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Large-scale bulk RNA-seq
analysis defines immune
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Accumulating evidence has demonstrated that the immune cells have an

emerging role in controlling anti-tumor immune responses and tumor

progression. The comprehensive role of mast cell in glioma has not been

illustrated yet. In this study, 1,991 diffuse glioma samples were collected from

The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas

(CGGA). xCell algorithm was employed to define the mast cell-related genes.

Based on mast cell-related genes, gliomas were divided into two clusters with

distinct clinical and immunological characteristics. The survival probability of

cluster 1 was significantly lower than that of cluster 2 in the TCGA dataset, three

CGGA datasets, and the Xiangya cohort. Meanwhile, the hypoxic and metabolic

pathways were active in cluster 1, which were beneficial to the proliferation of

tumor cells. A potent prognostic model based on mast cell was constructed.

Via machine learning, DRG2 was screened out as a characteristic gene, which

was demonstrated to predict treatment response and predict survival outcome

in the Xiangya cohort. In conclusion, mast cells could be used as a potential

effective prognostic factor for gliomas.
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mast cell, immunotherapy, glioma microenvironment, immune evasion, prognostic
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Introduction

Gliomas are one of the most common primary malignant

tumors, accounting for 80% of all brain malignant tumors (1, 2).

Gliomas are usually characterized by abnormal invasion and

destruction of the blood–brain barrier (3, 4). At present, the main

clinical treatments for gliomas are surgical resection, chemotherapy,

and radiation, but their therapeutic effect remains unsatisfactory (5).

Since the theory that the brain has absolute immune privilege has

been questioned and denied, immunotherapy for brain tumors has

been vigorously developed (6, 7).At present, the research directionof

immunotherapy for gliomasmainly includes active immunotherapy

and systemic or local delivery of immunomodulators (8). A deeper

understanding of the tumor microenvironment (TME) of gliomas

may help the development of immunotherapy.

In recent years, immune cells in TME have been considered as

important targets of tumor immunotherapy (9). Mast cells are one

of the early infiltrating cells before tumorigenesis, and play a crucial

role in tumor angiogenesis and remodeling TME in gliomas

(10, 11). It has been reported that mast cells within the tumor

differ significantly in protease profiles or subtypes from mast cells

outside the tumor (12). In TME, mast cells will become highly

proinflammatory and actively recruit macrophages and other

innate immune cells after activation and degranulation to

coordinate the anti-tumor immune response (13). Similar to

macrophages, the role of mast cells in tumors remains

controversial because mast cell-related inflammatory processes

can both promote or inhibit tumor development (14). Some

studies have proposed that mast cells could be transformed into

different phenotypes to exert different effects, and this

transformation can be co-regulated by macrophages and tumor

cells (15). In gastric cancer, a linear signaling axis activated by

tumor epithelial-derived IL-33 was found to activatemast cells and

promote tumor-associatedmacrophage (TAM) accumulation. The

accumulation of TAMs was associated with inferior survival in

patients with gastric cancer (16). In addition, the role of mast cell-

derived histamine and ATP in secretory and phagocytic regulation

may explain the heterogeneity of microglial responses (17). In the

studies of colon carcinoma, mast cells have also been found to

enhance the immunosuppressive properties ofMDSCs through the

production of IFN, and theM2-type tumor-associatedmacrophage

is a major source of MDSCs (18). Hence, the role of mast cells in

TME may be related to TAMs.
Abbreviations: CDF, cumulative distribution function; CGGA, Chinese

Glioma Genome Atlas; CL, classic; CNA, copy number alternations; CNV,

copy number variation; CR, complete response; DEG, differentially expressed

gene; GAM, glioma-associated microglia/macrophages; GBM, glioblastoma;

GO, gene ontology; GSVA, gene set variation analysis; LGG, low-grade

glioma; ME, mesenchymal; NE, neural; PAM, partition around medoids;

PCA, principal component analysis; PD, progressive disease; PN, pro-neural;

PR, partial response; SD, stable disease; TAM, tumor-associated macrophage;

TCGA, The Cancer Genome Atlas; TME, tumor microenvironment.
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In this study, we used xCell algorithm to identify meaningful

mast cell-related genes in gliomas and to divide glioma samples

into two clusters with different tumorigenic and immunogenic

characteristics. A risk score predicting malignancy of gliomas

and poor prognosis of glioma patients was further constructed to

predict the efficacy of immunotherapy.
Method

Patient and cohort inclusion

We collected diffuse glioma samples from two datasets based

on The Cancer Genome Atlas (TCGA) and the Chinese Glioma

Genome Atlas (CGGA). The TCGA cohort includes glioma

samples. The RNA-seq data and corresponding clinical

information are retrieved from the TCGA dataset (http://

cancergenome.nih.gov/). In this study, we used two RNA-seq

cohorts (CGGA325 and CGGA693) and a microarray cohort

(CGGAarray) as validation sets. The RNA-seq and microarray

data, and clinical and survival information are retrieved from the

CGGA dataset (http://www.cgga.org.cn).
Identification of mast cell-related genes

The xCell algorithm defines mast cells in the TCGA dataset

(19). In TCGA and three CGGA cohorts, mast cell-related genes

with a correlation efficiency > 0.4 were screened out, and the

gene matrix was crossed to obtain 495 mast cell-related genes.

After performing univariate Cox regression analysis, 280 genes

were proved to be prognostic genes.
Construction of mast cell-
related subtypes

Basedon280prognostic genes related tomast cells,we identified

the robust clusters of glioma patients from the TCGA by using the

consensus clusteringalgorithmofpartitionaroundmedoids (PAM).

After intersecting the 280 prognostic geneswith the gene expression

profiles from CGGA325, CGGA693, and CGGAarray datasets, 248

prognostic genes were used for identifying the robust clusters of

glioma patients in three CGGA datasets using PAM. Then, we used

the cumulative distribution function (CDF) and consensus heatmap

to evaluate the optimal K value of 2.
Annotation of the immune infiltrating
microenvironment

ESTIMATE is used to score the immune cell infiltration level

(immune score) and stromal content (stromal scores) of each
frontiersin.org
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sample. We used the xCell algorithm (19) to quantitatively

analyze the enrichment levels of 64 immune signals, and used

the CIBERSORT algorithm (20) to estimate the relative scores of

22 immune cell types in tumor tissues. The GO pathway was

studied by performing gene set variation analysis (GSVA), and

GO items with a p-value <0.05 were screened out. From previous

studies, seven classifications of immunomodulators were

analyzed (21, 22).
Identification of an immune-
related signature

Then, we use elastic regression analysis and PCA based on the

248 prognostic genes to further calculate the patient’s risk score.

Twenty-nine genes were included for the construction of the risk

score. The extracted principal component 1 is used as the

signature score. The risk score after the prognostic value of the

genetic signature score of each patient is obtained by the following

formula:

risk score =oPC1i,

where i represented the expression of genes.
Prediction of immunotherapy responses

The IMvigor210 cohort is a cohort of urothelial cancer

treated with the anti-PD-L1 antibody atezolizumab, which can

be used to predict the therapeutic effect of immunotherapy on

patients (22, 23). Based on the Creative Commons 3.0 license, all

clinical data and expression data were downloaded from http://

research-pub.Gene.com/ IMvigor210CoreBiologies. The DEseq2

R software package (24) was used to standardize the raw data.
Construction and validation of a
prognostic model

We use nomograms to visualize multi-factor regression

analysis, which is usually used for cancer survival rate prediction.

The risk score groups, age, pathological stage, and mutation status

of gliomawere selected to construct the variables of the nomogram,

and univariate and multivariate regression analyses were used to

evaluate the prognostic value of these factors.
RNA sequencing of the Xiangya cohort

Tumor tissues from 105 glioma patients who underwent

surgical resection in Department of Neurosurgery, Xiangya

Hospital were collected for sequencing.Glioma tissues were
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collected and written informed consent was obtained from all

patients. The included glioma tissues were approved by the

Ethics Committee of Xiangya Hospital, Central South

University. The detailed procedure was reported in our

previous findings (25–27). The survival information of the

patients was collected for conducting the survival analysis. The

mast cell density in the Xiangya cohort was calculated using

the xCell algorithm. The risk score was independently calculated

in the Xiangya cohort.
Statistical analysis

The Kaplan–Meier curves with log-rank test were used to

evaluate the survival difference between the two groups, and all

survival curves were generated using the R package survminer.

Prognostic factors were assessed by univariate and multivariate

Cox regression analysis. The OS and risk scores were calculated

based on the R package survival, and we used the R package

ggplot2 to visualize the data. The heatmap is generated using

pheatmap. For normally distributed variables, significant

quantitative differences between and among groups were

determined by a two‐tailed t-test or one‐way ANOVA,

respectively. For nonnormally distributed variables, significant

quantitative differences between and among groups were

determined by a Wilcoxon test or a Kruskal–Wallis test,

respectively. All statistical analysis was performed using R

software. p < 0.05 is statistically significant.
Results

TME characteristics of the mast cell-
stratified groups

We used partition around medoids (PAM) to analyze the

gene expression profiles of glioma patients in the TCGA dataset

(Figure 1A) and three CGGA datasets (Figures 1B-D), which

showed different levels of mast cells and clinical characteristics

between the groups. Subsequently, we used the Consensus

ClusterPlus package (28) to calculate the optimal number of

clusters, and the results showed that the stability of the clustering

results was optimal when the number was equal to 2 (Figure S1).

The survival analysis of cluster 1 and cluster 2, respectively,

confirmed that the prognosis of cluster 1 was worse (Figures 1E-

H). PCA tried to differentiate the samples from the TCGA

dataset (Figure 1I) and three other CGGA datasets (Figures 1J-

L). In addition, we divided patients with different levels of mast

cell into high and low levels. Survival analysis also showed that

patients with low mast cell level in LGG, GBM, pan-glioma, and

Xiangya cohorts had lower probabil i ty of survival

(Figures 2A-D).
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Therefore, we studied the characteristics of the immune

microenvironment of the two clusters and analyzed the

differences in immune cell components of different clusters in

the TCGA (Figure 2E) and three CGGA datasets (Figures S2A–C).

At the same time, we also used CIBERSORT (20) to further

compare the differences in immune cells between the two clusters

(Figures S2D, S3A, S4A, and S5A). Moreover, we calculated

ESTIMATEScores, ImmuneScores, and StromalScores between

the two clusters, but the results were not consistent (Figures 2F,

S3B, S4B, and S5B). Finally, we compared a series of immune
Frontiers in Immunology 04
checkpoint molecular differences related to antigen presentation,

co-stimulation, ligand, and so on. We found that most immune

checkpoint molecules tend to overexpress in cluster 1 (Figures 2G,

S3C, S4C, and S5C).

Clinical traits of the mast cell-
stratified groups

We studied the differences between cluster 1 and cluster 2 in

pathological grade, IDH, MGMT, 1p19q, and glioma subtypes.
A B

D

E F G

I

H

J K L

C

FIGURE 1

Machine learning for validation of clustering based on mast cell-related genes. Clustering heatmaps demonstrating good separation of the two
clusters by traits in (A) TCGA, (B) CGGA325, (C) CGGA693, and (D) CGGAarray. Kaplan–Meier survival analysis of the two clusters in (E) TCGA, (F)
CGGA325, (G) CGGA693, and (H) CGGAarray. Sample clustering by PCA in (I) TCGA, (J) CGGA325, (K) CGGA693, and (L) CGGAarray.
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The results in TCGA and the three CGGA datasets all suggested

that gliomas in cluster 1 had a higher pathological grade

(Figure 3A), and cluster 2 had lower levels of IDH WT

(Figure 3B) and MGMT promoter unmethylation (Figure 3C).

It is worth noting that the proportion of samples with

chromosome 1p19q codeletion in cluster 1 is higher than that

in cluster 2 in the TCGA dataset, but the codeletion ratio in cluster

2 is higher in three CGGA datasets (Figure 3D). This may be

related to the geographical differences of patients. In addition, we
Frontiers in Immunology 05
found that, in cluster 1 samples, CL (Classic) and ME

(Mesenchymal) subtypes accounted for the majority, while in

cluster 2, NE (neural) and PN (pro-neural) subtypes were more

common (Figure 3E). All above conclusions show that gliomas in

cluster 1 are moremalignant, whichmay reflect a worse prognosis.

We also usedGSVA to study the differences in the activation of

hypoxia andmetabolic pathways between the two clusters. Various

hypoxia-related pathways such as the response to hypoxia and the

regulation of the cellular response to hypoxia were activated in
A B D

E F

G

C

FIGURE 2

Immune characteristics of the two clusters. Kaplan–Meier analysis of overall survival (OS) based on high vs. low level of mast cell in (A) LGG,(B)
GBM, and (C) pan-glioma patients in TCGA. (D) Xiangya cohort. (E) Heatmap correlating the levels of 64 cell types and clusters in TCGA.(F)
ESTIMATEScores, ImmuneScores, and StromalScores of the two clusters in TCGA. (G) Molecule levels of immune checkpoints in two clustersin
TCGA. *p < 0.05, **p < 0.01,***p < 0.001, ****P < 0.0001. NS, not statistically significant.
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cluster 1, reflecting the hypoxic state of gliomas. Similarly, cluster 1

also showed excessive activation of metabolic pathways (Figure 4).

These are signs of the proliferation of malignant tumors, showing

the stronger proliferation activity and malignant tendency of

glioma in cluster 1.
Genomic features of the two clusters

According to somatic mutation analysis, mutations in IDH1

(43%), CIC (25%), TP53 (17%), and EGFR (17%) were most highly

enriched in cluster 1 (Figure 5A). In comparison, IDH1 (95%),TP53

(90%), and ATRX (66%) mutations were enriched in cluster 2
Frontiers in Immunology 06
(Figure 5B). Missense mutation was the uppermost gene alteration

type in all these genes except for ATRX, the strongest co-occurrent

pairs of gene alteration included ATRX-TP53 and CIC-IDH1 in

cluster 1, and TP53-IDH1 in cluster 2. In addition, the most

mutually exclusive pairs were PTEN-IDH1, EGFR-IDH1, PTEN-

CIC, and EGFR-CIC in cluster 1, and NF1-IDH1 in cluster 2

(Figures 5C, D). Among the detected SNVs, C>T appeared to be

themostcommonmutation incluster1andhavea significanthigher

frequency in cluster 1 (Figure 5E).While the frequencies of insertion

and deletionwere not statistically different between the two clusters,

SNP was significantly more common in cluster 1 (Figure 5F). The

top nine most differentially mutated cancer-related genes are listed

in Figure 5G.
A

B

D

E

C

FIGURE 3

Clinical features of the two clusters. (A) The proportions of different tumor grades in TCGA, CGGAarray, CGGA325, and CGGA693. (B) Samples
with or without the IDH mutation in TCGA, CGGAarray, CGGA325, and CGGA693. (C) Samples with or without the MGMT promoter methylation
in TCGA, CGGAarray, CGGA325, and CGGA693. (D) Samples with or without the chromosome 1p/19q codeletion in TCGA, CGGAarray,
CGGA325, and CGGA693. (E) The four GBM subtypes in the two clusters in TCGA and CGGAarray.
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Generation of risk score and its
functional annotation

By conducting elastic net regression analysis (Figure 6A), we

obtained the 29 most important genes and their coefficients from

248 prognostic genes for the construction of a mast cell-related

risk signature (Figure 6B). Sankey plot revealed a high degree of

consistency between mast cell-related clusters and risk scores
Frontiers in Immunology 07
(Figure 6C). Pathways related to macrophage migration and

activation, regulation of mast cell activation, fibroblast

proliferation, and the Th2 cell cytokine production were more

active in the samples with higher scores (Figure 6D). The

correlation between the expression level of 64 kinds of cells

and risk scores was evaluated. The risk score was positively

correlated with the levels of fibroblasts, macrophages, and Th2

cells, and negatively correlated with mast cells and Th1 cells
A B

D

E F

G H

C

FIGURE 4

GO functional enrichment analysis of hypoxia andmetabolism in the two clusters in (A, B) TCGA, (C, D)CGGAarray, (E, F)CGGA693, and (G, H) CGGA325.
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A B

D

E F G

C

FIGURE 5

Genomic features of the two clusters. (A) List of the most frequently altered genes in cluster 1. (B) List of the most frequently altered genes
incluster 2. (C) The heatmap showing the concurrence or mutual exclusivity of the top 25 most mutated genes in cluster 1. *p < 0.05, *p < 0.01,
***p < 0.001, ****p < 0.0001. NS, not statistically significant. (D) The heatmap showing the concurrence or mutual exclusivity of the top 25
mostmutated genes in cluster 2. *p < 0.05, *p < 0.01, ***p < 0.001. NS, not statistically significant. (E) Frequency comparison of SNVbetween
the two clusters. (F) Frequency comparison of variant type between the two clusters. (G) The Forest plot listing the top nine mostmutated genes
between the two clusters. *p < 0.05, **p < 0.01,***p < 0.001. NS, not statistically significant.
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(Figure 6E). In addition, the risk score is also related to immune

checkpoint molecules. Similar to cluster 1, gliomas with high

scores tend to express higher levels of immune checkpoint

molecules (Figure S6). In the TGCA dataset, survival analysis

showed that patients with different mortality risks in LGG,
Frontiers in Immunology 09
GBM, and pan-glioma were well separated by high and low

risk scores (Figures 6F–H). According to the risk scores for the

immunotherapeutic response types of patients with urothelial

carcinoma, CR and PR seemed to be more likely to have lower

risk scores (Figure 6I). We evaluated the efficacy of using risk
A B

D E

F G

I

H

J K

C

FIGURE 6

Functional annotation of risk scores. (A) Elastic regression analysis was performed to screen out the prognostic genes. (B) Elastic net regression
analysis and PCA obtained 30 mast cell-related genes and their coefficients. (C) A Sankey plot was used to reveal the correlation between
cluster, scores, OS, and cancer types. (D) GO functional enrichment analysis correlating different immune regulatory processes with risk score.
(E) Heatmap correlating the risk score and 64 cell types. Survival curves of risk scores in (F) GBM, (G) LGG, and (H) pan-glioma patients. (I) The
percent of different risk score in CR, PD, PR, and SD of glioma patients. (J) Kaplan–Meier analysis of survival probability based on high vs. low
risk score from the IMvigor210 cohort. (K) Kaplan–Meier analysis of survival probability based on high vs. low risk score from the Xiangya cohort.
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scores to predict the prognosis of immunotherapy. Patients can

be stratified according to high and low risk scores in the

IMvigor210 (Figures 6J). Patients can also be stratified

according to high and low risk scores in the Xiangya

cohort (Figures 6K).
Construction of a prognostic nomogram
based on risk scores

A prognostic nomogram was constructed to further

investigate the predictive efficiency of mast cell density. The

construction of this nomogram has taken into account several

prognostic factors, such as risk score groups, patient age, glioma

grades, IDH mutation, and chromosome 1p/19q codeletion

(Figure S7A). The predicted probabilities are in good

agreement with the actual 1- to 5-year overall survival rates of

glioma patients (Figures S7B–E). At the same time, the Kaplan–

Meier survival curve was used to demonstrate the good

discrimination of survival probability of the two nomogram

score groups (Figure S7F). Finally, we used the ROC curve to

confirm the discriminative ability of this nomogram (AUC =

0.849, Figure S7G).

Validation of DRG2 as a potent
therapeutic predictor

In order to obtain the characteristic gene to well distinguish

these two clusters, we then conducted machine learning and

prediction. Twenty-nine genes were used as the input for three

machine learning algorithms, including LASSO-LR, Xgboost, and

Boruta. The feature importance of the powerful genes of the

Xgboost algorithm was classified into three clusters. The

coefficient values of the powerful genes of the LASSO algorithm

were exhibited. The feature importance of the powerful genes of the

Boruta algorithm was exhibited. The intersected most powerful

prognostic genes identified from the three algorithms were

exhibited using the Venn plot. Through LASSO-LR, Xgboost, and

Boruta machine learning algorithms, we screened out 25, 14, and 30

genes, respectively (Figures 7A–C). Then, we utilized Venn diagram

and obtained an intersection of these three algorithms including 14

genes (Figure 7D). Among these genes, DRG2 displayed the

strongest potency as a characteristic gene, and protein–protein

interaction analysis showed the interplays of DRG2-related

proteins (Figure 7E). Further analysis demonstrated that DRG2

positively correlated with multiple steps in anti-tumor immune

response, including recruitment of CD8+ T cell, NK cell, Th1 cell,

and Th 17 cell, as well as recognition and killing of cancer cells

(Figure 7F). DRG2 could predict cytokine treatment response in

three cohorts (Figure 8A) and immunotherapy response in two

cohorts (Figure 8B). Furthermore, we compared the immune

response of 25 human immunotherapy cohorts between DRG2

and selected conventional biomarkers to better understand the
Frontiers in Immunology 10
predictive value of DRG2 for immunotherapy. As a result, DRG2

had an AUC > 0.5 in 9 out of 25 cohorts, showing a higher

predictive value than TMB and B clonality (Figure 8C). In addition,

the correlations between DRG2, T-cell dysfunction, and normalized

Z score are displayed in Figure 8D. Furthermore, DRG2 was found

to potentially predict the drug response of temozolomide in GBM

patients (Figure S8).
Discussion

The role of mast cells remains controversial in TME (16).Mast

cells may play different roles in TME, which are related to the type

and stage of tumor (14). Some studies found a strong association

between mast cells and cancer cell infiltration and tumor

angiogenesis as a source of VEGF a, TGF-b, and CXCL8 (29),

whichmeansmast cells are related to poor prognosis. On the other

hand, mast cells also play an anti-tumor role in tumors (30–32).

Some studies found an increase of mast cell in glioma sample and a

higher level of mast cell in higher-grade glioma sample (33). Mast

cells can be recruited by some factors released by glioma cells, then

secrete some macrophage-attracting factors (16, 34). Glioma cells

can transform macrophage into glioma-associated macrophages

(GAMs), which facilitate tumor proliferation, survival, and

migration (35). Therefore, in many human malignant tumors,

mast cells are recognized as a key component of TME (36).

Notably, mast cell was also proved to affect the prognosis of

glioma (37, 38). Via consensus clustering, glioma patients were

divided into two groups based on mast cell-related genes with

uniqueclinical and immunecharacteristics fromtheTCGA,CGGA

325,CGGA693, andCGGAarraydatasets.Comparedwithpatients

in cluster 2, patients in cluster 1 had a lower survival probability and

a worse prognosis. In different types and grades of gliomas, higher

levels of IDH WT, MGMT promoter unmethylation, and 1p19q

noncodeletion are more common in high-grade gliomas and the

subtype ofMEwhose prognosis is worse (39). These are associated

with amoremalignant glioma phenotype with worse prognosis. In

addition, patients in cluster 1 were more associated with hypoxia

and hypermetabolism, both of which were associated with the

malignancy of gliomas.

The classical immune checkpoint molecules such as PD1 and

PDCD1LG2werehighlyexpressed incluster1 in the studyof tumor

immunemicroenvironment in two clusters of patients.Meanwhile,

we found that patients in cluster 1 showed high expression of HLA

molecules. In addition, BTN3A1, CXCL9, SLAMF7, TNFRSF4

(OX40), CD27, CD28, and ICOSLG were highly expressed in

cluster 1. All of the molecules above are co-stimulators or

receptors that increase T-cell proliferation and activation (40–

42). As a negative regulator of T-cell activation, the expression of

VTCN1 was decreased in cluster 1 (43). This may be the reason for

the increased activity of T cells in the glioma patients in cluster 1.

This is evidenced by the increased expression of GZMA, which is

associated with the pyrotic cell-killing function of the CTL (44).
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In previous studies, T-cell activation usually predicted a

better prognosis (45). Nevertheless, in the present study,

patients in cluster 1 with poor prognosis showed excessive

activation of T cells, which may be related to the high-level

expression of CCL5 caused by the contact of activated T cells

with microglia. Previous studies have shown that CCL5 played

an indispensable role in the formation of glioma cells (46). The

high-level expression of CCL5 may support immune escape and

metastasis of glioma cells (47). CXCL9 can bind to CXCR3

expressed in tumor cells to recruit CD4 + T cells, thus promoting

the production of CCL5 in TME, promoting tumor invasion

(48). Moreover, the reduction of TNF-a may inhibit the
Frontiers in Immunology 11
transformation of Th1 to CTL, thereby reducing the ability to

kill tumor cells (49). Therefore, we believe that activated T cells

in cluster 1 played a more important role in promoting the

production and invasion of glioma cells rather than promoting

tumor cell apoptosis.

In the investigation of the components of tumor immune

infiltrating cells in the two clusters, we found another interesting

phenomenon. In previous studies, due to the anti-inflammatory

and the promotion of tissue cell repair effects, M2-type

macrophages promoted tumor invasion and angiogenesis in the

development of gliomas (50). The infiltration of M1-type

macrophages that play a pro-inflammatory effect often indicates
A B
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FIGURE 7

Excavation of characteristic genes using machine learning. (A) Characteristic genes between the two clusters defined by LASSO-LR algorithm.
(B) Characteristic genes between the two clusters defined by Xgboost algorithm. (C) Characteristic genes between two clusters defined by Boruta
algorithm. (D) Venn diagram showing the intersection of three machine learning algorithms. (E) Protein–protein interaction analysis showing the
interplays of DRG2-related proteins. (F) Butterfly plot showing the correlation between DRG2 and metabolism as well as cancer immunity cycle.
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a better prognosis (51). However, this study showed that glioma

patients in cluster 1 had lowerM2 infiltration while the infiltration

ofM1washigher. Contrary to the results of immune infiltrating cell

components, the pro-inflammatory cytokines IL-1b and TNF-a,
which was expected to be highly expressed onM1, as well as TLR4,

which promoted the differentiation of macrophages toM1 were all

lowly expressed in cluster 1 (52, 53). Therefore, we hypothesized

that the increased M1 in cluster 1 did not have normal pro-

inflammatory effects and tumor-killing functions. The

macrophages in cluster 1 may be removed from tumor-killing

activity and transformed into GAMs promoting glioma (35).

Studies have shown that GAMs could promote tumor growth by
Frontiers in Immunology 12
secreting immunosuppressive factors and other factors that

supported tumor invasion (54). The decreased expression of

TNF-a in cluster 1 may represent the impaired function of M1 in

GBM, and the increased expression of IL-1b promotes the

proliferation and migration of GAMs (39, 55, 56). The gene

expression pattern of GAMs is similar to those of all of M0-type,

M1-type, and M2-type macrophages (57). Comparing the

molecular expression pattern of GAMs in this study with that of

GAMs in previous studies, it was more similar to cluster 1 (high

levels of IL-12A, CXCL10, VEGFA, and CCL5, and low levels of

TLR4) than to cluster 2. CXCL10 promotes the proliferation of

GAMS, and the elevated level of VEGFA promotes tumor
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FIGURE 8

Predictive value of DRG2 in treatment response. (A) Predictive value of DRG2 in cytokine treatment. (B) Predictive value of DRG2 in immunotherapy
cohorts. (C) Comparison of DRG2 and conventional immunotherapy predictors in immunotherapy cohorts. (D)Heatmap showing the correlation
between DRG2 and T dysfunction value in the core dataset, normalized Z score calling from Cox-PH regression in the Immunotherapy dataset,
normalized Z score calling from selection log2FC in the CRISPR Screen dataset, and normalized expression value from immuno-suppressive cell types.
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angiogenesis (58, 59). All these immune molecules were highly

expressed in cluster 1. Therefore, the worse prognosis of patients in

cluster 1may be related to the transformation ofmacrophages into

GAMs.However, to prove thatmacrophages of gliomas in cluster 1

have been transformed into GAMs with tumor-supporting effects,

it was necessary to further compare the gene expression pattern of

them both. In addition, the low expression of CX3CL1 in cluster 1

may increase tumor invasiveness and promote tumor growth (60).

The expression of EDNRB, which has anti-tumor effect, was

downregulated in cluster 1 (61). The increased expression of

ICAM1 and ITGB2, which mediate cell adhesion, may lead to

enhanced tumor aggressiveness (62).

Based on differentially expressed genes (DEGs) between the two

clusters, the risk score was calculated based on 29 mast cell-related

genes.Mast cell-related risk scores were highly effective in predicting

the survival rates of patients at 1, 3, 4, and 5 years. Inclusion of amast

cell-associated risk score with the nomogram further confirmed the

effectiveness of mast cells as a prognostic marker.

Next, we tried to establish a relationship between the risk score

and TME. Consistent with previous results, all kinds of

macrophages increased in the high risk score cluster, suggesting

the possibility of the presence of GAMs. The more of Th2 and the

less of Th1 in the high risk score cluster indicated that the cellular

immunity may be suppressed, and there may be more CCL5 to

support the formation of gliomas. As for related immune

molecules, consistent with cluster 1, the high expression of T-cell

co-stimulation molecules (CD28, ICOSLG, CD27, and CD40) and

HLA suggested that the high risk score cluster had a superior

activation of T cells and a higher expression of CCL5. The high

expressionofTGF-b, VEGFA, andCXCL10and the lowexpression

of TNF-a indicated the tumor-supporting effect of GAMs in high

risk score group. Therefore, the tumor immunemicroenvironment

of gliomas with a high risk score overlapped with the gliomas in

cluster 1.

In this unprecedented era of big data, there is a wealth of

information hidden in huge amounts of data, waiting to be mined

and used properly. Machine learning is the scientific discipline

focusing on how computers learn from data (63); with its help,

models constructed based on clinical information would in return

makehugecontributions to clinical practice.Ouranalysis identified

a mast cell gene signature consisting of 29 mast cell-specific genes

and determined the prognostic value of mast cells in glioma. Our

findings proved that mast cells might be a potent factor in

stratifying glioma patients’ outcomes. However, the relationship

between the polarization ofGAMs, the activation of T cells, and the

mast cell-related genes in the TME of glioma remains to be further

explored. The potential regulatory role of mast cells in the immune

response is to be elucidated.
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