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Spatial multi-scale relationships of 
ecosystem services: A case study 
using a geostatistical methodology
Yang Liu1,2, Jun Bi2, Jianshu Lv3, Zongwei Ma2 & Ce Wang2

Adequately understanding the spatial multi-scale relationships of ecosystem services (ES) is an 
important step for environmental management decision-making. Here, we used spatially explicit 
methods to estimate five critical ES (nitrogen and phosphorous purifications, crop production, water 
supply and soil retention) related to non-point source (NPS) pollution in the Taihu Basin region of 
eastern China. Then a factorial kriging analysis and stepwise multiple regression were performed 
to identify the spatial multi-scale relationships of ES and their dominant factors at each scale. The 
spatial variations in ES were characterized at the 12 km and 83 km scales and the result indicated 
that the relationships of these services were scale dependent. It was inferred that at the 12 km scale, 
ES were controlled by anthropogenic activities and their relationships were dependent on socio-
economic factors. At the 83 km scale, we suggested that ES were primarily dominated by the physical 
environment. Moreover, the policy implications of ES relationships and their dominant factors were 
discussed for the multi-level governance of NPS pollution. Overall, this study presents an optimized 
approach to identifying ES relationships at multiple spatial scales and illustrates how appropriate 
information can help guide water management.

Ecosystem services (ES) contribute to human wellbeing and have drawn considerable attention from govern-
ments and the public around the world1, 2. Numerous studies have been conducted to quantify, map, and value 
ES3–5. However, information on the relationships between ES remains limited, which presents challenges for 
integrating ES into actual management that considers the benefits for different stakeholder groups6–8. Previous 
studies have explored the ecological relationships among ES9, 10 as well as the congruence between ES demand and 
supply11, 12 at a given scale. Most results indicated that “trade-offs” and “synergetic” relationships occur among 
multiple ES or between different types of services, such as provisioning services, regulatory services, support ser-
vices and cultural services13, 14. At the spatial and temporal scales and in terms of reversibility, ES relationships are 
complex6, 15, 16. Thus, further studies of ES relationships must be conducted at multiple scales.

Scale refers to physical dimensions in space and time, and is defined according to the extent and resolution17, 18.  
Ecological patterns and processes change at different scales, which is known as the scale dependence or scale 
effect17, 19. This feature is particularly apparent for spatial scales and represented by spatial heterogeneity as well 
as hierarchical variability. Ecosystems have different horizontal and hierarchical structures that determine ES 
spatial-scale features20 and further influence ES relationships16, 21, 22. Thus, identifying multi-scale spatial rela-
tionships among ES is important. Without an adequate understanding of these relationships, implementing man-
agement decisions may result in unexpected changes in the provisioning of ES and may threaten the stability 
and security of the ecosystems. However, to date, few ES studies have explicitly quantified ES spatial multi-scale 
relationships.

The scale dependence of ES relationships is not always apparent because of variations in methodological relia-
bility as well as data availability and accuracy. Correlation coefficients, principle component analyses and overlap 
analyses have been commonly applied to examine ES relationships12, 23–26. Although these methods can analyse 
correlations in two or more ES, they cannot interpret the relationships at multiple spatial scales. Geostatistical 
methodologies have been widely used to model the spatial variability and correlations among heavy metals, nutri-
ents, and physical-chemical properties in studies related to soil and the environment27–29. The factorial kriging 
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analysis (FKA) method, which is a multivariate geostatistical approach, can examine the spatial relationships of 
given variables at multiple scales and divide the total variation into different spatial components that present sep-
arate relationships to the spatial scale28. The FKA method could lead to a better understanding of ES relationships 
at multiple spatial scales. To the best of our knowledge, classical geostatistical methods (e.g., ordinary kriging, 
indicator kriging, etc.) have rarely been used in the study of ES30, and FKA has never been applied to examine the 
spatial multi-scale relationships among ES. In this paper, we used FKA to quantify the spatial variability of ES and 
distinguish the static associations (positive or negative correlation) between ES at multiple scales.

Identifying the factors that influence ES is a key step in understanding the spatial scale dependence of ES 
relationships and essential to managing multiple ES to improve ecosystem functions31, 32. Nevertheless, the driv-
ers of ES supply are complex, and the mechanisms underlying ES relationships are not straightforward6, 12, 33. 
Biophysical and socio-economic factors can be considered the main types of drivers that affect the spatial het-
erogeneity of ES12. These factors have scale-dependent impacts on ecological processes because of their differ-
ent functional ranges34, 35 and drive changes in ecosystem functions, which result in variations in ES supply. 
Commonly, natural factors with wide spatial distributions may influence ecological processes over a large range, 
whereas human activities tend to operate at a smaller scale27, 28. Therefore, the relationships of ES are character-
ized by spatial scales and tend to vary from scale to scale.

Revealing the policy implications of spatial relationships among ES is essential for transferring ideas into 
public policy action and advancing sustainability goals13, 16. Recently, high-profile efforts have emphasized that ES 
relationships should be integrated into important social decisions36, including land use25, 37–39, ecosystem-based 
management40, 41, biodiversity conservation32, payment projects42, 43, etc. Nonetheless, limited information is 
available on quantifying ES relationships related to freshwater in a regional basin13, 44. In China, many watersheds 
suffer from critical issues, such as water quality degradation, water shortages, sediment erosion, and water use 
conflicts between upstream and downstream regions. Of all these issues, non-point source (NPS) pollution rep-
resents a primary problem. Thus, ES studies related to water pollution should be promoted for government poli-
cymaking45 (e.g., payment policy, spatially targeted management, etc.). Moreover, studies should be performed to 
identify sets of critical services, quantify services spatially and temporally, and understand their interactions and 
impact factors at different scales6, 12, 16.

Because of the demand for ES studies in regional watersheds, our study is designated to verify and interpret 
spatial multi-scale relationships of ES related to NPS pollution and identify the factors influencing regional water 
management. Thus, this study focuses on (1) quantifying five critical services (nitrogen and phosphorous puri-
fications, crop production, water supply and soil retention) using spatially explicit methods; (2) using FKA to 
generate the spatial components for the ES relationships analyses at multiple scales; and (3) performing stepwise 
regression analyses to reveal the factors determining spatial multi-scale ES relationships. Moreover, we propose 
policy implications for managing NPS pollution from the perspective of ES multi-scale relationships. We selected 
the Jiangsu section of the Taihu Basin region as our study area because of its ecological and economic significance 
in China. We hope our study will provide information that can be used for freshwater management in the region 
and provide a basis for natural conservation area planning.

Methods
Study area and data materials.  Taihu Lake is the third largest freshwater lake in China, and it is located 
in the highly developed and densely populated Yangtze River Delta of Eastern China46, 47(Figure S1). Taihu Basin 
covers 36900 km2. The Jiangsu section accounts for 53% of the basin and represents an independent water con-
servancy region divided by the Ministry of Water Resources of the P.R.C. We selected this region because it is a 
typical example of agricultural development that has occurred along with rapid urbanization in many parts of 
the world. The study area is densely populated (Figure S2) and is characterized by a diverse land use/land cover 
(Figure S3). NPS pollution and industrial pollution are the major environmental concerns in the region and have 
resulted in the serious degradation of freshwater ecosystems as well as frequent outbreaks of eutrophication since 
the 1990s48. Many measures have been implemented in China to improve water quality, such as major water-ori-
ented special projects by the Chinese government. Currently, industrial pollution has been effectively controlled, 
although serious NPS pollution issues remain. Regional decision makers are attempting to balance agricultural 
development, urbanization and environmental protection. In this study, we analysed ES relationships and influ-
encing factors to provide a reference for decision makers regarding NPS pollution. Data from 2010 were used 
because of their availability. Additional detail on the data sources is provided in the Supporting Information (SI 
text).

Ecosystem services and factors quantification.  We classified ES into direct services and indirect ser-
vices based on the studies of Boyd et al.49, Johnston et al.50 and Nahlik et al.51. Excess nitrogen and phosphorus 
from NPS runoff has become the major threat to water quality in the study area. Therefore, nitrogen and phos-
phorus purifications were identified as direct services. Ecosystems provide water to generate hydrologic cycles 
that dissolve and separate out nutrients; therefore, the water supply could be selected as one indirect service. Soil 
retention was another indirect service because it can prevent soil erosion inputs to streams and maintain the soil’s 
capacity to filter pollutants. Crop production is an important provisioning service because of agricultural devel-
opment in the Taihu Basin region. This service may aggravate NPS pollution through excess fertilization from 
farms; thus, we defined it as a negative indirect service.

A set of biophysical indicators were used as ES metrics as they can represent the ecosystem functions leading 
to human benefits and can be more easily understood by stakeholders and policymakers13 (Table 1). Nitrogen 
loading and phosphorus loading were inverse proxies of water purification services, which were different from 
three other indicators. We used biophysical models and empirical estimations to quantify and map the indicators 
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of ES (SI text). Local monitoring, statistical data and similar researches were applied to evaluate the accuracy of 
the ES calculations. Details on the ES quantifications are specified in the SI text and Tables S1–S4.

Thirty-one environmental and socio-economic factors were selected for the dominant factor analysis after 
verifying the multicollinearity between factor variables using Spearman’s correlation52. We classified these factors 
into 10 types: climate, terrain, hydrology, soil, vegetation, accessibility, social development, residential condition, 
agricultural situation, and land use (see Table S5). The data at different resolutions were unified into a 30-m spa-
tial resolution gird using ArcGIS 10.2 software (Esri, Inc.). Details of the factors quantifications are specified in 
the SI text.

Spatial multi-scale analysis of ecosystem services.  Because the 30-m spatial resolution raster compli-
cated the following statistical analysis, we extracted the ES information from a subset of selected random points 
using ArcGIS 10.2 software. Different point numbers ranging from 1000 to 30000 in increments of 1000 were 
tested, and a value of 10000 sampling points was eventually selected by the cross-validation, which was the small-
est value that resulted in a robust statistical analysis.

We used the FKA method to characterize the spatial variability and correlations of ES at multiple spatial scales. 
This method is used to fit a linear model of co-regionalization (LMC) and decompose total variation into multiple 
spatial components based on spatial structure ranges. The experimental variogram provides an empirical descrip-
tion of total spatial variability at different lag distances and is used to find key ranges of spatial structures. The 
variogram changes gradually with stepped increments in distance and appears to have an inflection point at one 
lag distance, which is the significant range of ES spatial variability. Once the range exceeds a certain distance, the 
variogram no longer changes, and this distance represents the maximum range of variability. Both ranges are key 
scales for dividing spatial components. Then, a structure correlation coefficient and principle component anal-
ysis (PCA) based on a co-regionalization matrix can be used to interpret the spatial interrelationships between 
variables at each scale27 and maps of spatial components can be generated via ordinary cokriging53. Detailed 
information on the FKA method is presented in the SI text. All steps of the geostatistical analysis were conducted 
using ISATIS software (Geovariances, Inc.).

In addition, we applied classical statistical methods, including Pearson’s correlations and PCA, to analyse the 
ES relationships without explicitly considering the different scales of spatial variability. These processes were 
performed using SPSS software (SPSS, Inc.).

Identification of dominant factors.  We used stepwise multiple regressions to identify the dominant fac-
tors that impact the spatial variation and ES relationships at each scale. The FKA estimates of the spatial compo-
nents were considered dependent variables, and the influencing factors were considered independent variables. 
The R2 results from the regression models were used to explain the importance of the types of factors or individual 
factors. Stepwise multiple regressions were conducted in SPSS software (SPSS, Inc.).

Results
Spatial distribution of ecosystem services.  Empirical statistical and biophysical models were used to 
quantify five ES, and the spatial pattern of each service was the integrated result of the variables used to calculate 
the ES indicator. The resulting spatial distributions and statistical information for the five ES are shown in Fig. 1 
and Table S6 respectively. The nitrogen loading (NL) value ranged from 0 to 62.15 kg/ha. The low value areas for 
the nitrogen purification service (high value areas of NL) were primarily distributed in the northern and western 
regions of the study area, whereas the high value areas (low value areas of NL) were located in the southern and 
eastern regions. The phosphorus loading (PL) value ranged from 0 to 6.51 kg/ha. The low value areas for phos-
phorus purification (high value areas of PL) were mainly located in the eastern and northern regions, whereas the 
areas with high value (low value areas of PL) were consistent with forest, wetland and ecological protection areas 
as determined through a spatial overlay analysis with land use/land cover maps (Figure S3). The water supply 
service (WS) value ranged from 197.09 to 1173.16 mm and was characterized by low values in the central region 
and high values in the surrounding areas. The soil retention service (SR) value ranged from 0 to 82.54 t/ha, with 
the low value areas showing a wide distribution and the high value areas showing a limited distribution, primarily 
in areas covered with forest and grass (Figure S3). The crop production (CP) value ranged from 0 to 16.42 t/ha. 
Spatial patterns of CP varied noticeably across the total area, with the high values in the west and north and low 
values in the non-agricultural land areas (Figure S3).

Ecosystem Service Biophysical indicator Unit

Direct Service

 Water purification-Nitrogen 
loading (NL)

Annual nitrogen 
loading kg/ha

 Water purification-Phosphorus 
loading (PL)

Annual phosphorus 
loading kg/ha

Indirect Service

 Water supply (WS) Annual water yield mm

 Soil retention (SR) Annual soil loss 
reduction t/ha

 Crop production (CP) Annual crop yield t/ha

Table 1.  Ecosystem services and corresponding biophysical indicators.
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Spatial variability of ecosystem services.  The experimental variograms of ES variables (Figure S4) indi-
cates that the inflection ranges are between 10 and 15 km, and that the variograms flatten out at ranges exceeding 
80 km. Considering the optimum mean error (ME) and mean of squared standardized errors (MSSE), we uni-
formly divided the ES variations into 3 spatial components via LMC fitting. The theoretic variogram in equations 
(1) and (2) was expressed as the sum of 3 spatial components, which included a nugget effect, an exponential 
structure with a range of 12 km (short-range structure at the local scale), and a spherical structure with a range of 
83 km (long-range structure at the regional scale).
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1 is the sill of the short-range structure, and bij
2 is the sill of the long-range structure. 

The LMC parameters and variation percentages for each structure are presented in Table S7. The spatial ranges of 
12 km and 83 km showed distinct changes in the variograms of the five ES variables.

Figure 1.  Spatial distribution of five ecosystem services in Taihu Basin, Jiangsu in 2010. Green indicates high 
value areas of ecosystem services, red and yellow indicate areas with low and moderate values, respectively, and 
blue represents water. Maps generated with ArcGIS 10.2.2 (http://www.esri.com/software/arcgis).
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The nugget effect tends to originate from errors due to data at different spatial resolutions and from sampling 
distance27. However, inherent variability and heterogeneity of the ES dominated the different nugget effects of 
five ES in this study. The nugget effect explaining the 89.46% of the total variance of SR was higher than those for 
other ES (Figure S4 and Table S7). It could be seen that the SR values are mostly low, as was the inherent varia-
bility and heterogeneity of SR (Fig. 1). The values of the experimental variograms did not increase significantly 
with the increasing lag distances, and all values of the experimental variograms were close to 1 (Figure S4), which 
result in the higher nugget effect than other ES. As our study aimed to reveal potential ES relationships at multiple 
spatial scales, thus the nugget effect was not considered in the subsequent analyses.

The estimated spatial components of ES variations at the two scales were interpolated and mapped using ordi-
nary cokriging with a 2D grid with 30-m mesh nodes28 (Figs 2, 3). The values of the spatial components ranged 
from −1.3 to 0.9. In order to show the spatial variability of ES explicitly, we standardized the original values of 
spatial components to a range between −1 and 1 at each scale. A value of -1 indicated the minimum value of ES 
components, and a value of 1 indicated the maximum value.

Figure 2.  Spatial components of five ecosystem services at the local scale (12 km) in Taihu Basin, Jiangsu in 
2010. 1 in the legend indicates high value areas of spatial component variability, −1 in the legend indicates areas 
with low value variability, and blue represents water. Maps were generated with ArcGIS 10.2.2 (http://www.esri.
com/software/arcgis).
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At the local scale, spatial variations in the ES components were relatively dispersed compared with ES var-
iations in the regional scale. The patches with high values of NL, PL and CP were consistent with their spatial 
patterns (Figs 1, 2), whereas the high values of WS appeared to be random. At the regional scale, the spatial 
component variability of the ES presented a wide and continuous distribution. The NL and PL values exhibited 
similar spatial variations, and high values appeared to be more widely distributed than their corresponding spatial 
patterns (Figs 1, 3). The CP and SR values also presented similar variations and a small proportion of low values. 
The spatial component of the WS at this scale was consistent with its corresponding service pattern.

Multi-scale relationships of ecosystem services.  Pearson correlation coefficients were used to analyse 
the relationships of various ES (Table 2), with spatial variability indicated in Fig. 1. Structure correlation coef-
ficients were calculated to analyse ES relationships at 12 km and 83 km scales (Table 2, Figs 2 and 3). Moderate 
correlations were observed between the NL and PL values (r = 0.526) by Pearson correlation analysis, and their 

Figure 3.  Spatial components of five ecosystem services at the regional scale (83 km) in Taihu Basin, Jiangsu in 
2010. 1 in the legend indicates high value areas of spatial component variability, −1 in the legend indicates areas 
with low value variability, and blue represents water. Maps were generated with ArcGIS 10.2.2 (http://www.esri.
com/software/arcgis).
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correlations (r = 0.875) at the 83 km scale were stronger than those at the 12 km scale (r = 0.405). Pearson cor-
relation coefficient of NL and CP was 0.491, and structure correlation coefficient was 0.702 and 0.786 at 12 km 
and 83 km scales respectively. PL had low correlation with CP at the 12 km scale, but a stronger relationship at 
the 83 km scale. WS had a high correlation with NL (r = 0.607) and PL (r = 0.735) at the 12 km scale, while the 
correlation weakened at the 83 km scale. Although generally weak correlations were observed between SR and 
other services at the 12 km scale, strong coefficients were observed at the 83 km scale. Overall, NL and PL showed 
positive correlations with other services, which revealed potential trade-offs between water purification services 
and other services. The structure coefficients mainly increased with increases in spatial scale, which suggests that 
correlations among ES were dependent on the spatial scale.

The potential relationships among the five ES were further explored resorting to PCA at each scale (Table S8, 
Fig. 4). Classical PCA indicated that the first two components accounted for 68.81% of the total variance. The first 
component (F1) was positively related to the NL, PL, WS and CP values; and the second component (F2) was 
mainly explained by the SR values. At the local scale, 62.59% of the structural variance was explained by F1, which 
showed highly positive relationships between PL and WS. F2 accounted for 29.14% of the variance and showed 
highly positive relationships between CP and NL values, suggesting potential synergy between these variables. 
At the regional scale, F1 accounted for 78.51% of the structural variance and had strong and positive correlations 
with CP, SR, NL and PL, which indicated that synergies may occur among these variables. F2 accounted for 
18.80% of the regional scale variation, had moderate correlation with WS. The PCA also confirmed the results of 
the structure correlations, indicating that the ES relationships were dependent on the spatial scale.

In the classical analysis approach, distinct variations occurring at different spatial scales were averaged, and 
the results contain inherent errors because of the nugget effect27. The FKA method can filter out the nugget effect 
to reveal potential ES relationships. The positive correlations between NL and CP were enhanced at the local 
and regional scales when the nugget effect was filtered out. The relationship between NL and SR was strong at 
the 83 km scale despite a lack of correlation by Pearson correlation analysis and at the 12 km scale. The spatial 
multi-scale relationships of ES in our study are similar to those of previous studies in other regions13, 25, 30, par-
ticularly the negative relationships between nutrient purification services and CP as well as SR at the regional 
scale. Overall the spatial multi-scale analysis of ES could better elucidate the underpinning spatial relationships 
of various ES by focusing on the structural components at different scales.

Dominant factors analysis.  The R2 results of the regression models showed the factors that influenced the 
spatial variations and relationships of ES at the two spatial scales (Table 3). The goodness of fit for the regression 
models was greater at the regional scale (66.8–74.2%) than the local scale (42.4–64.6%). Significant levels were 
observed for all regression models at p < 0.01. The influencing factors embodied in the regression models showed 
distinct differences with increases in spatial scale (Tables 3, S9 and S10), and ES grouped in the same principle 
component had similar regression models.

At the local scale (12 km), socio-economic and accessibility factors played dominant roles in the spatial var-
iations of ES and displayed generally higher R2 values than the other factors (Table 3). Spatial variations of NL 
and CP were primarily explained by factors of residence, agriculture and land use. For PL and WS, accessibility, 
development and residence factors mainly controlled the relationship. SR was primarily explained by soil, hydrol-
ogy and residence factors, and these factors were different from the factors that explained the other ES; thus, SR 
was an isolated element in the PCA (Fig. 4). At the regional scale (83 km), physical and environmental factors 
(such as climate, hydrology and soil) could explain spatial variations of ES because their R2 values were distinctly 
greater than those of the other factors. For NL and PL, the dominant factors were hydrology, climate and soil, and 

Ecosystem service NL PL CP WS SR

Pearson 
correlation 
coefficient

Nitrogen loading (NL) 1 0.526 0.491 0.595 0.126

Phosphorus loading 
(PL) 1 0.058 0.510 0.007

Crop production (CP) 1 0.509 0.171

Water supply (WS) 1 0.145

Soil retention (SR) 1

Structure 
correlation 
coefficient 
(12 km scale)

Nitrogen loading (NL) 1 0.405 0.702 0.607 0.262

Phosphorus loading 
(PL) 1 −0.099 0.735 0.599

Crop production (CP) 1 0.237 −0.091

Water supply (WS) 1 0.566

Soil retention (SR) 1

Structure 
correlation 
coefficient 
(83 km scale)

Nitrogen loading (NL) 1 0.875 0.786 0.586 0.763

Phosphorus loading 
(PL) 1 0.679 0.454 0.652

Crop production (CP) 1 0.707 0.840

Water supply (WS) 1 0.772

Soil retention (SR) 1

Table 2.  Results of the Pearson and structure correlation coefficients among ecosystem services.
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other factors had similar contributions. Moreover, the spatial variations in CP and SR at the regional scale were 
primarily controlled by climate, hydrology and soil, but the influences of other factors were different from those 
that influenced nutrients loadings. For WS, the impact of climate was more notable than it was for the other ES; 
thus, WS was relatively independent in the PCA analysis at the regional scale (Fig. 4).

The factors that influence spatial variations in nutrient purification services must be identified to manage 
NPS pollution. At the local scale, NL was mainly attributed to the positive impacts of arable land, agricultural 
gross domestic product (GDP) and farmer income as well as the negative influence of water density and village 
density (Table S9). Intensive agricultural activities, particularly the excessive application of chemical fertilizers, 
have caused nitrogen enrichment and influenced ecosystem functions related to nitrogen purification. The excess 
nitrogen is transported by surface runoff, which results in the eutrophication of water bodies in the basin46, 54, 55. 
For PL, urban density, population and distance to water were the primary factors that had higher positive influ-
ence, whereas the distance to urban area and arable land had the most important negative effects. Previous studies 
also demonstrated that PL was closely correlated with urban land and non-agricultural industries55–57, and indeed 
the local patterns of PL (Fig. 2) are coincident with built-up areas (Figure S3). In the urban area, human activity is 
more prominent and leads to intensive land use and fragile vegetation cover, which reduce soil functions related 
to phosphorous purification58. In underdeveloped areas, garbage and excreta dumping and deficiencies in the 
collection and treatment facilities for sanitary sewage cause pollution as well as a high discharge of phosphorous 
into water, which influences the purification functions of the ecosystem.

At the regional scale (Table S10), water density was the most important negative factor for both NL and PL. 
Climate and soil factors also had important effects, and the distance to villages and urban areas had a negative 
impact on NL and PL respectively. Although the influence of terrain factors was enhanced at the regional scale, it 
played a limited role in the spatial variation of nutrients loadings.

Discussion
Scale dependence of ecosystem services relationships.  Scale is a fundamental attribute that explains 
the patterns and processes of ES31, and both the perceived effectiveness of ES provision and delivery are influenced 
by scale59. In previous studies, spatial scales have commonly been treated as the spatial resolution of the availa-
ble data as well as the spatial extent of the study region. Most studies have focused on modelling ES at a certain 
scale, including field, regional and national scales. Comparisons of ES and their relationships at different scales or 
across scales are rare. Norton et al.60 found that it was important to consider scale when developing ES indicators 
because scale influences the types of data and the process of gathering data. Similarly, a study by Anderson et al.61  
indicated that the relationships between ES and biodiversity were sensitive to the data quality or the region size, 
finer resolutions and weaker correlations. Moreover, the relationships tended to shift systematically as the spa-
tial extent of the analyses varied, which occasionally led to diametrically opposing conclusions. Emmett et al.59 
analysed ES supply relationships at 1 × 1 km gridded and sub-catchment scales and found a similar result at both 
scales. Turner et al.62 analysed 11 ES in Denmark and found two scales (50 km and 150 km) of ES aggregation. 
Yang et al.63 used ES bundles to detect relationships of multiple ES at a city cluster scale, and the results indicated 
that fewer trade-offs and more synergies were observed among ES at a larger scale than a smaller scale.

Compared with previous studies, we used the FKA approach to illustrate the spatial-scale dependence of ES. 
This method is different from a grid-based approach in that sampling points are treated as spatially correlative in 
kriging algorithms and the correlations among points are reduced as the spatial distance increases. The variogram 
separated by a specific lag distance can be used to measure the spatial variability of any environmental variable. 
Increased attention should be paid to the distinct changes in variability of the lag distance of inflection in the 
variogram (Figure S4) because certain factors at this scale may fundamentally influence the spatial variability and 
relationships of ES. In this paper, we identified two key spatial scales: the local scale of 12 km and the regional 
scale of 83 km. The results indicated that the spatial variations and relationships of ES were dependent on the spa-
tial scale. Weak correlations were observed between PL and CP without explicitly considering the different scales 
of spatial variability, whereas this correlation became slightly negative at the local scale (r = −0.099) and moder-
ately positive at the regional scale (r = 0.679). A similar result was observed between CP and SR. The PCA per-
formed at multiple scales also confirmed the importance of taking into account explicitly different spatial scales.

Figure 4.  Correlation circles of principle component analysis for classical, local and regional scales.
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Different causes for the spatial-scale dependence of ES have been identified in previous studies. One expla-
nation indicates that ecological processes operate across a range of scales and drive the diversity of ecosystem 
functions, thereby impacting the supply of ES at different scales22. Another explanation is based on the niche 
complementary effect in ecology64 in which a multi-species mixture can fully exploit a resource to achieve higher 
productivity compared with that of a monoculture. Similarly, the study units at the larger scale could carry more 
ES than those at the smaller scale63, thereby leading to scale effects in ES relationships. Moreover, unaccounted 
factors may influence ES relationships at local scale, whereas these factors can be overlooked when aggregating 
small units across areas at the regional scale59.

We used stepwise multiple regressions to analyse the manifold factors influencing spatial variability and rela-
tionships among ES variables at each scale. The results indicated that the ES controlled by similar factors tended 
to exhibit strong correlations at each scale. Socio-economic factors played a main role at the local scale, and inter-
acted to impact the relationships of NL and CP as well as PL and WS. Intensive agricultural activities promote CP 
and increase NL through the application of excessive nitrogen fertilizer. Local industry production and domestic 
sewage pollution facilitate phosphorus discharge, influence land cover and surface runoff, and change the water 
supply in the ecosystem. At the regional scale, physical environmental factors (such as climate, hydrology and 
soil) controlled ES relationships and caused them to display positive correlations. The geographical signature 
determines the background conditions and influences the efficiency of human activities35. Local socio-economic 
factors can be overlooked at a larger scale, thereby reducing the spatial heterogeneity of ES. Drivers of environ-
mental change exhibit scale sensitivity35, and although anthropogenic drivers can operate at multiple administra-
tive scales, the impact of human activity tends to attenuate across scales65. On the whole, physical environments 
generally determine the fundamental characteristics of ES supply and control their general spatial distributions, 
whereas socio-economic factors influence local scale ecological processes24 and result in higher spatial heteroge-
neity of ES.

Policy implications for controlling non-point source pollution.  Understanding the effects of differ-
ent spatial scales is necessary for measuring and managing ES. The diversity of findings suggests that additional 
attention should be focused on regulatory services at regional scales and provisioning services at local scales31, 66.  
Research shows that most ES should be managed mainly at the individual patch scale of land use, whereas ES 
closely related to human uses can be managed at the municipal scale32. Our work revealed that scale dependence 
is associated with ES variability and relationships, and the policy implications of our results are described as 
follows. First, the importance of spatial scales must be recognized to synergistically manage multiple ES. In our 
study, diverse spatial correlations were observed among the ES within a range of 12 km and additional synergy 
was observed beyond 83 km. Scale plays an important role in identifying ES relationships; therefore, decision 
makers should identify the most relevant scale for collecting data and evaluating ES to implement synergetic 
policies.

Second, multi-level governance should be implemented because of differentiated ES relationships and dom-
inant factors at multiple scales. Generally, scattered variations at the local scale provide information for decision 
making performed at lower-level administrative regions, whereas continuous variations at the regional scale play 
a more important role for higher-level administrative regions. The administrative divisions in China are organ-
ized into five practical levels: provincial, prefectural, county, township, and village levels (from high to low). The 

Table 3.  The R2 results of stepwise multiple regressions for ecosystem services and influencing factors at the 
local and regional scales. Ecosystem services with similar dominating factors are marked by the same colour.
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spatial scales derived from the FKA are the same as the equivalent diameters of circular regions and can be linked 
to administrative scales by comparing the areas of spatial ranges and administrative regions. In the present study, 
the spatial scale of 12 km most closely aligns with the township level, whereas the 83 km scale could match the 
prefectural level in the study region. Related policies should be addressed at the township and prefectural levels. 
Stakeholders at different levels often evaluate ES distinctively, and they cut across a range of institutional scales21. 
Our results can facilitate public perception at both scales, promote targeted public actions for the local or regional 
contexts, coordinate multiple ES, and optimize comprehensive benefits for the entire region.

Furthermore, policymakers should implement regionalized management that integrates ecological and 
administrative scales. In our study, the ranges generated by the variogram fit represent the ecological scales of the 
ES relationships. However, the ecological scales of environmental problems rarely coincide with the governmental 
scales of decision making and management21, 34, 67. Thus, ES management should consider the differences between 
the ecological scales of ES relationships and the governmental scales of decision making34. Spatial-scale analyses 
based on the FKA approach could diminish this gap by comparing the spatial range with the administrative 
region. Additionally, updating partitions to fit ES management can reduce the inconsistencies between adminis-
trative divisions and ecological scales.

Specifically, the results provide information for controlling NPS pollution at the given spatial scales. At the 
local scale, human activities, which represent the dominant factors controlling ES variations and relationships, 
could be regulated to improve ecosystem functions and reduce NPS pollution. For nitrogen related services, 
reductions in arable land and agricultural activities (based on influencing factors identification) are effective 
methods of regulating nitrogen pollution. However, according to the remarkably positive relationship between 
NL and CP, reductions in arable land and agricultural activities will reduce CP and threaten important services 
for regional food security. Therefore, policies for nitrogen control should consider the full spectrum of factors 
related to water quality protection and agricultural development. Although several management policies have 
been conducted in pilot regions of the study area, including organic farming, ecological compensation, and soil 
testing for formulated fertilization, their effects have been limited68, 69. We suggest that these policies might be 
optimized by considering ES relationships and effective spatial scales. For phosphorous service, PL was closely 
related to urban density and distance to urban areas, thereby demonstrating that urbanization may influence 
ecosystem capacity and cause increases in NPS pollution. Therefore, urbanization should be more rationally 
planned, and it is particularly important that urban infrastructures and landscapes should be strengthened in 
urban planning. Overall, the relationships and dominant factors of nutrients loadings at the 12 km scale suggest 
that simultaneously optimizing nitrogen and phosphorous services is impractical and indicate that policymakers 
should implement differentiating measures to control nutrients loadings at the town level. At the regional scale, 
the variations and relationships of NL and PL were dominated by physical environmental parameters (such as 
climate, hydrology and soil), and climate change and subsequent hydrological processes could alter the inherent 
ES supply and relationships. Under the climate change conditions, adaptive strategies70 for managing multiple ES 
should be concentrated at the prefectural level. Furthermore, distance to village and urban areas negatively influ-
enced the NL and PL values, respectively. Therefore, these services could be improved by reducing the residential 
density, and land development planning should be strengthened to maintain ecological security patterns at the 
prefectural level.

Advantages and limitations.  Multi-scale spatial analyses represent a challenge for ES studies71. Because 
of the complex mechanisms underlying ES scale dependency, a classical approach cannot interpret the signifi-
cant potential relationships among ES. The combination of a FKA and regression analysis provides a powerful 
approach to quantifying and explaining the multi-scale relationships of ES and has been applied in the case study 
of the Taihu Basin region. The FKA method could effectively decompose the total variation of ES into multi-scale 
spatial components and quantify ES relationships at each given scale. The regression model provides a good 
reference for quantitatively identifying dominant factors and provides important insights on the mechanisms 
influencing ES relationships. Our results indicated that ES relationships present a scale-dependent feature and 
anthropogenic activities influenced differences in ES relationships at the 12 km scale while physical environments 
(such as climate hydrology and soil) had a dominant effect on ES relationships at the 83 km scale.

The sensitivity of ES relationships depends on the accuracy of ES quantifications and indicators selection. 
Inconsistencies in the resolution of spatial data from multiple sources along with the uncertainty in the param-
eters used to calculate each indicator represent the primary uncertainties and challenges for studies quantifying 
ES and determining their relationships. Data at a coarse resolution may dominate data at a fine resolution during 
the calculation process, which would decrease the accuracy of the final ES results22. The FKA method can filter 
out the nugget effect and identify useful factors at multiple spatial scales; therefore, this method can manage 
inconsistencies among data at multiple resolutions. However, such data inconsistencies tend to result in a high 
percentage of nugget effects in LMCs (Table S7). Therefore, optimized methods should be proposed to resolve 
issues related to data inconsistencies and promote the effective percentage of total data.

Although spatially explicit methods were used to model the locations and spatial variations of ES supply, 
the spatial patterns of synergies and trade-offs among ES (such as “hotspot areas” of ES relationships13) were 
not included in our study. Moreover, the relationships among services may vary with changes in the temporal 
extent. Therefore, quantifying and mapping the spatial congruence of ES and modelling the dynamic trends 
in ES relationships will be considered in our future work. Although spatial variations in ES may be caused by 
similar factors, these ES are not necessarily driven by the same processes; therefore, additional biophysical and 
socio-economic drivers must be explored to clarify ES relationships.

http://S7
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