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In this paper, we describe how we applied LBD techniques to discover lecithin cholesterol
acyltransferase (LCAT) as a druggable target for cardiac arrest. We fully describe our
process which includes the use of high-throughput metabolomic analysis to identify
metabolites significantly related to cardiac arrest, and how we used LBD to gain
insights into how these metabolites relate to cardiac arrest. These insights lead to our
proposal (for the first time) of LCAT as a druggable target; the effects of which are
supported by in vivo studies which were brought forth by this work. Metabolites are the end
product of many biochemical pathways within the human body. Observed changes in
metabolite levels are indicative of changes in these pathways, and provide valuable insights
toward the cause, progression, and treatment of diseases. Following cardiac arrest, we
observed changes in metabolite levels pre- and post-resuscitation. We used LBD to help
discover diseases implicitly linked via these metabolites of interest. Results of LBD
indicated a strong link between Fish Eye disease and cardiac arrest. Since fish eye
disease is characterized by an LCAT deficiency, it began an investigation into the effects of
LCAT and cardiac arrest survival. In the investigation, we found that decreased LCAT
activity may increase cardiac arrest survival rates by increasing ω-3 polyunsaturated fatty
acid availability in circulation. We verified the effects of ω-3 polyunsaturated fatty acids on
increasing survival rate following cardiac arrest via in vivo with rat models.
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1 INTRODUCTION

In this paper, we apply literature based discovery (LBD) to gain insights into the metabolic processes
related to cardiac arrest and propose, and propose lecithin cholesterol acyltransferase (LCAT) as a
druggable target for cardiac arrest. LBD aims to create computerized methods that support discovery
from existing literature. LBD is typically performed by piecing together fragments of information in a
meaningful way to support scientific discovery. Scientific publication is the primary means of
disseminating scientific knowledge, and millions of scientific publications are stored in electronic
databases with thousands more added each day (Bornmann and Mutz, 2015). The rate of scientific
publication continues to grow (Hunter and Cohen, 2006), and this volume of data means that
scientific knowledge is becoming fragmented, and pieces of related information may remain disjoint,
even though their combination may lead to meaningful insight or scientific discovery. Integrating
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LBD into scientific research has the potential to transform the
overwhelming amount scientific literature into a wellspring of
new knowledge.

Metabolomics is a field of study that utilizes the quantitative
measurements of metabolites. Metabolites are the end results of
many of the biochemical pathways that determine our health.
Levels of metabolites in our body can give clues to understanding
biochemical processes. Disorders in biochemical pathways can
cause health problems, and modification of specific biochemical
pathways can result in health benefits. We use ultra-high
performance liquid chromatography coupled to high
resolution tandem mass spectrometry (UPLC-HRMS/MS) to
quantify the levels of a large variety of metabolites within an
organism. Because UPLC-HRMS/MS screens for an enormous
variety of metabolites, it effectively allows us to capture snapshots
of an organism’s metabolome during the progression of a disease.
Fluctuations in particular metabolite levels during disease
progression indicate that the metabolite or the biochemical
process that created it is associated with the disease.
Unfortunately, these biochemical processes are extremely
complex and gaining insights into their mechanisms can take
years. LBD offers the potential to rapidly search huge amounts of
scientific literature to generate novel hypotheses associating these
metabolites to the disease pathophysiology. These hypotheses
allow us infer novel metabolic pathways responsible for the
observed fluctuations associated with the disease. Such
knowledge allows us to identify novel druggable targets for the
disease under investigation. Identification of druggable targets is
the first step in drug development and drug repurposing, and
therefore, combining LBDwith metabolomics has the potential to

massively decrease drug development time by quickly finding
new druggable targets for specific diseases. Furthermore, we can
predict the effect of these new drugs on the metabolome. We can
then test the predictions by administering the drug, collecting
new plasma samples, and undertaking additional metabolomic
analysis. Confirmation of the predicted effects support the
hypotheses about the metabolic processes and support the use
of the drug to treat the disease. Unpredicted effects can lead to
further inquiry supported by LBD, and the process can be
repeated to gain increasing insight into the biochemical
processes of the disease. This forms a feedback loop
(Figure 1) where knowledge can be gained and multiple
hypotheses tested iteratively until all knowledge that can be
gained from the sample under examination is maximized.

In this work, we fully describe and expand upon our previous
work related to metabolomic knowledge discovery. In our first
exploratory investigation (Panahi et al., 2018), we briefly
described the potential to use LBD for metabolomic research.
In it, we stated that there is a potentially interesting, yet
unexplored link between fish eye disease (also called partial
lecithin cholesterol acyltransferase (LCAT) deficiency) and
cardiac arrest, but excluded details and lacked any empirical
evidence to support this hypothesis. Following that initial insight,
we realized that LCAT and ω-3 share an underlying metabolic
pathway. Since previous research suggested that ω-3 PUFA has
some protective effects related to cardiac arrest, we were excited
about this realization. In our next step (Cheng et al., 2020), we
verified in vivo that ω-3 statistically significantly improved post-
resuscitation myocardial dysfunction, which corresponds
specifically to our collected data. We showed that the

FIGURE1 |UPLC-HRMS/MSmeasuresmetabolite levels in plasma samples. Based on changes of metabolite levels, metabolites of interest are identified and input
into LBDwhich generates hypotheses to help explain these observed changes. Based on these hypotheses, newmetabolic pathways related to the disease of study are
discovered. Druggable targets along the pathway can be identified and new drugs can be used to help treat the disease. Using these drugs, new plasma samples can be
collected and the metabolic levels can be measured to support or deny the hypothesis.
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combination of ω-3 PUFA and ascorbic acid treatment confer an
additive effect in suppressing lipid peroxidation thereby
improving myocardial function and increasing survival rate
following cardiac arrest. In this paper, we fully describe this
process and validate the technique with empirical evidence
showing that ω-3 PUFA vastly improves cardiac function
leading to improved survival rates. Specifically, we fully
describe our integration of LBD with ultra-high performance
liquid chromatography coupled to high resolution tandem mass
spectrometry (UPLC-HRMS/MS), fully describe our LBD
methodology and results, propose LCAT as a druggable target
for cardiac arrest and describe our reasoning behind it. We begin
this paper with background information about metabolites and
LBD before we present our particular methods including the
resources used, how data was collected, and the LBD process. We
then describe the LBD results, metabolomic findings, and in vivo
verification. Lastly, we describe lessons learned in developing
LBD for this application, limitations, future work, and
conclusions.

2 BACKGROUND

In this section we describe background information associated
with our study.

2.1 Metabolites
Themetabolome is the sum of all metabolites in an organism, and
metabolites are small molecules that are the end result of many
biochemical processes. Metabolites play a central role in
maintaining the biochemical homeostasis which is critical for
good health. Biochemical homeostasis is regulated in a process
starting with DNA and ending with metabolites. DNA is
transcribed into RNA which creates proteins. Many of the
proteins are enzymes that catalyze the production and
degradation of metabolites. Changes in an organism’s
biochemical processes results in changes in the metabolome
which can cause, and lead to the progression of diseases.
Alternatively, pharmaceutically induced modifications to
correct aberrant metabolic processes form the basis of disease
treatment. Observing changes in a metabolite’s level can provide
evidence that metabolite plays a role in contributing to a disease
or recovery from it.

One important group of metabolites are lipids. Lipids are
hydrophobic biomolecules such as fatty acids, glycerides,
phospholipids, sterols, sphingolipids, and prenol lipids. The
role of lipids in an organism include maintaining membrane
structure, storage of energy, and providing energy for organs such
as the heart. Lipids undertake a direct signaling role in an
organism, such as in steroidal hormones, endocannabinoids,
eicosanoids, ceramides, and platelet activating factor. The
lipidome also affects signaling via the modulation of
membrane curvature and fluidity. Being the external
boundaries of cells and organs, lipids are directly exposed to
the greater biochemical changes in a system, and undergo
changes as a consequence. Examples include the oxidation and
peroxidation of lipids under conditions of oxidative stress. As

such, investigating the changes to the lipidome and the larger
metabolome provide a window into the greater biochemical
disruptions happening at a system level.

Since metabolites (and lipids in particular) play such a crucial
role in the higher biochemical signaling levels which regulate
biochemical processes, their metabolic pathways represent
valuable drug targets. Lipids directly affect the metabolism of
drugs which impacts a drug’s absorption rate and delivery
mechanism. Multiple studies have demonstrated the relevance
of the lipidome in nearly all diseases. A large number of FDA
approved pharmaceutical interventions already exist for the
modulation of lipid pathways ranging from the most common
Aspirin (Patel and Baliga, 2020) to the highly efficacious and the
most modern pharmaceutical interventions like monoclonal
antibodies for the inhibition of PCSK-9 (Feinstein and Lloyd-
Jones, 2016). Despite this, the large-scale investigation of the
lipidome is relatively new indicating opportunities for impactful
and actionable discoveries to be made with respect to human
health and disease.

2.2 Cardiac Arrest and Metabolites
Cardiac arrest occurs when the heart suddenly stops beating due
to a loss in the coordination of electric impulses that maintain the
rhythmic contraction and relaxation of heart muscles. This causes
a cessation of blood flow to major organs such as the brain. It is a
major health problem which most often results in death (Khatib
et al., 2017). It is one of the leading causes of death in the
United States (Jazayeri and Emert, 2019), and even if patients
initially survive, many fail to regain full functionality. Among
those that survive, subsequent myocardial dysfunction are
common. Additionally, ischemia reperfusion injury to major
organs such as the brain often lead to neurological
dysfunction and death (Benjamin et al., 2018). Economically,
the cost of cardiac arrest is massive, and on average costs $3,750
per family per year tallying to a economic burden of $455 billion
(Lurie et al., 2017).

Previous studies have shown that lipids play an important role
during cardiac arrest. Disorders of lipid metabolism occur after
global myocardial ischemia/reperfusion (I/R) injury (Siscovick
et al., 2017; Xiao et al., 2020) which is a main cause of myocardial
dysfunction after resuscitation (Patil et al., 2015). Furthermore,
previous studies found that the lipid, ω-3 PUFA can reduce the
risk of cardiac arrest (Leaf et al., 2003) as well as death from
sudden cardiac arrest (Marchioli et al., 2002). Furthermore,
because lipids are susceptible to oxidation, anti-oxidants such
as ascorbic acid can increase the bio-availability of these
molecules. Previous studies have shown that the
administration of the ascorbic acid at the start of
cardiopulmonary resuscitation (CPR) decreased myocardial
damage and improved survival rate and neurological outcome
in a rat model of cardiac arrest and CPR (Tsai et al., 2011, 2014).
Ascorbic acid is an effective anti-oxidant, and current evidence
indicates that the combination of two or more antioxidants may
exert synergistic myocardial protective effects (Satyanarayanan
et al., 2018; Vineetha et al., 2018). Although these studies
indicated that ω-3 PUFA and ascorbic acid played some role
in cardiac arrest, no studies prior to this research showed the
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effects ofω-3 PUFA and ascorbic acid on themechanisms of post-
resuscitation myocardial dysfunction when given acutely
following cardiac arrest. Furthermore, no studied established
the link between LCAT, ω-3 PUFA, and cardiac arrest.

2.3 Ultraperformance Liquid
Chromatography–High-Resolution Mass
Spectrometry Mass
We use ultra-high performance liquid chromatography coupled
to high resolution tandem mass spectrometry (UPLC-HRMS/
MS), which is a multipurpose analytical tool to quantitatively and
qualitatively analyze biomolecules. This tool first separates
biomolecules by their chemical properties (UPLC) and then by
their mass to charge ratio (m/z). The combined techniques allows
for a very high level of unambiguous identification of molecules at
a sensitivity that surpasses a majority of other analytical
technologies. The molecular identity is confirmed via a
combination of their retention time, intact molecular m/z as
well as the m/z’s of the fragments of a specific molecule. The
combination of these parameters in a majority of cases are unique
to a particular molecule thereby allowing us to assign a molecular
identity by comparing them against a database of known
molecular parameters. Where the identity of the molecule has
not been reported previously, the information obtained still
allows us to hypothesize the possible structure of the molecule,
and thereby assign a putative identity that can later be confirmed
via comparison against an authentic standard or via an
orthogonal method such as nuclear magnetic resonance
(NMR). All in all, UPLC-HRMS/MS is the most versatile tool
available to date for investigating biochemical changes associated
with health and disease.

2.4 Literature Based Discovery
Literature based discovery (LBD) was first conceptualized by Dr
Don Swanson, who formalized his approach of finding implicit
links in the literature to discover new knowledge. In his seminal
work (Swanson, 1986), he discovered a previously unknown link
between Raynaud’s disease and Fish Oil through their
interactions with several intermediate terms, primarily blood
viscosity, platelet aggregation, and vascular reactivity (Weeber
et al., 2001). This link was found through an analysis of existing
literature and was later verified via clinical trials (DiGiacomo
et al., 1989), which gave credence to the idea that vast amounts of
undiscovered knowledge lay hidden in scientific literature. Since
that initial discovery, LBD techniques have facilitated knowledge
discovery related to cataracts (Kostoff, 2008b), multiple sclerosis
(Kostoff et al., 2008b), and Parkinson’s disease (Kostoff and
Briggs, 2008). LBD has led to understanding and discovering
new health benefits of curcumin (Srinivasan and Libbus, 2004)
and discovering potential treatments for cancer (Ahlers et al.,
2007; Zhang et al., 2014).

The primary application areas of LBD have been for drug
development (Hu et al., 2003; Hristovski et al., 2010; Zhang et al.,
2014), drug repurposing (Ahlers et al., 2007; Baker, 2010;
Deftereos et al., 2011; Cohen et al., 2014; Zhang et al., 2014;
Rastegar-Mojarad et al., 2015, 2016; Yang et al., 2017; Zhang et al.,

2020), and adverse drug event prediction (Deftereos et al., 2011;
Banerjee et al., 2014; Shang et al., 2014; Hristovski et al., 2016;
Mower et al., 2016). Although we were unable to find prior studies
focused specifically on applying LBD to metabolomic knowledge
discovery, biochemical pathways are frequently an area of
investigation for new drug development. Gubiani et al. (2015)
used the previously developed RaJoLink LBD system (Petrič et al.,
2009) to support biomedical discoveries related to aging. Their
goal was to validate links found between gut bacteria and aging.
They mention that these links have been found by combining
genetic sequencing approaches, proteomic studies, and
metabolomic studies. Hansson et al. (2020) described a
method to support novel drug discovery related to diabetes.
Their focus was to investigate the effects of proteins on
different metabolic pathways. They developed a system to find
evidence that supports drug discovery using explicit connections
“right after publication” rather than finding implicit connections
across all literatures as is traditionally the case with LBD. Much
related work had focused on genetic data (Hu et al., 2003; Frijters
et al., 2010; Hristovski et al., 2010; Faro et al., 2012; Zhang et al.,
2014). In one study, Frijters et al. (2010) used LBD to investigate
the connections between genes, drugs, biological pathways, and
diseases. Their study included an in vitro verification of their
proposed connection between damnacanthal’s and dephostatin’s
inhibition of cell proliferation. In another study, Faro et al. (2012)
integrated LBD with genetic data (such as micro-arrays), and
used it to study genetic pathways and gene regulation. They
described their tool, GeneWizard, which served as an aid in
discovering new gene-disease relations.

Applications of LBD outside of the biomedical domain include
developing efficient water purification systems (Kostoff et al.,
2008d), accelerating the development of developing countries
(Gordon and Awad, 2008), categorizing potential bio-warfare
agents (Swanson et al., 2001), studying climate change (Aamot,
2014), and identifying promising research collaborations
(Hristovski et al., 2015).

In the traditional ABC co-occurrence model (Swanson and
Smalheiser, 1997) of LBD, a start (A) term is inputted into the
system. Text is searched to find the set of all terms that co-occur
with the A term, forming the set of linking (B) terms. Again, the
text is searched but this time the set of all terms that each B term
co-occurs with are found, forming the set of target (C) terms. In
the obligatory example of Swanson’s Raynaud’s Disease - Fish Oil
discovery, Raynaud’s disease is the start term, blood viscosity,
platelet aggregation, and vascular reactivity are the linking terms,
and fish oil is the target term.

Using this model, there are two primary modes of LBD:
closed-discovery and open discovery (Weeber et al., 2001)
[also called two-node search and one-node search respectively
(Swanson and Smalheiser, 1997)]. In closed discovery, the goal of
LBD is to help explain a hypothesized connection between the
start and target term. The end result is a set of linking terms which
describe how the start and target term are related (e.g. blood
viscosity, platelet aggregation, and vascular reactivity). In open
discovery, LBD helps to find new concepts implicitly linked to the
start term. These new connections can provide novel insights
such as treatments for a disease or symptoms (e.g. fish oil). These
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two paradigms are not exclusionary, and hypotheses generated
using open discovery can be explained using hypotheses
generated from closed discovery. Furthermore, in either case
the end goal of LBD is the same - to generate hypotheses
from knowledge implicit in literature.

Presently, LBD is a mature field with varying paradigms and
system designs (Henry and McInnes, 2017; Kastrin and
Hristovski, 2020). Despite this variation, at their most basic,
most LBD systems share a common process consisting of at
least three primary steps: 1) Term Linking, 2) Term Filtering, and
3) Term Ranking. Figure 2 provides a high level view of the LBD
process. Here, we discuss each of these steps in more detail as well
as current LBD evaluation methodologies.

2.4.1 Term Linking
The initial A to B and B to C relationships are identified based on
explicit relationships in text. These relationships may be based on
co-occurrences (Swanson and Smalheiser, 1997; Weeber et al.,
2001; Yetisgen-Yildiz and Pratt, 2006), semantics (Hristovski
et al., 2006; Preiss et al., 2015; Rastegar-Mojarad et al., 2015),
vector operations (Gordon and Dumais, 1998; Bruza et al., 2004;
Cohen et al., 2010, 2011), or other methods (Kostoff et al., 2008c;
Goodwin et al., 2012; Workman et al., 2016).

2.4.2 Term Filtering
Term linking tends to over-generate linking and target terms, and
during the term filtering step, terms that are already known, too
obvious, spurious, or otherwise uninformative are removed.
Term filtering techniques are commonly frequency-based,
semantic-based, or relation-based. Frequency-based filters
(Gordon and Lindsay, 1996; Pratt and Yetisgen-Yildiz, 2003;
Preiss et al., 2015) remove terms by thresholding based on
some count, statistical measure, or cosine distance between
vector representations. These are effective for removing terms
that are too common or uncommon. Semantic type filters
(Weeber et al., 2001) restrict or remove terms based on their
meaning. Typically this is performed using dictionaries in which
terms are categorized into various semantic types which broadly
characterize the words meaning. For example, target terms may
be restricted to only “Drugs” if the user is searching for a new
treatment for a disease. Relation type filters (Hristovski et al.,
2006) remove terms based on how they are related to each other.

If terms are semantically linked using relationship extraction, it is
often possible to label the type of relation between the two terms.
Relation type filters restrict or remove terms based on the labels of
these relations. For example, we may want to restrict the start and
linking terms to “Affects”, “Regulates”, “Increases”, or
“Decreases” type relationships to discover how a drug and
disease interact via a set of linking terms. Other types of filters
exist, but are less common. One example is hierarchical-based
filters (Pratt and Yetisgen-Yildiz, 2003; Hu et al., 2006) which
attempt to eliminate terms that are too general based on their
distance from the root of semantic hierarchies.

2.4.3 Term Ranking
During term ranking, hypotheses are ranked based on some
measure of interestingness. Even after term filtering, there may
remain too many hypotheses to manually review and term ranking
helps to prioritize the user’s analysis. Linking Term Count (LTC)
(Swanson and Smalheiser, 1997) is one of the first developed and
best performing (Yetisgen-Yildiz and Pratt, 2009; Henry and
McInnes, 2019) ranking measures. LTC ranks each target term
by counting the number of unique linking (B) terms between the
start (A) and target (C) term. However, there are a huge variety of
ranking methods (Henry and McInnes, 2017). These include co-
occurrence measures (Gordon and Lindsay, 1996; Swanson and
Smalheiser, 1997; Hristovski et al., 2001, 2005; Swanson et al.,
2006), statistical measures (Wren, 2004; Yetisgen-Yildiz and Pratt,
2009; Rastegar-Mojarad et al., 2015; Henry and McInnes, 2019),
vector-based measures (Gordon and Dumais, 1998; Bruza et al.,
2004), and graph-based measures (Wilkowski et al., 2011; Eronen
and Toivonen, 2012).

2.4.4 Literature Based Discovery Evaluation
There are a few standard evaluation methodologies for LBD:
discovery replication, time-slicing (Yetisgen-Yildiz and Pratt,
2009), and link prediction (Eronen and Toivonen, 2012;
Kastrin et al., 2016). For discovery replication, past discoveries
are remade using similar data to that available at the time of the
original discovery. Time slicing assesses a system’s ability to
generate new discoveries by splitting a dataset chronologically
into training and test sets; potential discoveries are generated on
the training set and their existence is validated on the test set.
Similarly, link prediction assesses a system’s ability to generate

FIGURE 2 | LBD systems typically consist of at least three components. Term linking, term filtering, and term ranking. Hypotheses are generated (term linking),
spurious hypotheses are removed (term filtering), and the remaining hypotheses are ranked (term ranking) and displayed to the user for analysis.
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new discoveries by splitting a knowledge graph into training and
test sets. True edges (links) are removed from the graph and are
combined with false edges which do not exist on the graph.
Performance is evaluated by a system’s ability to distinguishing
between these true and false edges.

These standard evaluation methodologies aid in system
development, but the ultimate goal of LBD is to generate
practical new knowledge, and a system’s ability to do so is the
best indicator of a system’s success. While LBD researchers often
claim new discoveries, many of these discoveries have failed to
withstand empirical evaluation and expert assessment (Bekhuis,
2006; Kostoff, 2008a; Kostoff, 2008c; Kostoff et al., 2008a).
Therefore, combining new discoveries with empirical evaluation
is essential. Examples of empirical evaluation include evidence from
microarray data (Hristovski et al., 2010) and proteomic data (Hu
et al., 2003), in vitro testing (Frijters et al., 2010; Cohen et al., 2014),
in vivo testing (Wren et al., 2004; Lekka et al., 2012), and clinical
trials (DiGiacomo et al., 1989). Furthermore, a shortcoming of LBD
has been its relative lack of adoption in its intended domain.
Generating discoveries with LBD and validating with empirical
evidence exposes LBD to new audiences and gives credibility to the
field. Working with domain experts to validate discoveries sparks
collaborations between LBD developers and users which will lead to
more useful LBD software in future iterations.

3 MATERIALS AND METHODS

In this section we describe the materials and methods utilized in
our study.

3.1 Materials
3.1.1 Unified Medical Language System
The Unified Medical Language System (UMLS) is a knowledge
representation framework designed to support biomedical and
clinical research. It is a data warehouse containing three
knowledge sources: Metathesaurus, Semantic Network and
SPECIALIST Lexicon. The Metathesaurus is a multi-lingual
lexical database that combines information about biomedical
and health-related concepts from various biomedical and
clinical sources (e.g. Medical Subject Headings). It includes over
100 knowledge sources and classification systems encoded with
different semantic and syntactic structures. The Metathesaurus
organizes knowledge based on Concept Unique Identifiers (CUIs).
The CUIs are further categorized into 127 semantic types and 15
semantic groups.1 For example, the concept “Cardiac Arrest” has a
CUI C0018790 and is semantic type “disease or Syndrome (T047)”
which belongs to the semantic group “Disorders (DISO)”.

3.1.2 MetaMapped MEDLINE Baseline
In this work, we utilize the National Institutes of Health (NIH),
National Library of Medicine’s (NLM’s) MetaMappedMEDLINE
baseline.2 MEDLINE contains over 20 million biomedical and

clinical citations from 1966 to present day. MetaMap (Aronson,
2001) is a concept mapping system that maps terms in biomedical
text to CUIs in the UMLS Metathesaurus. The titles and abstracts
fromMEDLINE citations are periodically processed by MetaMap
and released via the MetaMapped MEDLINE baseline.3. For this
study, we used the 2015 version of the MetaMapped MEDLINE
baseline.

3.1.3 Data Collection
To identify the metabolites associated with cardiac arrest,
plasma samples (n � 28) were collected from cardiac arrest
patients at time of arrival to the hospital post resuscitation and
following therapeutic hypothermia target body temperature.
Metabolites were extracted from these samples followed by
analysis with untargeted lipidomic and metabolomic
approaches. The resultant data were normalized and the top
most statistically significant metabolites were identified. The
study was undertaken using residual samples from a study
already approved by the Institutional Review Board (IRB
protocol number: HM15326). Only the metabolomic and
lipidomic data obtained from the study was used in this
manuscript.

Plasma from cardiac arrest patients were analyzed via UPLC-
HRM/MS and the abundance of all identifiable species were
collected. Thereafter the species abundances were analyzed
statistically and those which were significantly different (p ≤
0.05) were identified for further investigation. Through this
process, we identified 22 metabolites that passed our statistical
criteria as being of being significant with respect to the post
cardiac arrest period. These counts are indicative of changes in
biochemical pathways of which the metabolites are the end
product.

Of the 22 identified metabolites, 19 mapped to UMLS CUIs
and three metabolites did not have associated UMLS CUIs (4-
acetamidobutyric acid, Lysophosphocholine, and N(epsilon)
Methyl-L-lysine). Table 1 shows UMLS CUIs and their
preferred term for each of the B-Terms and the initial A-term
(Cardiac Arrest). During the manual concept mapping process,
four metabolites mapped to two synonymous CUIs. In these
cases, a single term was selected. Selection was based on the
“preferred term” indicated by the UMLS. These include the
following terms for which the selected concept used in LBD is
shown in italics C0019602 histidine and C0523697 Histidine
measurement, C0023401 leucine and C0428209 Leucine
measurement, C0003765 arginine and C0523503 Arginine
measurement, and C0556150 docosahexaenoic acid and
C0012968 Docosahexaenoic acids. Two concepts never
occurred with C0018790 Cardiac Arrest. As such, they could
not be considered linking terms (since an A to B link does not
exist). These concepts include C2348307 Docosadienoic acid and
C0069409 oleoylcarnitine. The result is a set of 17 metabolites
which co-occur with C0018790 Cardiac Arrest and are used to
calculate ranking scores.

1https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
2https://mbr.nlm.nih.gov/ 3https://ii.nlm.nih.gov/MMBaseline/index.shtml

Frontiers in Research Metrics and Analytics | www.frontiersin.org June 2021 | Volume 6 | Article 6447286

Henry et al. Literature Based Discovery for Cardiac Arrest

%20https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
%20https://mbr.nlm.nih.gov/
%20https://ii.nlm.nih.gov/MMBaseline/index.shtml
https://www.frontiersin.org/journals/research-metrics-and-analytics
www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles


3.2 Method
Figure 3 describes our LBD system at a high level (Henry and
McInnes, 2019)4. Our system is an ABC co-occurrence based
system based on text mapped to CUIs within the UMLS. The goal
of our system is to find diseases highly associated with the
metabolites we identified in the laboratory setting as relevant
to cardiac arrest. Therefore, we input the start (A) term of cardiac
arrest (C0018790), we restrict our linking (B) terms to the 19
metabolites of interest (described in Table 1), and restrict our
output (C) terms to diseases. These diseases are then ranked and
displayed to the user. We describe each step in our system in
detail below.

Preprocessing: We extract co-occurrence information
between concepts from the MetaMapped MEDLINE baseline.
Due to the data being processed by MetaMap, stopwords are
automatically removed as they do not map to UMLS CUIs, and
synonymous terms are mapped to a single concept which can
create a more accurate co-occurrence matrix. We construct a co-
occurrence matrix using using a symmetric window size of eight,
meaning that concepts are counted as co-occurring if they occur
within eight concepts before or after the term the window is
focused on. Sentence boundaries are ignored. A window size of
eight was chosen because it is the average CUI length of sentences
in the 2015 MetaMapped MEDLINE baseline. Furthermore,
evidence from previous studies focused on semantic
relatedness (Henry et al., 2018) found that a window size of
eight does a good job at balancing between noise introduced by
too large a window, and missing information caused by too small

a window size. The end result is a flat file of co-occurrence counts
of CUI pairs extracted from MEDLINE. The co-occurrence
counts in the file are used in the term linking, term filtering,
and term ranking steps of LBD.

Term Linking: The initial A to B and B to C relationships are
identified based on explicit relationships using the collected co-
occurrence information. The co-occurrence of terms in text
constitutes a relationship; and the linking terms are found
iteratively through co-occurrences. As noted above, we restrict
our B terms to the 19 metabolites of interest summarized in
Table 1.

Term Filtering: Uninformative terms are removed by
applying a co-occurrence-count-based filter to remove any
concepts with just a single co-occurrence. We also apply a
semantic type filter which restricts the C terms to Diseases
(semantic type: “T047 DYSN”).

Term Ranking: For LBD, it is assumed that target terms never
co-occur with the start term (since they are new knowledge),
meaning that traditional information retrieval ranking methods,
which require direct co-occurrences cannot be applied. Instead,
indirect ranking measures must be used. As previous work has
shown LTC (Swanson and Smalheiser, 1997) is simple and
effective (Yetisgen-Yildiz and Pratt, 2009; Henry and McInnes,
2019), we used LTC.

Hypothesis Display: The resultant data were provided to the
researchers for interpretation and analysis. Data was provided as
a list of ranked terms. A complimentary file was provided
containing the ranked target terms and beneath them the
target term’s co-occurrence counts with each of the linking
terms. This allowed the researcher to quickly get an idea as to
how (via what metabolites) the target term was related to the start
term. Table 2 shows an example of this output.

Although it is common to remove terms that directly co-occur
with the starting term from LBD output, we chose to keep those
terms and display them to the user. We have several reasons for
this: First, Due to the volume of scientific literature, it is unlikely
that an investigator is aware of all previously published studies.
Hristovski et al. (2013) found that one of the most useful uses of
LBD systems is to find information that is new to the investigator
rather than new to science. Therefore, by removing directly co-
occurring terms we remove information that is potentially
meaningful to the investigator. Second, co-occurrences do not
necessarily constitute a relationship. This is particularly true for
terms that directly co-occur with the start term just a few times.
Removing terms that directly co-occur with the start term may
remove meaningful information. Third, even when terms didn’t
provide any new information to the investigator (the term
directly co-occured with the start term and was already known
to the investigator), they helped to build trust in the efficacy of the
LBD system. Investigators may be unfamiliar with LBD
techniques and practitioners of traditional experiment-driven
science may be skeptical of data-driven science such as LBD.
By including these “known” terms in LBD output, it provides a
level of assurance to the investigator that the rankings of terms are
actually valid and meaningful. Lastly, due to differences in how
ranking occurs for LBD ranking methods and traditional
information retrieval ranking methods, we found that the top

TABLE 1 | Metabolites used in this study and their corresponding CUIs.

CUI Preferred term

A-term C0018790 Cardiac arrest
B-terms used C0368608 Acylcarnitine

C0003765 Arginine
C0007745 Ceramides
C0008405 Choline
C0556150 Docosahexaenoic acid
C0058624 Docosapentaenoic acid
C2348386 Eicosadienoic acid
C2348388 Eicosatrienoic acid
C0017770 Glucosylceramides
C0019602 Histidine
C0023401 Leucine
C0024360 Lysophosphatidylcholines
C0028375 Norleucine
C0070662 Phenylalanylphenylalanine
C0031716 Phosphorylcholine
C0031951 Pipecolic acid
C0037906 Sphingomyelins

No Co-occurrence with a term C2348307 Docosadienoic acid
C0069409 Oleoylcarnitine

No CUI mapping - 4-Acetamidobutyric acid
- Lysophosphocholine
- N(epsilon) Methyl-L-lysine

4Code is available: https://github.com/Scientific-LBD/metabolite-LBD-cardiac-
arrest
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ranked LBD output contained minimal directly co-occurring
terms, and that investigators could quickly skip over terms
that provided no new knowledge to them with minimal
impact on actual investigation time.

4 RESULTS

In this section we describe our LBD and metabolomic results. The
LBD results described here provided the spark of insight which
began a line of inquiry into the relationship between LCAT and
cardiac arrest. This inquiry led to the realization that LCAT has
an effect on ω-3 PUFA availability. This, coupled with the
association between several PUFAs and cardiac arrest found
via plasma sample analysis and LBD further supported the
potential of LCAT as a drug target for increasing cardiac
arrest survival rates. Furthermore, previous literature
(Marchioli et al., 2002; Leaf et al., 2003) has shown ω-3
PUFA’s protective effects against cardiac arrest, however no
studies had shown whether an acute infusion of ω-3 PUFA
post cardiac arrest improves myocardial dysfunction.
Therefore as the next step, we demonstrated that ω-3
polyunsaturated fatty acids can indeed improve myocardial
function thereby increasing survival rate following cardiac
arrest, which indicates clinical relevance (Cheng et al., 2020).
This was shown in vivo via rat models.

4.1 Analysis of Literature Based Discovery
Results
Table 2 shows an example of the output of our LBD system. It
shows the third and fourth highest ranked terms. The first highest
ranked term was the start term, “C0018790 - Cardiac Arrest”.
This was expected, however we found it was important to leave it
in the list of ranked terms because it supports the validity of this

technique. Furthermore, since it co-occurs with only 17 of the
19 B terms, it indicates that two of the metabolites (docosadienoic
acid and oleoylcarnitine) we identified via UPLC-HRMS/MS had
never been reported with Cardiac Arrest. This indicates a

TABLE 2 | Example output showing the third and fourth highest ranked terms.

15 - C0342895 - disease, fish-eye

503 C0556150 Docosahexaenoic acid
481 C0008405 Cholines
411 C0023401 Leucine
395 C0003765 Arginine
158 C0019602 Histidine
55 C0037906 Sphingomyelin
50 C0007745 Ceramide
29 C0368608 Acylcarnitines
19 C0058624 Docosapentaenoic acid
17 C2348388 Eicosatrienoic acid
15 C0031716 Phosphorylcholine
12 C0024360 Lysophosphatidylcholine
6 C0017770 Glucosylceramide
4 C0028375 Norleucine
3 C2348386 Eicosadienoic acid

14 - C0043194 - aldrich syndrome wiskott

508 C0019602 Histidine
189 C0003765 Arginine
139 C0023401 Leucine
90 C0008405 Cholines
43 C0007745 Ceramide
35 C0031716 Phosphorylcholine
29 C0037906 Sphingomyelin
28 C0024360 Lysophosphatidylcholine
23 C0556150 Docosahexaenoic acid
6 C0368608 Acylcarnitines
6 C0017770 Glucosylceramide
2 C0028375 Norleucine
2 C0070662 Phenylalanylphenylalanine
2 C0058624 Docosapentaenoic acid

FIGURE 3 | The overall LBD process of our system. Hypotheses are generated by finding relations implicit to the concept of interest (human input) using
co-occurrence information from the data source. The hypotheses are filtered, ranked, and displayed to the user for analysis.
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potentially new association worthy of investigation. The second
highest ranked term was “C0012634 - disease, NOS” which is too
general a term to provide any meaningful insight. Our system
outputs hypotheses as a ranked list of target concepts and their
co-occurrence frequencies with the pre-defined set of B terms. In
the output, the target term appears and below it (and tab
indented) is the list of B-terms and the count of B to C co-
occurrences. This was done to facilitate an understanding of how
the disease is related to the start term (Cardiac Arrest) at a glance.
The B-terms are listed in descending order of co-occurrence. No
tie-breaking method was used when determining which terms to
display first for either the C-terms or the B-terms. Instead, their
appearance is purely by chance.

Interpreting Table 2, the first row tells us that “C0342895 -
disease, fish eye” co-occurs with 15 of the 19 identified
metabolites. Below this, these 15 metabolites are listed in
descending order, ranked by the count of co-occurrences with
each of the metabolites. The numbers tell us that “C0556150 -
docosahexaenoic acid” co-occurs with fish eye disease a total of
503 times. This frequency of co-occurrence indicates the relative
strength of the relationship between docosahexaenoic acid and
fish eye disease. Next “C0008405 - cholines” co-occurs with fish
eye disease 481 times. Each co-occurring metabolite is listed until
lastly “C2348386 - Eicosadienoic acid” is listed, which co-occurs
with fish eye disease just three times, indicating a relatively weak
relation between itself and fish eye disease. The rankings of the
metabolites provide clues as to what relation to begin
investigating. The link between fish eye disease,
docosahexaenoic acid (an ω-3 PUFA), and cardiac arrest is
clearly indicated in this table and led to the starting point of
discovery.

The next highest ranked term in our LBD output was
“C0043194 - Wiskott Aldrich syndrome”, which co-occurs
with 14 of the 19 identified metabolites. The frequency of co-
occurrence between it and each metabolite is listed below it. For
“C0043194 - Wiskott Aldrich syndrome”, we see that different
metabolites co-occur with it more frequently, indicating that it is
more strongly related to metabolites different than those
strongest related to fish eye disease. We have not yet
performed an investigation into Wiskott-Aldrich syndrome,
however it may be of interest for future work.

Table 3 shows a histogram of the number of terms per LTC
score. As summarized in Table 3, there were 55,376 disease terms
identified. Of them, only 3,122 co-occur with any of the linking
terms; 553 occur with two or more linking terms; 501 with three
or more; 306 with four or more; 195 with five or more; 126 with
six or more; and 88 with seven or more, and so on. Note the
Zipfian distribution of the histogram. With less than 100 terms,
this resulted in a manageable number for manual review. Of
course, restricting to B terms of interest requires a lot of
forethought and knowledge of the problem, however it is often
the case that researchers know what they are looking (at least at a
high level) before inquiry begins.

A large portion of the top ranked terms were too general to be
of interest (e.g. Diseases, vesicle, communicable diseases).
Although we performed only a manual review process, it is
possible that term filtering methods that take advantage of the

UMLS hierarchy could be useful in future work. The prevalence
of these uninformative terms, however made the informative ones
all that more interesting.

Terms with an LTC of 10 or more produces a very concise list
of only 21 terms as shown in Table 4. A manual review of these
terms shows that six are too general to provide much valuable
insight. So, in reality only 15 of the terms provided specific
information for a researcher. A complete set of the rankings
and results displayed are available online.5

4.1.1 Disease Findings
Among the diseases, shown in Table 4, Fish Eye disease ranked
high with 15 of the metabolites of interest being associated with
the disease. Fish eye disease, also called partial lecithin cholesterol
acyltransferase (LCAT) deficiency is caused by mutations in the
LCAT gene. This mutation reduces LCAT’s ability to remove
cholesterol from the blood. Very little literary evidence was found
for a direct relationship between LCAT and cardiac arrest and the
mechanisms as to how it may be related were unknown. Fish eye
disease’s relation to LCAT, however gave a clear pathway toward
further investigation.

4.1.2 Metabolite Findings
Table 5 shows the 19 metabolites identified as the most
significant metabolic differences between arrival and target
body temperature. 17 of the 19 target metabolites were
identified as co-occurring with previous studies with cardiac
arrest. Recall that these 19 metabolites were observed to have
statistically significant changes post-resuscitation following
cardiac arrest via our plasma sample collection and subsequent
analysis. This LBD approach allows for a computational approach
to verify data collection and analysis, rather than an arbitrary

TABLE 3 | Histogram of the number of terms per LTC score.

LTC Target terms with
this LTC score

Count of terms with
> = LTC

17 1 1
16 1 2
15 1 3
14 1 4
13 1 5
12 1 6
11 4 10
10 11 21
9 28 49
8 15 64
7 24 88
6 38 126
5 69 195
4 111 306
3 195 501
2 452 953
1 2,169 3,122
0 52,254 55,376

5https://github.com/Scientific-LBD/metabolite-LBD-cardiac-arrest
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approach. Furthermore, two metabolites, docosadienoic acid and
oleoylcarnitine had never before been reported in the context of
cardiac arrest indicating a potentially new association.

4.2 Metabolic Mechanisms
The coupled metabolic and disease LBD findings provided the
spark of insight which began a line of inquiry into the connection
between LCAT and cardiac arrest via its effect on PUFA
availability. Figure 4 shows the connection between LCAT
and PUFA. In it, we show two competing pathways. Pathway

A is regulated by LCAT, and in it, cholesterol esters containing
PUFA and LPA are formed resulting in PUFA being stored in
tissue, thereby removing it from circulation. Alternatively, in
Pathway B, PUFA (including DHA) remains in circulation,
making it available to increase cardiac arrest survival rates. We
can think of these pathways as a split in a river. Pathway A
removes PUFA from the system, and pathway B makes it
available. By decreasing the flow of PUFA into pathway A, we
increase its flow into pathway B, thereby increasing PUFA
availability in the system. LCAT regulates pathway A, and by
decreasing LCAT availability we decrease PUFA flow into
pathway A resulting in increased cardiac arrest survival.

The disorders of lipid metabolism in the heart occur following
resuscitation. Supplementation with ω-3 PUFA had previously
shown to reduce the risk of cardiac arrest however the effects of
the ω-3 PUFA and mechanisms post resuscitation myocardial
dysfunction had not been investigated. Under normal conditions,
LCAT transfers polyunsaturated fatty acids (PUFA) from the Sn-
2 position of phospholipids to cholesterol in order to generate
cholesterol esters (CE). Once transformed in this manner, CE is

TABLE 4 | List of terms with an LTC of 10 or greater.

LTC CUI Preferred term

17 C0018790 Cardiac arrest
16 C0012634 Disease, NOS
15 C0342895 Disease, fish-eye
14 C0043194 Wiskott aldrich syndrome
13 C0162429 Malnutrition NOS
12 C0028754 Obesity, NOS
11 C0333262 Vesicle (morphologic abnormality)
11 C0009450 Communicable disease, NOS
11 C0034341 Deficiency disease, pyruvate carboxylase
11 C0011860 Diabetes mellitus, non insulin dependent
10 C0010054 Arteriosclerosis, coronary
10 C0243026 Sepsis, NOS
10 C1720830 Painful bladder syndrome
10 C0025517 Metabolic disease, NOS
10 C0002395 alzheimer’s diseases
10 C0036690 Septicaemia, NOS
10 C0007222 Cardiovascular disease, NOS
10 C0026769 Multiple sclerosis, NOS
10 C0011389 Dental plaques
10 C0039082 Syndrome, NOS
10 C0175697 Van der woude’s syndrome

TABLE 5 | Significant metabolites identified.

Phosphocholine Ceramide
Histidine Acylcarnitine
Sphingomyelin Lysophosphocholine
Phenylalanylphenylalanine Docosapentaenoic acid
Glucosylceramide Leucine
Docosadienoic acid Choline
Pipecolic acid Oleoyl L-carnitine
Arginine *Docosahexaenoic acid
Eicosatrienoic acid *Eicosadienoic acid
L-norleucine

FIGURE 4 | If LCAT increases we expect a lower amount of PUFA(DHA) through pathway B and an increases amount of cholesterol esters containing PUFA and
LPA through pathway A, which results in decrease of cardiac arrest survival.
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removed from circulation and goes into storage in tissue. In effect
this mechanism removes both cholesterol and PUFA from the
system. Previous studies by us (Xiao et al., 2020) have
demonstrated that docosahexaenoic acid (DHA), a PUFA with
22 carbons and six double bonds are associated with survival
following cardiac arrest. Figure 4 shows a high level view of the
metabolic pathways. The data obtained via this LBD exercise
demonstrated the activation of the LCAT pathway which
removes required DHA from the system at a time where it is
most needed.

Subsequent rat model experimentation following these
insights demonstrated that artificially increasing the DHA
content via infusion following cardiac arrest in a rat model led
to statistically significant improvement in cardiac function. The
investigation led to identifying that either ω-3 PUFA or ascorbic
acid at the start of a cardiac arrest can significantly alleviate
inflammation, oxidation stress, and myocardial injury which
contributes to enhanced cardio-protections. However their
combination provides better protection of myocardial function
due to the alleviation of lipid peroxidation by the synergy effect of
the combination (Cheng et al., 2020).

5 DISCUSSION

The application of LBD to metabolomics showed that it can
provide hitherto unknown drug targets for treating diseases,
such as modulating LCAT for treating post cardiac arrest
syndrome. Similar high ranking diseases (e.g. diabetes,
septicemia) were also found to have high levels of
relationship to cardiac arrest via their common metabolites,
confirming the presence of long suspected, but never before
proven, common underlying metabolic circuits between these
different diseases. The practical applications of such findings
include the ability to generalize insights gained and treatments
devised for one disease to others that are closely linked
metabolically leading to faster translation of bench-side
research to clinical treatments.

Since the expertise of those developing LBD tools and those
using them is often different, there can be a disconnect between:
1) how developers think their tools will be used; 2) how they are
actually used and perceived; and 3) the actual needs of researcher
using the tool (Bekhuis, 2006). There were a number of surprises
related to how our LBD tools were used and the insights we
gained which we summarize here.

As mentioned in methods section, keeping terms that directly
co-occur with the start term (A) term in the LBD output increases
confidence in the system. In open-discovery scenarios, it is
common to remove terms that directly co-occur with the start
term from the LBD output. That is because LBD is looking
specifically for indirect (A to C) connections and assumes that
all direct (A to B) connections are already known and therefore
clutter the system output with non-novel connections. We found,
however that keeping direct connections in the system output
increased user confidence in our system. Investigators may be
unfamiliar with LBD techniques and may be skeptical of data-
driven science such as LBD. Including direct connections in the

LBD output provides confidence in the system by showing that it
is finding meaningful information.

Removing hypotheses that are too general may not be very
important. Our system represents a hypothesis as a target term
and its final output was a list of target terms. Previous work (Pratt
and Yetisgen-Yildiz, 2003; Hu et al., 2006) has attempted to
remove terms that are too general or too obvious from this list of
target terms. That is because these general terms provide no new
information, and like directly co-occurring terms, they clutter the
system output. We found that upon manual review of the LBD
output the user quickly skimmed past terms that provided no new
knowledge. This included already known and too general terms.
Therefore, the inclusion of these terms in our LBD output had
minimal impact on actual investigation time. Of course, a more
concise list without these uninteresting terms is preferred and
perhaps essential for more automated methods. We believe,
however that with appropriate term ranking methods, most of
these too general should rank lowly and can be removed by a
threshold rather than by explicitly developing methods to
explicitly remove them.

The linking terms are critical to an LBD hypothesis, and how
LBD output is displayed is critical to a system’s effectiveness. Our
LBD system links cardiac arrest [our starting (A) term] to diseases
[our target (C) terms] via their interactions with metabolites [our
linking (B) terms]. In our first iteration of the LBD system,
our system output just a list diseases which we handed to the
investigator. Almost immediately, the investigator asked us
which metabolites linked cardiac arrest to that disease. They
were interested in the whole ABC connection rather than
simply a list of implicitly connected diseases. A list of implicit
connections was not enough information fully explain the
hypothesis. This prompted use to modify our system to
output both the disease and the linking metabolites (as
described in the Methods section). With that full picture
of the ABC connection, the investigator quickly became
excited and zeroed in on what became our discovery of
LCAT as a druggable target for cardiac arrest.

Use cases are more complex than just open and closed discovery.
Open discovery assumes only the start term is known, however in
the process described in this paper, both the start and linking terms
were already identified by the investigator. This led to the unique
scenario where the A and B terms were fixed for our LBD system.
Closed discovery typically requires an exact start and target term be
specified, however we found that having such a well defined
hypothesis is not always the case. Instead, users often have an
idea of what they are looking for, but it may not be well defined.
In other words, an investigator may have a vague hypothesis, such as
a connection between two groupings of diseases, but the precise start
and target termmay not yet be known. In these cases, open discovery
can be used as an exploratory tool to refine their hypothesis. By using
LBD and scanning the output they can use their domain knowledge
to identify patterns. These patterns can give further insight, and a
process of iterative search and discoverymay be used to form amore
precise hypothesis.

5. LBD is useful to validate experimental findings, and can
serve as a kind of automatic literature review. LBD can lead to a
discovery where new associations are found in the top ranked

Frontiers in Research Metrics and Analytics | www.frontiersin.org June 2021 | Volume 6 | Article 64472811

Henry et al. Literature Based Discovery for Cardiac Arrest

https://www.frontiersin.org/journals/research-metrics-and-analytics
www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles


terms. However, even the top ranked outputs which are already
known to science are exciting. These support repeatable science in
which the LBD results provide an unbiased validation of the
findings. It allows biomedical researchers to validate their
findings via a broad survey of literature rather than cherry
picking a few papers which support their work, thereby
supporting reproducibility in science (Smalheiser, 2017).

5.1 Limitations
Despite the success of our investigation, our study and LBD model
did have limitations which we discuss here. These limitations pave
the way for future work in developing more effective and
generalizable LBD systems for metabolomic knowledge discovery.

Our LBD model is a concept based LBD model. This model
relies on semantic processing to map the data to concepts in a
knowledge source. This poses two disadvantages: the first is the
accuracy of the semantic processing system; and the second the
assumption that the knowledge source is complete. For example,
in our study three metabolites highly associated with cardiac
arrest did not have associated concepts in the UMLS knowledge
source. This can be prohibitive for the broader adoption of LBD
in other domains.

Our model utilized co-occurrence information to identify
related concepts. There is disagreement as to whether co-
occurrence based methods are too noisy. More complex
methods such as relation extraction (Kilicoglu et al., 2020)
models exist, however there is a trade-off between precision
and recall with these models. Co-occurrence-based models
inherently have a high recall since all co-occurrences are
considered a relation, but this high recall comes at the expense
of precision since many co-occurrences do not in actuality
constitute a relationship. Semantic models which extract
relationships from raw text pose the opposite problem. They
may miss certain key relationships (lower recall), but the
relationships they do extract are more likely to be true
relationships. This kind of uncertainty with what constitutes a
relationship, and the data that is processed is a key challenge of
LBD. General purpose relation extraction algorithms often have
reduced precision and recall of relation extraction algorithms for
specific applications and domains. This is particularly true for the
biomedical domain. Development of high recall, high precision
relation extraction algorithms specifically for metabolomics
would help alleviate this limitation.

Our model used fairly simple LBD techniques and focused on
application driven development. As research interest in LBD has
grown, more sophisticated LBD techniques have been developed.
However, a major obstacle to development of these techniques,
and of LBD in general has been the difficulty in objectively
evaluating their performance. Many evaluation methods for
LBD have been proposed, but none are perfect. Ultimately, it
is impossible to predict all future discoveries, and estimating them
from a dataset is fraught with questions and assumptions on what
constitutes a discovery and what constitutes knowledge that is
already known. See Kostoff (2002) for a discussion describing
these challenges. While statistical evaluation of LBD techniques
on synthetic datasets is critical for the development of new
theoretical models and components of LBD systems, it is

equally important to adapt these models into application. The
theoretical models make assumptions about data and how it is
used in practice that may not always apply to their application.
Since we focused on application-driven development of an LBD
system. We showed its effectiveness by its ability to generate new
knowledge that is empirically evaluated. Our overall process
combined previously evaluated LBD components (ABC-co-
occurrence model and linking term count) adapted and
integrated to a new domain. Therefore, it is not the
components themselves that are novel, but rather how they
are applied specifically to the task of metabolomic knowledge
discovery that is novel. Therefore, we forewent any statistical
evaluation such as time-slicing or link-prediction of these
individual components.

Our model uses linking term count (LTC) as a target term
rankingmeasure.We chose to use LTC because it has shown good
performance in the past (Yetisgen-Yildiz and Pratt, 2009; Henry
and McInnes, 2019). However, it is based solely on the count of
unique linking terms shared between the start and target terms.
LTC does not take the frequency of co-occurrence between A and
B or B and C terms into account. In future work, we plan to
experiment with using other ranking measures which may
perform better for hypothesis ranking. In particular, we are
interested in using indirect association measures (Henry and
McInnes, 2019) which take the association between A and B and
B and C terms into account when calculating target term ranks.

Our model follows the traditional ABC co-occurrence based
paradigm. There has been a trend in LBD to move beyond this
paradigm of term linking; for example, vector-based models
avoid the ABC linking step altogether. However, due to our
experimental set up in which we wanted to discover
relationships between cardiac arrest and other diseases
specifically through the interactions with a pre-determined set
of metabolites, it is unclear how to adapt these kinds of models to
this framework. While it is possible to rank all diseases (the target
terms) with respect to the start term (cardiac arrest) without
performing any term linking (i.e. just use all diseases as the set of
target terms, then rank), the ranking method employed must take
into account the interactions through our linking terms of
interest. Perhaps new ranking measures could be developed to
improve performance, but it is unclear whether there are benefits
of going beyond ABC-type links, particularly when using co-
occurrence based models. The further you move from the start
term, the more noise is introduced. In our case, it is perhaps best
to use ABC-type methods to generate a candidate set for manual
review and put more effort into developing more advanced
methods to aid in this review.

The study presented in this paper is limited to a single use case
in which we used LBD to gain insights into the metabolomic
processes of cardiac arrest. However, we believe that the core idea
- that diseases can be better understood by gaining insights into
the metabolomic processes shared between seemingly disparate
diseases can be generalized to new studies. In future work, we plan
to adapt the technique outlined in this paper to other diseases.
Using UPLC-HRMS/MS we can identify metabolites associated
with other diseases and apply a similar LBD process.
Furthermore, having shown the success of this fairly simple
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LBD process we also hope to explore alternative LBD methods to
increase the effectiveness of our system.

Although some may view the goal of LBD as a fully-automated
discovery generation systems, we believe that domain expert or
investigator plays a critical role in the discovery process. This
outlook is similar to user-centric LBD paradigms (Cohen et al.,
2010; Workman et al., 2016). We seek to develop tools that are an
aid to discovery and that place the investigator in a central role in
the LBD process. In this paper, we described a system that
sparked the initial insight into the investigation, and while
some effort was put forward to present the results in
meaningful manner, our review of the generated hypotheses
was almost completely manual. LBD has been posed as a two
step process (Weeber et al., 2000) open-node search (open
discovery) to discover new hypotheses, and a closed-node
search (closed discovery) to explain these discoveries.
Integration of existing visualization techniques for open
discovery (Cairelli et al., 2013; Workman et al., 2016),
including some of our own previous work (Henry et al., 2019),
and the development and integration of closed discovery tools
including visualization (Cameron et al., 2015) could benefit the
process. Allowing researchers to quickly review the target terms
and generate new hypotheses to explain the connections.

Lastly, while it is possible that this spark of insight may have
been achieved using methods other than LBD. The goals of
traditional information retrieval and LBD vastly differ. The
goal of traditional information retrieval techniques focus on
returning results that are most relevant based on current
knowledge. LBD instead returns results which are most
relevant to potential further investigation, or most relevant to
potential future knowledge. While information retrieval
techniques may have returned fish eye disease somewhere in
their results, we believe it is very unlikely that it would be ranked
highest, as it was with LBD-based techniques.

5.2 Conclusion
In summary, the findings from our study highlight the great
potential for new knowledge discovery by directly coupling the
output of metabolomic and lipidomic data for investigated
diseases with the entirety of existing and up-to-date scientific
literature via LBD. This work showed the efficacy of applying
LBD to metabolomic/lipidomic studies. We applied fairly
simple methods to make a discovery which we later
empirically verified. In the future, we plan to use the
discovery itself as a template for creating new LBD methods
specific to the metabolomic domain. This includes more
sophisticated term generation, filtering, ranking, and results
display methods. Furthermore, we plan to continue to
explore integrating UPLC-HRMS/MS with LBD with the
specific aim of rapid analysis and verification of these
metabolomic hypotheses.
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