column), k-means (sec-
ond column), expectation–maximization algorithm (third column), 
PC score forming 2 groups (fourth column), PC score forming 3 
groups (fifth column). Different letters indicate statistically significant 
differences (p < 0.05) among groups 1 and 2 or 1, 2 and 3
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it is possible to cluster all these different metabolic pat-
terns, characterizing groups of individuals. This outcome 
confirmed thus the existence of metabotypes in the urinary 
excretion of flavan-3-ol colonic metabolites, as previously 
hypothesized [26], even though results were different from 
those preliminary ones.

Data pre-treatment deeply influenced the observa-
tions gathered from PCA. No transformation of the data 
returned higher quality models. Mean centering and mean 

centering + Pareto scaling highlighted different patterns of 
phase II metabolism (sulfation vs. glucuronidation), while 
centering + UV scaling showed different patterns of colonic 
metabolism. These facts emphasized the importance of 
data pre-treatment when analyzing datasets of flavan-3-ol 
metabolites, as it is well acknowledged that pre-treatment 
procedures in metabolomics studies may greatly influence 
the biological relevance of the results [42].

The inter-individual variability in phase II metabolism 
observed using certain PCA models revealed that most of 
the subjects excreted higher quantities of glucuronide deriva-
tives, and this was supported by the analysis of the sulfate/
glucuronide ratio and, especially, of the sulfate/glucuron-
ide ratio of 5-(3′,4′-dihydroxyphenyl)-γ-valerolactones, 
quantitatively the main excreted metabolites, as previously 
discussed [23]. This variability could be related to genetic 
polymorphisms in phase II enzymes [54–56], but also to 
the influence of the dose of flavan-3-ols, since the sulfona-
tion pathway has higher affinity but lower capacity than the 
glucuronidation one, so that when the consumed amount of 
flavan-3-ols increases, a shift from sulfation toward glucuro-
nidation might occur [57]. This may be an explanation with 
respect to other works reporting a higher excretion of sulfate 
derivatives [22, 51], together with the lack of the respective 
reference compound for metabolite quantification [58], but 
further research is needed to better understand the reasons 
behind these differences in phase II metabolism. Therefore, 
to overcome experimental limitations associated with the 
production and quantification of phase II metabolites, the 
sums of metabolites belonging to the same aglycone were 
taken into account, also as a strategy that should lead to 
a better assessment of colonic metabolism. However, this 
reductive approach did not yield any benefits in comparison 
with processing individual metabolite data and calculating 
sums at the end of the procedure, in line with a previous 
report [26]. It is worth mentioning that different PCA data 
pre-treatments should be assessed to fully understand and 
summarize what happens at colonic level, as well as in phase 
II conjugation.

Regarding clustering algorithms, EM, rather than the 
broadly used Kmeans algorithm, was useful in clustering 
individuals on the basis of their pattern of excretion of 
colonic metabolites (i.e., flavan-3-ol colonic metabotypes). 
Kmeans served its purpose to identify groups of individuals 
with different metabolic profiles in the production of flavan-
3-ol colonic metabolites [25], but, in the present work, it 
was quite influenced by the overall amount of metabolites 
excreted. The PLS-DA model built using EM clustering 
was also affected by the excreted amount of metabolites, 
but it showed a trend towards a different metabolic profiles, 
as a group of individuals was characterized by a relatively 
high excretion of 5-(4′-hydroxyphenyl)-γ-valerolactone and 
HPP derivatives, while the other by a reduced production of 

Fig. 5  Inter-individual variability in phase II metabolism illus-
trated by the sulfate (SULF)/glucuronide (GLUC) ratio of 
the sums of respective conjugated metabolites (A) and of 
5-(3′,4′-dihydroxyphenyl)-γ-valerolactones (dOH-PVL) (B) in 
urine samples. (C) Relationship between the sulfate/glucuron-
ide ratio of all the metabolites and the sulfate/glucuronide ratio of 
5-(3′,4′-dihydroxyphenyl)-γ-valerolactones
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these metabolites. The models better highlighting urinary 
metabotypes of flavan-3-ol colonic metabolites were the two 
models built using PC scores for clustering. The model with 
two groups of observations suggested that a small group of 
subjects is more able to metabolize flavan-3-ols into smaller 
metabolites (5-(hydroxyphenyl)-γ-valerolactones—both 
3ʹ and 4ʹ- and HPPs), while 5-(3ʹ,4ʹ-dihydroxyphenyl)-γ-
valerolactones was predominant in the main group, fully 
in line with previous data [25, 26]. The model with three 
groups was able to discriminate observations on the basis 
of both the total amount excreted and the pattern of colonic 
metabolites, leading to metabotypes deserving to be further 
investigated in future bioactivity and functional studies. It 
should be noted that the PC score-based strategy had the 
power of well describing the data, but a limited predictive 
ability. Nevertheless, generalizable predictive models in 
flavan-3-ol colonic catabolism are not expected due to the 
chemical complexity of this family of polyphenols and to 
their variability in dietary sources administered. For exam-
ple, flavan-3-ols from green tea are rich in trihydroxylated 
precursors and may lead to more complex metabolic path-
ways [26], flavan-3-ols from cranberries, the case of the pre-
sent work, are poor of trihydroxylated precursors and rich 
in dihydroxylated ones, while the intervention by Cortés-
Martín and colleagues [25] consisted of a supplementation 
of 54.5 mg/d of nut procyanidins, but in free-diet conditions, 
so that the presence of both dihydroxylated and trihydroxy-
lated precursors is foreseeable according to epidemiological 
data on the consumption of flavan-3-ols in similar popula-
tions [4, 5, 59, 60].

Fecal fermentation of (−)-epicatechin has also high-
lighted the possible existence of metabotypes among 24 
individuals using PCA and hierarchical clustering, where 
different patterns of (−)-epicatechin catabolism were 
observed [36]. Common features on metabolic phenotypes 
have been observed, regardless of the experimental set-
ting, like, for example, the ability of some individuals to 
metabolise 5-(3ʹ,4ʹ-dihydroxyphenyl)-γ-valerolactone into 
5-(hydroxyphenyl)-γ-valerolactones and HPPs at a faster 
pace and the presence of low producers of all metabolites. 
However, the allocation of most of the individuals into spe-
cific metabotypes will depend on the dataset used, unless 
further insights on key discriminant metabolites arise, or 
massive epidemiological evidence is collected to establish 
specific thresholds.

The biological causes behind the observed metabotypes 
may rely on the differences in gut microbiota composition 
of individuals, as this has been reported to be the most 
important factor modulating the inter-individual variability 
reported in the colonic metabolism of phenolic compounds 
[61] and, in particular, of flavan-3-ols [19, 36]. Information 
on specific bacterial strains and enzymes involved in the 
bioconversion of flavan-3-ols to PVLs and low molecular 

weight phenolic acids, as well as on factors that may modu-
late their activities, is very limited. Up to now, Adlercreut-
zia equolifaciens, Eggerthella lenta, Flavonifractor plautii, 
and Lactobacillus plantarum IFPL935 are the only bacte-
ria identified as responsible for the catabolism of flavan-
3-ols into 5-(3′,4ʹ-dihydroxyphenyl)-γ-valerolactone and 
5-(3ʹ-hydroxyphenyl)-γ-valerolactone [18, 62, 63], but, for 
example, 5-(4ʹ-hydroxyphenyl)-γ-valerolactone has not been 
described as one of their catabolic products. In addition, 
no microorganisms responsible for further β-oxidation into 
3-(hydroxyphenyl)propanoic acids have been reported, yet.

Besides a better understanding of the metabolism and bio-
availability of flavan-3-ols, the importance of identifying 
different metabotypes relies on the possibility of unravelling 
the health effects associated with flavan-3-ol consumption 
and associated to their microbiota-derived metabolites, as 
it has been described for isoflavones (with equol produc-
tion) and ellagitannins (with urolithin production) [33–35]. 
For instance, in vitro findings support the biological effects 
of flavan‐3‐ol colonic metabolites against uropathogenic 
Escherichia coli adherence to uroepithelial cells [12, 13], 
while it is well known that human studies administering 
cranberry flavan-3-ols to prevent urinary tract infections 
(UTIs) have reported conflicting results [64, 65]. This might 
be due to different profiles of excreted metabolites, exerting 
different biological effects. In this sense, clustering subjects 
according to their urinary metabotype of flavan-3-ol colonic 
metabolites may provide new insights in the actual effect of 
flavan-3-ols on UTI prevention, not only through cranberries 
but potentially also from other flavan-3-ol food sources like 
cocoa, wine, pome fruits, other berries, and nuts.

Conclusion

The current work shed light on the existence of metabotypes 
in the urinary excretion of flavan-3-ol metabolites, which 
are not characterized by the production/non-production 
of specific metabolites, but by different quali-quantitative 
metabolic profiles. A series of univariate and multivariate 
tools, all broadly accessible to the research community, 
highlighted the importance of data pre-treatment and clus-
tering methods on the final outcomes for a given dataset. 
Different profiles in the urinary excretion of PLVs and 
HPPs were observed upon cranberry consumption in two 
diverse experimental settings, these metabolic profiles being 
related to not only specific pathways of phase II metabolism 
but also the type of metabolites produced at colonic level. 
Insights depended on PCA data pre-treatment: non-trans-
formed, centered, and UV-scaled data were key to unravel 
metabolic patterns based on colonic metabolism, while other 
approaches favored differences in phase II metabolism. 
Regarding clustering, while Kmeans and a FC algorithm 
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highlighted differences in the overall production of PVLs 
and HPPs, the EM algorithm and PC score-based clustering 
yielded well-defined metabotypes in the urinary excretion of 
these metabolites. The true physiological relevance of each 
metabotyping model, whether based on phase II or colonic 
metabolism, will be related to the application of these inter-
individual differences to explore their potential impact on 
the biological activity of this major (poly)phenol subclass. 
When applied to physiological outcomes, different ways of 
metabotyping may lead to different biological observations, 
fostering the understanding of the impact of flavan-3-ols on 
human health. The unambiguous elucidation of metabotypes 
and the allocation of subjects into a metabotype or another, 
when dealing with (poly)phenols not characterized by the 
selective production of specific metabolites, will likely 
depend on the datasets considered for the development of 
further predictive models. Therefore, these results, both the 
proposed metabotypes and the defined procedures, should 
be validated in larger datasets involving a higher number of 
participants, more phenolic metabolites from the flavan-3-ol 
metabolic pathway, and different sources of flavan-3-ols. In 
any case, this work represents an additional step toward the 
understanding of the bioavailability of flavan-3-ols and the 
inter-individual variability associated to these compounds 
and it will be useful for future studies aiming to investigate 
metabolic phenotypes in the production and urinary excre-
tion of other classes of phenolic metabolites.
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