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ABSTRACT
With the increase in the availability of metagenomic data generated by next generation
sequencing, there is an urgent need for fast and accurate tools for identifying viruses in
host-associated and environmental samples. In this paper, we developed a stand-alone
pipeline called FastViromeExplorer for the detection and abundance quantification of
viruses and phages in large metagenomic datasets by performing rapid searches of virus
and phage sequence databases. Both simulated and real data from human microbiome
and ocean environmental samples are used to validate FastViromeExplorer as a reliable
tool to quickly and accurately identify viruses and their abundances in large datasets.

Subjects Bioinformatics, Genomics, Microbiology, Virology
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INTRODUCTION
Identifying the kinds of viruses that infect eukaryotes and prokaryotes (phages) and
understanding their functions are important because they are the most abundant entities
on Earth (Paez-Espino et al., 2016). In the human body there are estimated to be 100 times
more viral particles than eukaryotic cells (Fancello, Raoult & Desnues, 2012). Studies have
shown that there are connections between human gut microbiome (viruses and bacteria)
and diseases such as inflammatory bowel disease (IBD) and colorectal cancer (Mills et al.,
2013; Mirzaei & Maurice, 2017; Hannigan et al., 2017). Moreover, recent emerging viral
outbreaks including the Zika outbreak in Brazil (Campos, Bandeira & Sardi, 2015), Ebola
in West Africa (Carroll et al., 2015; Gire et al., 2014), the Middle East respiratory syndrome
coronavirus (MERS-CoV) (Haagmans et al., 2014), SARS and influenza-A caused tens
of thousands of human deaths. To better understand and eventually prevent such viral
outbreaks, it is critical to have timely identification and annotation of viruses. In addition,
viruses have been shown to play important roles in shaping the composition and function
of environmental microbiomes (Rohwer & Thurber, 2009). Traditional techniques of virus
identification rely on isolation and culturing, which is not only time-consuming but often
infeasible as many viruses and their hosts are difficult to cultivate in laboratories. Thanks to
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the fast development of biotechnology, it is now easy and quick to produce metagenomics
data for a direct analysis of genetic materials to identify viruses and their abundances in
various environments (Handelsman et al., 1998).

However, with the ease of metagenomics data generation also comes the challenge
of downstream data analysis, including the computational identification of viral species
and their abundances in a fast yet accurate manner from hundreds of millions/billions of
short sequences. Strategies to identify and annotate viruses vary among different tools,
ranging from analyzing marker genes, binning sequences or reads into taxonomic groups,
assembling sequences into contigs and then annotating the genes from the contigs for
taxonomy, to directly aligning short reads to a reference database and inferring virus
types and abundances based on the alignment results. The most straightforward and
fastest approach for virus taxonomic annotation is to align short reads to a marker gene
database and identify viruses based on the alignments; for example, MetaPhlAn (Segata
et al., 2012) and its updated version MetaPhlAn2 (Truong et al., 2015) use this approach.
However, the marker gene analysis strategy does not work well when the input data contain
species that do not have knownmarker genes. Comparatively, assembling reads into longer
contigs and then performing the taxonomic analysis with contigs tend to produce more
accurate results (Roux et al., 2017). This type of virus analysis pipelines normally requires
the users to assemble the reads using an independent assembler and then annotates
the assembled contigs (e.g., VirSorter (Roux et al., 2015), VirFinder (Ren et al., 2017),
Metavir (Roux et al., 2011), Metavir2 (Roux et al., 2014), and Virome (Wommack et al.,
2012)). Another assembly-based workflow for identifying viral elements frommetagenomic
reads is FRAP (fragment recruitment, assembly, purification) (Cobián Güemes et al., 2016).
Understandably the assembly of short reads into contigs gives longer sequences including
longer coding regions with more informative content, which leads to improved annotation
and downstream analysis. However, read assembly can be very time-consuming for large
metagenomics data and can also generate chimeras (i.e., sequences from different genomes
that are incorrectly assembled together due to their similarity) that mislead downstream
annotation (Vázquez-Castellanos et al., 2014; Van der Walt et al., 2017). Finally, tools such
as MG-RAST (Meyer et al., 2008), ViromeScan (Rampelli et al., 2016), VIP (Li et al., 2016),
and HoloVir (Laffy et al., 2016) directly align short reads to a reference database of whole
genomes for taxonomy annotation.Many of these tools were initially developed for bacteria
but adapted later for viruses and tend to work poorly due to the much smaller reference
databases available for viruses than for bacteria (Fancello, Raoult & Desnues, 2012). In
addition, asmany virus annotation tools (i.e.,Metavir (Roux et al., 2011),Metavir2 (Roux et
al., 2014), Virome (Wommack et al., 2012), MG-RAST (Meyer et al., 2008)) are web-based,
users need to upload their data to the website and wait for a long time to get results.

To provide fast and accurate virus detection and quantification on metagenomics data,
we developed a stand-alone pipeline, FastViromeExplorer. Instead of the traditional read
alignment tools such as BLAST (Altschul et al., 1997) or Bowtie2 (Langmead & Salzberg,
2012), FastViromeExplorer uses kallisto (Bray et al., 2016), a pseudoalignment based
approach originally developed for alignment and quantification of RNA-seq data. Kallisto
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has also been used to map metagenome reads to a database of bacterial genomes (Schaeffer
et al., 2017). Here we first use kallisto to rapidly map short metagenome reads to a reference
virus database. Then FastViromeExplorer filters the alignment results based on minimal
coverage criteria and reports virus types and abundances along with taxonomic annotation.
To test the performance of FastViromeExplorer, we used simulated datasets of a known
mixture of viral, phage, and bacterial genomes with different error/mutation rates. We
also applied FastViromeExplorer to real metagenome datasets generated from a Fecal
Microbiota Transplantation (FMT) experiment (Lee et al., 2017) and from environmental
ocean samples (Aylward et al., 2017). FastViromeExplorer is directly compared with blastn
and ViromeScan (Rampelli et al., 2016), a recently developed read based annotation tool
for eukaryotic viruses.

FastViromeExplorer is freely available at https://code.vt.edu/saima5/FastViromeExplorer.

METHODS
FastViromeExplorer, written in Java, has two main steps: (1) the read mapping step where
all reads are mapped to a reference database, and (2) the filtering step where the mapping
results are subjected to three major filters (detailed later) for output of the final results on
virus types and abundances. The input of the read alignment step is raw reads (single-end or
paired-end) in fastq format. FastViromeExplorer uses the reference database downloaded
from NCBI containing 8,957 RefSeq viral genomes as default but can also use any updated
or customized databases as reference. FastViromeExplorer incorporates the reference
database as an input parameter, so that user can use any database of his choice as input.
A precomputed kallisto index file, generated for the 8,957 genomes is distributed here:
http://bench.cs.vt.edu/FastViromeExplorer/.

First, FastViromeExplorer calls kallisto (Bray et al., 2016) as a subprocess to map the
input reads against the reference database. Kallisto was developed to map RNA-seq data to
a reference transcriptome (all the transcripts for a genome) leveraging the pseudoalignment
process and estimate the abundance of the transcripts using the Expectation-Maximization
(EM) algorithm (Dempster, Laird & Rubin, 1977). As there is no actual sequence alignment
of the entire read over the reference sequences, the pseudoalignment process enables read
mapping to be both lightweight and superfast. Essentially, kallisto searches for exactmatches
for a short k-mer (default size 31 bp) between the metagenomic reads and the sequences
in the virus/phage database. For example, kallisto was able to map and quantify 30 million
paired-end RNA-seq reads from a human transcriptome sample in less than 10 min on
a small laptop computer with a 1.3-GHz processor (Bray et al., 2016). In addition to the
ultrafast speed, kallisto also gives accurate estimation of abundance of each transcript or
reference sequence (Schaeffer et al., 2017; Soneson et al., 2016). Consequently, kallisto could
provide an ideal tool for detection and quantification of viruses in metagenomic samples
that commonly have tens of millions of reads, mapping of which using commonly used
programs such as BLAST can be time-consuming and often infeasible without computer
clusters. Therefore, FastViromeExplorer deploys kallisto for the purpose of read mapping
and abundance estimation of the viruses. Since kallisto searches for exact matches for a
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short k-mer (default size 31 bp) between the metagenomic reads and the sequences in the
virus/phage database, if a 31 bp match is found then the virus is detected. If multiple hits
occur, then kallisto uses an EM algorithm to help resolve the redundancy and quantify the
abundances of the detected viruses. The k-mer size in kallisto can be altered depending
on user’s need. For example, if the sample is expected to contain viral sequences that are
divergent from those in the reference database the k-mer size can be reduced to improve
detection sensitivity.

After the first alignment step, FastViromeExplorer takes the output of kallisto that
includes information of the aligned reads together with estimated abundances or estimated
read counts of all the identified viruses for the processing of the second step. The second
step filters the output of the first step using three criteria, introduced to ensure the quality
of virus detection and especially to reduce the number of false positive viruses from the
result. In detail, the first criterion, hereafter referred to as ‘‘R’’, is based on the ratio of
the observed extent of genome coverage with the expected extent of genome coverage,
computed as

R=
Co

Ce
, (1)

Co is the observed extent of genome coverage by the mapped reads, computed as

Co=
Ls
Lg

, (2)

where Ls is the actual length of the genome that is supported or covered by the mapped
reads and Lg is the length of the genome. Ce is the expected extent of genome coverage,
assuming a Poisson distribution for the mapped reads along the genome, and therefore,

Ce = 1−e−
N∗Lr
Lg , (3)

where N is the number of mapped reads to the genome, Lr is the read length, and Lg is the
length of the genome. If a virus has R< 0.3, FastViromeExplorer discards the virus. This
criterion is motivated by the observation that some viruses detected by our tool only have
reads mapped to the repeat regions of their genomes. For example, while analyzing the fecal
samples from Lee et al. (2017), we found that for the BeAn 58058 virus (NC_032111.1),
all the reads were mapped to one particular region of its genome, from 8,200 bp to 8,700
bp (see Fig. S1). Analyzing this region using RepeatMasker (Smit, Hubley & Green, 1996)
revealed that it is a simple repeat region and falls into the class of Alu elements. If the virus
is truly present in the sample, we expect reads to be mapped to not only the repeat region
but also other regions of the genome. Therefore, finding this virus is likely an artifact
caused by the prevalence of repeat regions instead of real biological signals. If the reads are
all mapped to a repeat region, the observed coverage of the virus genome Co is expected to
be much lower than Ce , as a result, R is low and by imposing a cutoff of 0.3 (determined
based on our empirical analyses), viruses that have reads mapped to only repeat regions
get filtered out.
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The second criterion requires Co≥ 0.1; that is, a virus that has Co < 0.1 is discarded. This
criterion requires that the mapped reads should cover at least 10% of the viral genome.
Manual inspection of the results of our tool reveals that very large viruses may have several
repeat regions in their genomes and as a result, though all the reads are mapped to the
repeat regions, they are mapped to different repeat regions. In these cases, the difference
between Co and Ce may be small and therefore R can be high enough to pass the first filter.
However, it is very likely that the result is simply an artifact of repetitive sequences. For
example, while analyzing the fecal samples (Lee et al., 2017), we found that Pandoravirus
dulcis (NC_021858.1), a very large virus with 1,908,524 bp, has several repeat regions, and
all the reads were mapped only to the repeat regions (see Fig. S2). Hence, to alleviate this
artifact, Co≥ 0.1 is used as the second filter. As repeat regions of a virus usually cover less
than 10% of the genome (Philippe et al., 2013), if any virus is covered by more than 10%
by the reads, it is reasonable to assume that the reads are not merely from repeat regions
and thus the virus should be considered in the result.

The third criterion is based on the number of mapped reads N . Extensive empirical
analysis and inspection of the results of our tool show that for very small viruses, only a
few reads are enough to cover a good portion of the viral genome, resulting in high R and
Co that pass criteria 1 and 2. For example, in the fecal samples (Lee et al., 2017) that we
analyzed, four reads were mapped to Rose rosette virus RNA3 (NC_015300.1). As the viral
sequence has only 1,544 bp, four reads of length 150 bp were enough to pass criteria 1 and
2. But as only a handful of reads are mapped, it is likely that the virus is false positive. To
be more stringent, FastViromeExplorer applies the third filter requiring the number of
mapped reads to be greater than 10, and therefore discards the ones with N < 10.

After applying all the filters, FastViromeExplorer outputs the final result that contains
a list of identified viruses in the given sample along with the estimated read count or
abundance and taxonomy of the viruses. The output list is sorted by the abundance with
the most abundant viruses on the top of the list.

It is worth noting that the three criteria are introduced to improve the virus detection
specificity by alleviating artifacts caused by factors such as repeat sequences and low
genome coverage. The actual cutoff values for R, Co, and N are based on our empirical
experience and literature observation. However, depending on the specific studies and the
need of users, the cutoff values used here might not be suitable. To allow flexibility and
customization, FastViromeExplorer incorporates these three filters as parameters so that
users can easily adjust the values to adapt to their own studies. For example, users can
deploy more stringent criteria by setting higher values for R, Co, and N than the default,
to get a ‘‘high confidence’’ set of viruses or can lower these values to increase sensitivity
to detect divergent viruses or viral reads in metagenomic data where coverage may be
expected to not be uniform (Solonenko et al., 2013).

FastViromeExplorer was run on both simulated and real data to examine its running
time and accuracy. FastViromeExplorer used kallisto (version 0.43.1) with default settings
and generated pseudoalignment results in sam format and filtered abundance results in a
tab-delimited file. The abundance results contain identified virus names, NCBI accession
numbers, NCBI taxonomic path, and estimated read counts. FastViromeExplorer was
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run on two different reference databases, the default database distributed together with
FastViromeExplorer, that is, the NCBI RefSeq database containing 8,957 genomes of
eukaryotic viruses and phages, and the set of sequences collected from the JGI ‘‘earth
virome’’ study (Paez-Espino et al., 2016) containing 125,842 metagenomic viral contigs
(mVCs). The taxonomic annotation and host information for these mVCs were collected
from the IMG/VR database (Paez-Espino et al., 2017).

In addition to the challenge of mapping 10s or 100s of millions of metagenomic reads,
tools for the accurate identification and quantification of viral genomes must also be
capable of handling ever-growing reference databases of viral sequences. In order to
measure how the indexing step of kallisto scales with reference databases of different sizes,
kallisto was applied to index five different databases. Three databases were generated from
NCBI RefSeq viral database, one containing only phages (2,187 phage genomes), one
containing only eukaryotic viruses (6,770 eukaryotic virus genomes), and one containing
both phages and eukaryotic viruses (8,957 viral genomes). The other two databases were
created from sequences collected from Paez-Espino et al. (2016), one containing all the
125,842 mVCs and the other containing half of the mVCs. The time analysis of kallisto’s
indexing step was produced on a Linux based cluster with 64 CPUs and 128 GB RAM.
The indexing step was run using default k-mer size 31 and default number of threads 1.
The precomputed kallisto index file for the full 125,842 mVCs from JGI is available here:
http://bench.cs.vt.edu/FastViromeExplorer/.

To evaluate the performance of FastViromeExplorer, we compared speed and accuracy
with ViromeScan, a recently developed virus annotation pipeline that calls Bowtie2 as
a subprocess for read mapping, that was shown to be 1,000 times faster than previous
tools (Rampelli et al., 2016). ViromeScan was run with default settings and with the
eukaryotic DNA/RNA virus database containing 4,370 genome sequences, the largest
reference database provided by ViromeScan, and with a custom database consisting of
the 125,842 mVCs from JGI. ViromeScan generated alignment results and abundances
of viruses at family, genus, and species level. We also ran blastn (version ncbi-blast-2.6.0
+) using both the NCBI RefSeq viral database and the large JGI database. Blastn only
generated the alignment result in text format. All the time analyses were calculated using
elapsed real time from Unix’s time command.

To examine the virus detection and quantification accuracy of FastViromeExplorer,
simulated metagenomic data were used. A randomly selected collection of genomes
containing 4,000 virus genomes and 2,000 bacteria genomes were obtained from NCBI
RefSeq database. Four paired-end read datasets, each containing one million reads of
length 100 bp, were generated from these genomes using the read simulator WGSIM
(https://github.com/lh3/wgsim). For all the datasets, 49% reads were from viruses and
51% from bacteria. The four datasets were generated using 1% sequencing error rate
and 3%, 5%, 7%, or 10% mutation frequencies respectively. ViromeScan and blastn
were also applied to these four datasets. As ViromeScan uses eukaryotic viruses as the
reference database, for comparison, both FastViromeExplorer and blastn were run on a
reference database containing only NCBI RefSeq eukaryotic viruses. ViromeScan was run
with the eukaryotic virus database provided by ViromeScan. Under the default setting,
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ViromeScan removed all the mapped reads during its quality filtering and trimming step
(trimBWAstyle.pl script) and did not produce any results. Therefore, it was run without
ViromeScan’s quality filtering and trimming step. With the ground truth for the alignment
of the reads, recall, precision, and F1 score were calculated using the following formula:

Recall=
TP

TP+FN
, (4)

Precision=
TP

TP+FP
, (5)

F1 score=
2∗Recall∗Precision
Recall+Precision

. (6)

To examine the running time and performance of FastViromeExplorer in detecting
viruses on real data, the fecal metagenomics datasets described in Lee et al. (2017) were
downloaded from NCBI under the accession number SRP093449 and annotated with
both FastViromeExplorer and ViromeScan. The study tracked bacteria colonization in a
fecal microbiota transplantation (FMT) experiment through the analysis of metagenomic
data. To examine how the viruses/bacteriophages were affected by the transplantation,
we reanalyzed the four fecal metagenomic samples collected from a healthy donor and
three samples from a recipient patient suffering mild/moderate ulcerative colitis. The three
samples for the recipient were collected prior to FMT, four weeks after FMT, and eight
weeks after FMT, respectively. All the reads were Illumina paired-end reads with 150 bp
read length. Seven data sets of different sizes (1, 3, 5, 10, 20, 30, and 40 million reads) were
also generated from the samples and annotated by FastViromeExplorer and ViromeScan
to compare their running time on large datasets. To examine the effect of the reference
database on results, FastViromeExplorer was applied to the samples using two different
reference databases, FastViromeExplorer’s default reference database and the set of 125,842
mVCs collected from the study Paez-Espino et al. (2016). While using the NCBI RefSeq
database as reference, a Linux based laptop with Intel core i5-3230M CPU @ 2.60 GHz * 4
processors and 12 GB RAM was used to produce the results, and while using the 125,842
mVCs as reference, a Linux based cluster with 64 CPUs and 128 GB RAM was used to
produce the results. While using the cluster, only one thread was used to run the tools.

To examine the applicability of FastViromeExplorer on environmental samples, an ocean
water metagenome file described in Aylward et al. (2017) was downloaded from NCBI
SRA under the accession number SRX2912986 and analyzed with FastViromeExplorer.
The metagenome sequencing file had around 18 million paired-end reads and the
125,842 mVCs collected from the study Paez-Espino et al. (2016) was used as reference
database. As the original study focused on ocean virome, a viral contig set collected
from Global Ocean Virome (GOV) study (Roux et al., 2016) was also used as reference
database. The GOV contig set contains 298,383 epipelagic and mesopelagic viral
contigs and a precomputed kallisto index file for this viral contig set is available here:
http://bench.cs.vt.edu/FastViromeExplorer/.
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Figure 1 Kallisto’s indexing time for five reference databases, NCBI RefSeq eukaryotic viruses (99
MB), NCBI RefSeq phages (148MB), all NCBI RefSeq viruses and phages (247MB), 62,921 mVCs (992
MB), and 125,842 mVCs (2 GB).

Full-size DOI: 10.7717/peerj.4227/fig-1

RESULTS AND DISCUSSION
We applied kallisto to index five databases of different sizes and calculated the running
time of the indexing step. Figure 1 shows that indexing time increases linearly with the size
of the reference databases, and for the largest reference database of 2 GB, kallisto took 3 h
and 38 min to generate the index file.
To examine how running time changes with sample size, we created seven data sets with

1, 3, 5, 10, 20, 30, and 40 million reads respectively from the data described in Lee et al.
(2017) and applied FastViromeExplorer, ViromeScan, and blastn. As blastn took too long
to run on large data sets, we run blastn on only three data sets of size 1, 3, and 5 million
reads respectively. Two databases, one containing all NCBI RefSeq viral genomes and the
other containing 125,842 mVCs from Paez-Espino et al. (2016), were used as the reference
databases, to also examine the effect of reference databases on running time. Figure 2A
shows the running time using the NCBI database as reference. FastViromeExplorer has
the shortest running time for all the seven data sets. For the data set with 5 million reads
FastViromeExplorer took only sevenminutes, compared to 12min for ViromeScan, 31min
for blastn. The speedup of FastViromeExplorer compared to ViromeScan became much
more pronounced when a larger reference database was used. Figure 2B shows that when we
used the larger reference database, for a data set with 5 million reads, FastViromeExplorer

Tithi et al. (2018), PeerJ, DOI 10.7717/peerj.4227 8/18

https://peerj.com
https://doi.org/10.7717/peerj.4227/fig-1
http://dx.doi.org/10.7717/peerj.4227


Figure 2 Comparison of running time among FastViromeExplorer, ViromeScan, and Blastn for seven
data sets with 1, 3, 5, 10, 20, 30, and 40 million reads, respectively (A) against a reference database con-
taining 8,957 NCBI RefSeq viruses, (B) against a reference database containing 125,842 mVCs.

Full-size DOI: 10.7717/peerj.4227/fig-2

took 17 min, compared to 53 min for ViromeScan, and 4 h and 40 min for blastn. So
FastViromeExplorer ran three times faster than ViromeScan and 16 times faster than
blastn. For the largest data set with 40 million reads, FastViromeExplorer took 2 h and
27min, a 2.5× speedup compared to ViromeScan that took 6 h and 23min. Taken together,
when using NCBI virus and phage database as reference, FastViromeExplorer takes on
average about 1 min to process one million reads; when using a larger database (125,842
mVCs, 2GB), FastViromeExplorer takes 3–4min to process onemillion reads, a 2–3× speed
up compared to ViromeScan. Note that the indexing time (for both FastViromeExplorer
and ViromeScan) was not counted in the running time shown (Fig. 2) as indexing needs
to be computed only once. Once the index file is generated, it can be used to analyze any
metagenomic data.
Simulated datasets were initially used to compare the annotation performance of

FastViromeExplorer with ViromeScan and blastn. Since viruses mutate fast, even if it is
the same viral species, the viral sequences in the metagenomic data might not be exactly
the same as their sequences in the reference database, it is therefore important to examine
the performance of a virus detection tool taking into account virus’s high mutation rate.
We therefore simulated four data sets with different mutation frequencies (3%, 5%, 7%,
and 10%) from the references and applied FastViromeExplorer, ViromeScan, and blastn.
Figure 3 shows the F1 score (Recall and Precision are given in Table S1). All the tools
have had high Precision (99%) across all the data sets. But as mutation frequency becomes
higher, the number of mapped reads is reduced and Recall becomes lower for all the
tools. In terms of F1 score, blastn has the best score, FastViromeExplorer has similar but
slightly lower score, and ViromeScan has the lowest score. For the data set with the highest
mutation frequency (10%), the F1 scores for blastn, FastViromeExplorer and ViromeScan
are 0.79, 0.7, and 0.43 respectively. But FastViromeExplorer took 2 min compared to blastn
which took 8 min. Therefore, for these simulated data sets and using all eukaryotic viruses
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Figure 3 F1 score of FastViromeExplorer, ViromeScan, and Blastn when using NCBI eukaryotic
viruses as the reference database and four simulated data sets of 1 million reads each with mutation
frequency 3%, 5%, 7%, and 10% respectively.

Full-size DOI: 10.7717/peerj.4227/fig-3

as the reference database, FastViromeExplorer runs four times faster than blastn while
maintaining a similar F1 score to blastn.
To examine the performance of FastViromeExplorer in detecting and quantifying viruses

on real data, we applied FastViromeExplorer to the fecal metagenomic samples collected
from Lee et al. (2017). Lee et al. followed the dynamics and consequence of fecal microbiota
transplantation (FMT) by examining themetagenomics data from a donor’s and recipients’
preFMT and postFMT samples. They constructed 92 bacterial metagenome-assembled
genomes (MAGs) from reads of the donor samples and examined the occurrence of the
MAGs in the recipient samples. They found that the bacterial MAGs that were present in
the donor samples and also colonized the recipient samples after FMT mostly belonged to
the order Bacteroidales. Here we examined the dynamics of viruses/phages to see whether
it is consistent with the finding of Lee et al. (2017).

From the result of FastViromeExplorer using the 8,957 NCBI RefSeq viral genomes as
reference, we observed that only three viruses (Human endogenous retrovirus K113, Glypta
fumiferanae ichnovirus segment C10, and Lactococcus prophage bIL311) were found in all
four donor samples, with human endogenous retrovirus K113 being the most abundant for
samples 1, 3, and 4, and Lactococcus prophage bIL311 the most abundant in sample 2. For
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the recipient, 30 viruses were found in the preFMT sample whereas only five were found
in the two postFMT samples. Among the five viruses, only Lactococcus prophage was also
found in one donor sample. But as this prophage was also present in the preFMT sample,
we cannot conclude that the virus was transferred from the donor to the recipient. Overall,
using the NCBI RefSeq database as the reference, we only detected 38 viruses in the FMT
samples, and this result reveals no clear evidence of virus/phage transfer from the donor to
the recipient. This result indicates that as our tool is a reference-based virus detection tool,
having a suitable and/or complete reference database is important for performance.

We also applied ViromeScan to the fecal samples with its default reference database
containing 4,370 eukaryotic DNA/RNA viruses. ViromeScan identified 847 viruses
in all the samples. Compared to ViromeScan’s reference database, ours is two times
bigger and it is thus surprising that ViromeScan identified a lot more viruses than
FastViromeExplorer. Analysis of theViromeScan result shows that themost abundant virus,
Encephalomyocarditis virus, has all the reads mapped to a repeat region of its genome (see
Fig. S3), indicating that the annotation is likely false positive. In fact, Encephalomyocarditis
virus was also present in the initial result produced by FastViromeExplorer, but was
discarded after the first filtering step. To further examine the effect of our three filtering
criteria, we applied them to the ViromeScan result. Figure 4 shows that most of the
viruses were filtered out and only Human endogenous retrovirus K113 and Glypta
fumiferanae ichnovirus remained, both of which were also present in the final result
of FastViromeExplorer. The finding here shows the importance of the filtering criteria in
removing viruses that might be annotation artifacts caused by repeats, low coverage, and
small genome sizes.

Since the analysis of the fecal samples using the default NCBI viral database did not
reveal anything meaningful about fecal microbiota transplantation from the donor to
the recipient, we tried FastViromeExplorer again using the 125,842 metagenomic viral
contigs (mVCs) collected from Paez-Espino et al. (2016) as reference. These mVCs are
mostly unknown partial or complete viral genomes but have been predicted/annotated
for their possible hosts and the host information of the mVCs is made available through
the IMG/VR website (Paez-Espino et al., 2016; Paez-Espino et al., 2017). Therefore, the
predicted host information of the mVCs, collected from the IMG/VR website, can be used
to examine the result. Using these mVCs as reference, our tool detected 3,479 viral contigs
in the FMT samples. Figure 5 shows the relative abundance of host bacteria across all
donor and recipient samples. The order Bacteroidales is more abundant than the order
Clostridiales in all donor samples. For the recipient, prior to FMT, the order Clostridiales
clearly dominated the microbiota, however, after the transplantation, the abundance of
phages infecting the order Bacteroidales increased dramatically and the abundance of the
order Clostridiales decreased greatly. This result indicates that phages with host bacteria
from the order Bacteroidales were either successfully transferred or greatly enriched as a
result of the microbiota transplantation from the donor to the recipient. For example, in
donor samples, ‘‘SRS049900_LANL_scaffold_14438’’ is one of the most abundant mVC,
being the most abundant in donor samples 1 and 2, and the second most abundant in
samples 3 and 4. This mVC was not present in the recipient’s preFMT sample but was
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Figure 4 Number of viruses from ViromeScan result before applying any filter, after applying crite-
rion 1, after applying criteria 1 and 2, and after applying all three criteria.

Full-size DOI: 10.7717/peerj.4227/fig-4

highly abundant in the postFMT samples, suggesting either the successful transferring of
the mVC from the donor to the recipient or the great enrichment of the mVCs in the
recipient as a result of FMT. As the host of this mVC is from the order Bacteroidales, this
suggests the successful colonization of bacteria from the order Bacteroidales from the donor
to the recipient. Therefore, our result on phage transfer following the FMT is consistent
with the observation on bacterial colonization following the FMT shown in the original
study (Lee et al., 2017). The detailed annotation result is given in Table S2.

Consequently, when we applied FastViromeExplorer to the samples using a larger
reference database, our tool detected 3,479 viral contigs which was much greater than
the number of viruses detected using NCBI RefSeq database (38 viruses). Using a larger
reference database, a much clearer correlation between our results and the biological results
reported in the original paper emerges, highlighting the importance of having larger and
more complete reference databases.

We also applied FastViromeExplorer to ocean microbiome samples collected at multiple
time points from Aylward et al. (2017). This study assembled 483 viral scaffolds (NCBI
accession numbers NTLX01000001.1–NTLX01000483.1) from the metagenome reads
from 44 ocean samples. In our study, we tried to find if FastViromeExplorer could rapidly
identify dominant viral components directly from the read files using both the JGI 125,842
mVC data set collected from Paez-Espino et al. (2016) as well as the GOV dataset containing
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Figure 5 Relative abundance of host bacteria at Order level in the FMT samples from FastViromeEx-
plorer result using the 125,842 mVCs as reference, where abundance is normalized by the total abun-
dance of viruses in the sample.

Full-size DOI: 10.7717/peerj.4227/fig-5

298,383 epipelagic and mesopelagic viral contigs collected from Roux et al. (2016). Results
show that FastViromeExplorer was able to successfully identify some contigs that resemble
the original 483 scaffolds. For example, while using the 125,842 mVCs as reference, the
most abundant mVC was ‘‘GOS2241_1000284’’, which according to blastn aligns with
scaffold ‘‘NTLX01000031.1’’ with identity 76.33% and alignment length 562 bp. Another
examplewasmVCwith id ‘‘JGI25127J35165_1001802’’ which has similarity with the longest
scaffold ‘‘NTLX01000001.1’’. In addition while using the GOV contig set (Roux et al., 2016)
as reference, we identified an abundant contig with id ‘‘GOV_bin_1783_contig-100_1’’
with 98.35% identity and 2,004 bp alignment length with scaffold ‘‘NTLX01000307.1’’.
These successful hits could subsequently be used to assemble the actual viral sequences
found in the samples. Taken together, our results show that FastViromeExplorer can
also be applied to detect and quantify viruses and phages in metagenomic samples taken
from environmental samples, and the results are accurate if given a sufficiently complete
reference database.
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CONCLUSION
In this paper, we develop a new tool (FastViromeExplorer) for detecting and quantifying
viruses in metagenomic data. It is worth emphasizing that FastViromeExplorer can
detect both viruses and phages depending on the reference database users deploy. As
FastViromeExplorer can process millions of reads within minutes while having similar
virus detection accuracy to the gold standard tool blastn, it empowers researchers that
have limited computing power to process large metagenomic data within reasonable time.
Similar to all other reference database tools, the limitation of FastViromeExplorer is that
it cannot identify a virus or phage if a similar sequence is not present in the reference
database; therefore, our tool cannot be used to identify or recover novel viruses that have
no similarity to sequences in the reference database. Our preliminary results for the human
microbiome and ocean environmental data highlight the pressing issue of building and/or
extending the current viral sequence database for improving virus/phage detection and
quantification in metagenomic data.
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