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Copy number variation of genes 
involved in the hepatitis C virus-
human interactome
Lucyna Budzko1,*, Malgorzata Marcinkowska-Swojak1,*, Paulina Jackowiak1,2, 
Piotr Kozlowski1,2 & Marek Figlerowicz1,3

Copy number variation (CNV) is a newly discovered form of intra-species genetic polymorphism 
that is defined as deletions or duplications of genome segments ranging from 1 kbp to several Mbp. 
CNV accounts for the majority of the genetic variation observed in humans (CNV regions cover more 
than 10% of the human genome); therefore, it may significantly influence both the phenotype and 
susceptibility to various diseases. Unfortunately, the impact of CNV on a number of diseases, including 
hepatitis C virus (HCV) infection, remains largely unexplored. Here, we analyzed 421 human genes 
encoding proteins that have been shown to interact with HCV proteins or genomic RNA (proteins from 
the HCV-human interactome). We found that 19 of the 421 candidate genes are located in putative 
CNV regions. For all of these genes, copy numbers were determined for European, Asiatic and African 
populations using the multiplex ligation-dependent amplification (MLPA) method. As a result, we 
identified 4 genes, IGLL1, MLLT4, PDPK1, PPP1R13L, for which the CN-genotype ranged from 1 to 6. All 
of these genes are involved in host-virus interaction; thus, their polymorphism has a potential impact 
on the development of HCV infection and/or therapy outcome.

The hepatitis C virus (HCV), discovered in 1989, is a hepatotropic, positive-sense, single-stranded (ss) RNA virus 
that belongs to the family Flaviviridae1. The HCV genome encodes 10 mature viral proteins, including 3 structural 
proteins (C, E1 and E2) and 7 nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B)2. The poten-
tial consequences of HCV infection vary in severity from a transient and symptomless illness to a mortal, lifelong 
disease. Approximately 15–45% of infected persons spontaneously clear the virus without treatment during the 
acute phase of the infection. The remaining individuals develop chronic hepatitis C (CHC). Globally, an estimated 
130–150 million people are chronically infected with HCV. Approximately 15–30% of patients with CHC develop 
cirrhosis over a period of 20 years. Those with cirrhosis have a poor prognosis due to a high risk of liver failure 
and hepatocellular carcinoma (HCC). Consequently, nearly 500 000 people die each year from hepatitis C-related 
liver diseases3.

Since the discovery of HCV, a number of studies have aimed to identify human- and virus-specific factors that 
affect the course of HCV infection and patient response to antiviral treatment. The majority of these studies have 
focused on the three general issues: (i) the genetic variability of HCV, (ii) the clinical status of the patient, and  
(iii) the genetic variation of the human population.

HCV, similar to other RNA viruses, displays an extremely high level of genetic variability. HCV is classified 
into 7 genotypes (numbered 1–7), which are further divided into more than 60 subtypes4,5. Genotype 1 is the 
most common worldwide (46.2% of infected individuals), followed by genotype 3 (30.1%) and genotypes 2, 4 
and 6 (22.8% collectively). Genotypes 5 and 7 comprise the remaining 0.9%6. The major source of HCV genetic 
variability is the highly efficient (1012 virions per day) but low-fidelity replication5 by viral RNA-dependent RNA 
polymerase (NS5B) that lacks proofreading activity (this enzyme exhibits an error rate of 8.7 ×​ 10−3−1.4 ×​ 10−6 
per site)2,7,8. The consequence of this continuous variation in the HCV genome is a presence in a single host of a 
collection of closely related, but genetically divergent, viral variants called a quasispecies9,10. It has been shown 
that susceptibility to antiviral treatment correlates with HCV variability on both the genotype and quasispecies 
level. Furthermore, there are a number of reports that show a genotype-specific response in patients treated with 
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interferon and ribavirin (IFN-RBV)5,11 a standard HCV treatment before 201312. The effect of genotype, however, 
seems to be less prominent in the case of currently used therapies that are based on direct-acting antiviral agents 
(DAAs)13. In addition, analyses of viral populations isolated from individual patients have revealed a correlation 
between the complexity of HCV quasispecies and the outcome of CHC therapy14–18. Other studies have indicated 
that the course of viral infection and the patient’s response to the antiviral treatment may be influenced by specific 
mutations within the viral genome19,20. Moreover, previous data from our laboratory indicated the existence of 
HCV variants with higher fitness, which are capable of persisting in epidemiologically unrelated hosts14,21.

The clinical status of the patient is the second important determinant of the course of HCV infection and 
therapeutic outcome. The factors that have the most significant association with poor prognosis in HCV infec-
tion are HCV/HIV co-infection, alcoholism, immune system disorders as well as HCV-related and non-related 
oncogenesis22–26.

Human genetic variation is also considered one of the most significant factors that underlie the unique suscep-
tibility of each person to HCV infection and antiviral treatment. Genome-wide association studies (GWAS) have 
identified that single nucleotide polymorphisms (SNPs) near the IL28B gene are strongly associated with both the 
spontaneous and treatment-induced clearance of HCV infection27–29. SNPs of this gene are also one of the factors 
underlying the observed differences in sustained virological response (SVR) rate to IFN-RBV treatment in vari-
ous human populations27. Recently, another type of intra-species polymorphism with significant biological impli-
cations, called copy number variation (CNV), has been discovered. CNV is caused by DNA alterations that result 
in copy number (CN) changes of a particular DNA segment larger than 1 kb. The location of the protein-coding 
gene within CNV region (which is frequently observed in humans) may affect gene dosage and/or alternate gene 
structure. Consequently, CNV may significantly influence the phenotypes30–33 and contribute to individual var-
iation in drug response, immune defense, disease resistance or susceptibility. The most prominent example of a 
CNV-based gene dosage variation with clinical implication are CN changes of CCL3L1 (chemokine (C-C motif) 
ligand 3-like 1) – a gene encoding chemokine that is a ligand to the co-receptor for human immunodeficiency 
virus (HIV). It has been found that the CN of this gene ranges from 0 to 14 in diploid human genomes34,35. In 
addition, it has been reported that the lower CN of CCL3L1 is an important genetic determinant for increased 
HIV-1 susceptibility and faster AIDS progression36. However, there are many controversies and conflicting results 
regarding this association37–40 (discussed in ref. 41). It was suggested that observed discordances result mostly 
from the lack of appropriate CNV genotyping method allowing unequivocal separation of CN-genotypes. It has 
also been shown that lower CN of the CCL3L1 gene, compared to the population median, is associated with 
susceptibility to CHC32,42. According to our best knowledge, this is the only known example of an association 
between a course of HCV infection and CN changes of a human gene.

In this study, we identified genes that encode proteins belonging to the HCV-human interactome that undergo 
CN changes and whose dosage effect could potentially impact the course of HCV infection and/or treatment out-
come. After gene identification, we experimentally characterized 19 of them in individuals from different human 
populations and proved the polymorphic nature of four of them. Our data also confirmed previous reports 
regarding CCL3L1 CN distribution among different populations30,32,35.

Results
Selection of genes.  To identify candidate human genes overlapping with CNVs for which the dosage 
effect could correlate with a course of HCV infection and/or treatment outcome, we focused on 421 genes 
(Supplementary Table S1) encoding proteins that have been shown to interact with HCV proteins or HCV 
genome43 (the most comprehensive dataset of HCV-human interactome available when we began our studies). 
To determine whether these genes co-localize with known CNV regions, we searched the Database of Genomic 
Variants (DGV)44, which collects the data regarding structural variation that have been reported to date. For 
our analysis, we selected only the genes for which the overlaps with CNV regions were confirmed in at least 3 
independent publications (Fig. 1a). As a result, we identified 19 candidate genes (Supplementary Table S2) and 
selected them for further experimental studies. Additionally, we added CCL3L1, a highly polymorphic gene, to 
the group of the selected genes to serve as a positive control.

CNV analysis.  To analyze the 20 selected genes, we applied the multiplex ligation-dependent amplification 
(MLPA)45 method and the strategy of probes and assays design that we successfully used before46,47. For each 
gene, we designed two MLPA probes. For genes localized in more complex genomic regions, we designed addi-
tional probes: (i) one for HLA-A (major histocompatibility complex, class I, A) and MLLT4 (myeloid/lymphoid 
or mixed-lineage leukemia; translocated to, 4) and (ii) two for PDPK1 (3-phosphoinositide dependent protein 
kinase 1). All probes were split between two MLPA assays named: HCV_SET1 and HCV_SET2. The HCV_SET1 
assay consisted of 22 probes that were specific for 11 of the selected genes, and the HCV_SET2 assay included 
23 probes that were specific for 10 of the selected genes. Each assay also contained five control probes, specific to 
CN stable regions, which were used for the normalization of the run-to-run MLPA probe signal variation. The 
detailed features of all MLPA probes and assays layout are shown in Supplementary Table S3.

Using both assays, we analyzed the CN changes of the selected genes in 106 DNA samples from three different 
human populations: 31 European (CEU) samples, 48 Asiatic (CHB/JPT) samples and 27 African (YRI) samples.

The representative results of MLPA analysis (MLPA signal electropherograms) are presented in Fig. 1b (upper 
panel). The results obtained for all of the analyzed genes in all samples are summarized in signal scatter plot 
(Fig. 1b, bottom panel). The data presented in Fig. 1b indicated that the following four of the 19 total analyzed 
human genes showed variation in CN: (i) IGLL1 (immunoglobulin lambda like polypeptide 1), (ii) MLLT4,  
(iii) PDPK1, and (iv) PPP1R13L (protein phosphatase 1 regulatory subunit 13 like); the observed CN-genotypes 
(distinct signal clusters) ranged from 1 to 6 copies. The selected positive control gene, CCL3L1, also proved to be 
polymorphic, with CN range from 1 to 8, which was consistent with our previous results35. Other genes proved 
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to be non-polymorphic and showed only one cluster corresponding to 2 CN-genotype. The list of the assigned 
CN-genotypes for all of the samples is shown in Supplementary Table S4.

The extent of CNV of polymorphic genes.  For all polymorphic genes we observed the occurrence of 
several (≥​2) CN-genotypes, one of which was predominant (major CN-genotype); the alternative genotypes 
were represented only by a small number of samples (minor CN-genotypes). For three polymorphic genes, we 
observed duplications (PPP1R13L and MLLT4 genes) or deletions (IGLL1 gene) of one of the gene copies, result-
ing in a higher (3) and lower (1) CN compared to major CN-genotype, respectively. For these genes, the European 
population was the most variable, with 7 (22.6%) samples presenting the minor CN-genotype. For the PDPK1 
gene, we observed an increased CN for the major genotype (CN=​4) with additional duplications that resulted in 
minor CN-genotypes of 5 and 6 copies. There was no sample demonstrating the minor CN-genotype for more 
than one gene.

According to the DGV, all of the designed MLPA probes were located within the CNV regions overlapping 
selected genes. However, a detailed analysis of these regions revealed that two of the regions have more complex 
structures (Fig. 2). The results obtained for the three probes designed for the MLLT4 gene showed that two of the 
probes (MLLT4_B and MLLT4_C) targeted the polymorphic region and that the third one (MLLT4_A) targeted 
a non-polymorphic fragment of the gene. This result suggested that not the entire gene is located within the pol-
ymorphic region but only several exons at its 3′​ end and only that part of the gene underwent CN changes in the 

Figure 1.  MLPA analysis of selected genes. (a) Gene selection strategy. Schematic representation (on the 
left) shows examples of human genes involved in the HCV-human interactome network43. The gene was 
included in our analysis if the overlap between this gene (green) and CNV region deposited in DGV (blue) 
was confirmed by at least 3 independent reports. Other genes (red) were not selected for analysis in this study. 
(b) MLPA analysis. Presented electropherograms (upper panel) show two MLPA assays designed for analysis 
of selected genes: HCV_SET1 assay (red) and HCV_SET2 assay (blue). Probe IDs are indicated under the 
electropherograms. Control probes are indicated in red. One-dimensional signal scatter-plot (bottom panel) 
shows an average relative signal of gene specific MLPA probes (left y-axis) and assigned CN-genotypes (right 
y-axis) for selected genes (IDs indicated on x-axis) in all analyzed samples. One dot represents one sample, 
colored in accordance with assigned CN-genotype (right y-axis). A black dot represents a sample with no CN-
genotype assigned.
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studied samples. The structure of the region where the PDPK1 gene is localized is even more complex. Two of 
the probes designed for this gene (PDPK1_C and PDPK1_D) showed no polymorphism, whereas the other two 
probes (PDPK1_A and PDPK1_B) showed a variable number of copies. This result suggested that the polymor-
phic region covers only several exons at the 5′​ end and that the exons at the 3′​ end appear to be located outside this 
region. Additionally, probes PDPK1_A and PDPK1_B co-localized with segmental duplication (SD), therefore, 
during the MLPA experiments they hybridized to two sites, within and downstream of PDPK1 gene, thus produc-
ing a higher MLPA signal and, consequently, higher CN-genotypes.

Discussion
In this study, we used bioinformatics methods to identify all human genes that both (i) encode proteins that 
belong to the HCV-human interactome43 and (ii) according to at least 3 independent reports co-localize with 
known CNV regions (listed in the DGV44). It is expected that the structural polymorphism of these genes may 
impact the course of HCV infection and/or treatment outcome. The above criterion was fulfilled by 19 genes, for 
which the changes in CN were determined using the MLPA in a cohort of 106 individuals from 3 different popula-
tions. As a result, we identified 4 polymorphic genes (IGLL1, MLLT4, PDPK1, PPP1R13L) that showed variations 

Figure 2.  Detailed characteristics of all polymorphic genes identified in this study. Each panel shows the 
map of the gene with localization of all probes indicated over the map. Below the map, common structural 
variants available in DGV database are shown: CNV (blue) and SD (green). Arrowheads indicate that CNV/SD  
exceed the area shown in the figure. Bar graphs (bottom) show the frequency (y-axis) of a particular CN-
genotype (x-axis) in analyzed samples from different human populations: CEU (blue), CHB/JPT (orange) and 
YRI (green). Note that due to the PDPK1 gene overlap with SD, two probes (PDPK1_A and PDPK1_B) map to 
two genomic locations, within and downstream of PDPK1. The probes mapping out of the gene sites are shown 
in grey to distinguish them from those mapping within the gene.
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in CN ranging from 1 to 6 copies among the tested samples. The detailed characteristics of the structure of the 
polymorphic genes revealed that two of them (MLLT4 and PDPK1) were partially overlapped by CNV regions. 
For MLLT4, our analysis suggested that only terminal exons at the 3′​ end were located within the CNV region. 
In the case of PDPK1, the CNV region covered ten initial gene exons at the 5′​ end but not the 3′​ terminal ones. 
IGLL1 and PPP1R13L were overlapped by CNV regions, at least in the parts where the probes were located. Three 
of the four identified polymorphic genes (IGLL1, PPP1R13L, MLLT4) showed CN=​2 for the major CN-genotype 
(predominant genotype among populations). The polymorphic region of the PDPK1 gene co-localized with seg-
mental duplication, thus giving a higher MLPA signal equal to CN=​4 for the major CN-genotype. The genetic 
variability identified for IGLL1 was a deletion of one gene copy in samples from the African population. For the 
MLLT4 and PPP1R13L genes, we observed duplication - one additional copy in samples from the European pop-
ulation. For PDPK1, additional one or two copies resulted in 5 or 6 CN-genotype for samples from the Asiatic and 
European population.

The functions of the identified polymorphic genes suggest that they may have an impact on the individual sus-
ceptibility to develop HCV infection. In the case of genes that are completely overlapped by polymorphic regions, 
changes in CN may influence the phenotype by affecting the gene dosage, whereas a partial overlap between the 
gene and CNV region likely does not directly influence the full transcript dosage. The latter, however, may cause 
changes in the transcription regulation (altered number of regulatory elements) or induce the formation of alter-
native transcript variants. Moreover, each CNV may affect the phenotype, regardless of gene dosage, through a 
position effect or a change in the genome structure.

IGLL1 encodes immunoglobulin lambda-like polypeptide 1 protein, which is a critical B cell development 
receptor found on the surface of pro-B and pre-B cells. It has been shown that IGLL1 interacts with the HCV 
NS5A protein43. Dysfunctions of the IGLL1 gene result in a primary immunodeficiency caused by poorer pro-
liferation and differentiation of pro-B cells and consequently, lower levels of serum antibodies and circulating 
B cells48–50. Therefore, the observed deletion of one copy of the gene in the African population suggests that the 
dosage effect may potentially result in poorer immunological response.

The PPP1R13L gene encodes a protein phosphatase 1 regulatory subunit 13-like protein, called iASPP pro-
tein, which inhibits apoptosis and regulates transcription by interacting with NF-kappa-B and p53/TP53 pro-
teins51,52. It has also been shown that PPP1R13L blocks the transcription of HIV-1 by inhibiting the action of 
both NF-kappa-B and constitutive transcription factor SP153. Interestingly, HCV represses apoptosis54, and the 
activation of NF-kappa-B55 and SP156,57 in CHC is significantly modulated by viral proteins. Moreover, the direct 
interaction of iASPP protein and HCV NS5A (a phosphoprotein that plays a key role in HCV RNA replication58) 
has been shown43. The effects of viral proteins on apoptosis pathways, NF-kappa-B and SP1 functions in relation 
to the course of HCV infection are complex. Nevertheless, in this context, the additional copy of the PPP1R13L 
gene observed in samples from the European population may be significant for the progression of liver injury and 
the severity of CHC.

Among the four identified polymorphic genes, the initial exons at 5′​ end of PDPK1 showed the highest var-
iability in the tested populations, ranging from 4 to 6 copies. PDPK1 encodes 3-phosphoinositide-dependent 
protein kinase 1 (hPDK1), a serine/threonine kinase that acts as a master kinase that phosphorylates and activates 
a subgroup of the AGC family of protein kinases (PKA, PKC, PKG). Thus, hPDK1 plays a central role in the trans-
duction of signals to downstream targets controlling cell proliferation and survival. For example, it negatively 
regulates the TGF-beta-induced signaling and activates the NF-kappa-B pathway59,60. Its interaction with the 
HCV NS5A protein has been shown43. Moreover, hPDK1 is an upstream kinase of the protein kinase C-related 
kinase 2 (PRK2) that is responsible for the phosphorylation of HCV RNA polymerase. Destabilization of hPDK1 
suppresses hepatitis C virus replication61. Our results demonstrated that the CNV region overlaps the initial exons 
of the PDPK1 gene (and potentially the promoter region). Duplications of this fragment of the PDPK1 gene may 
result in the expression of alternative (shorter) transcripts or have other indirect functional impacts. The high 
variability of the PDPK1 gene-overlapping CNV region among populations and functional relevance of hPDK1 
for HCV replication strongly encourages more detailed structural and functional studies.

The last identified polymorphic gene, MLLT4, encodes Afadin (AF6) a multi-domain protein involved in 
signaling and organization of cell junctions. Together with the E-cadherin-catenin system, Afadin belongs to the 
adhesion system that plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adhe-
rens junctions62. It has been shown that Afadin interacts with HCV nonstructural NS3 protein43. The observed 
additional copy of the terminal exons of the gene in samples from the European population would not directly 
affect the gene dosage but may have an indirect phenotypic consequence via a position effect or the altered regu-
lation of the gene expression.

CN of the CCL3L1 gene has been previously shown to differ significantly between populations32,34–36. 
Therefore, we included CCL3L1 to the group of studied genes and used it as a positive control. Our experiments 
confirmed extensive CNV of CCL3L1 and specific distribution of CN-genotypes among different population. We 
noted a CCL3L1 CN-genotype range of 1–3 copies in the European population, 2–8 copies in the Asiatic popula-
tion and 2–7 copies in the African population.

The impact of CNV on phenotype and its association with diseases remain poorly understood. To date, tran-
scriptome analyses and single-gene expression studies are appropriate proxies to study the physiological and 
pathological consequences of CNV. Here, we present a selection of candidate human genes overlapped by CNV 
regions for further functional investigations as potential genetic markers. CNVs of these four newly identified 
polymorphic genes may serve in the future as potential predictors of CHC development, spontaneous virus clear-
ance or response to treatment. These results also enhance our understanding of host genetic factors that influence 
pathogenesis of HCV infection.

Summarizing, in this paper we present a simple approach that permits to identify genes whose CNV may 
affect host-virus interactions. The proposed approach combines the data on CNV regions present in the human 
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genome and host-virus interactome to select candidate genes. In the next step, variation in CN of each selected 
gene is experimentally verified by the MLPA method. The analysis described here focused on HCV, a model 
human RNA virus, however, there is no doubt that the same procedure can be used to determine the influence of 
CNV on other viral infections.

Our analysis revealed also some weaknesses of the data sets being at our disposal. Although, we applied very 
restrictive selection criteria only 4 out of 19 candidate genes from HCV-host interactome showed CNV in the 
tested set of DNA samples. Thus, more precise characterization of both CNV regions in human genome and 
HCV-human interactome is still necessary to better elucidate the associations between CNV and the course 
of HCV infection. The problem of HCV-host interactions has been recently addressed by several research 
groups63–65. As a result, the size of the interactome has been increased from 421 to 969 human proteins64. 
Considering the rapid progress currently observed in the studies on human genome polymorphism one can 
expect that the approach presented here, will be broadly applied to identify new genetic factors shaping host-virus 
interactions.

Methods
Gene selection.  To identify the human genes whose overlap with CNV regions could possibly correlate with 
a course of HCV infection and/or treatment outcome, we compared the genomic localization of 421 genes encod-
ing proteins belonging to human-HCV interactome43 and 202 430 CNV regions from the Database of Genomic 
Variants (updated July 23, 2013; www.dgv.tcag.ca). As genes that are potentially affected by CNV, we selected 
genes that overlapped with at least three CNV regions deposited in the DGV database.

In addition to genes from the human-HCV interactome, we selected one gene (CCL3L1) as a positive control 
that fulfilled the following criteria: (i) it has been proven to be highly polymorphic among different human pop-
ulations35, and (ii) its CNV was shown to be associated with the course of HCV infection42.

Samples.  In this study, 106 DNA samples from three different worldwide human populations were used: 
31 European (CEU) samples from CEPH/Utah Collection, 48 Asiatic (CHB/JPT) samples from Han Chinese in 
Beijing (China) and Japanese in Tokyo (Japan), and 27 African (YRI) samples from Yoruba in Ibadan (Nigeria). 
All samples belong to the HapMap Project samples and were obtained from Coriell Institute (www.coriell.org).

MLPA probes and assays design.  For the CNV analyses of 20 selected genes, two custom-made assays 
(sets of MLPA probes designed for the analyzed genes) named: HCV_SET1 and HCV_SET2, were designed. 
The HCV_SET1 assay contained 22 probes specific for 11 selected genes, and the HCV_SET2 assay contained 
23 probes specific for 10 genes. Both assays also contained five control probes designed for CN stable regions of 
known number of copies (CN=​2). The total probe length ranged from 93 to 198 and from 93 to 192 nucleotides 
in the HCV_SET1 and HCV_SET2 assay, respectively. All MLPA probes were designed according to a previously 
described strategy46,66 to avoid known SNPs, repeat elements and sequences of extremely high or low GC con-
tent. Probes were predominantly designed to be located in exons. For each gene, at least two MLPA probes were 
designed. For MLLT4 and HLA-A genes, one additional probe was designed, and for the PDPK1 gene, two addi-
tional probes were designed due to the complex genomic structure of the regions where these genes are located. 
For PDPK1 two probes were designed in a unique part of the gene (PDPK1_C, PDPK1_D), while the other two 
(PDPK1_A, PDPK1_B) were located in the part that overlaps with segmental duplication (SD) (Fig. 2). The latter 
two, due to the high homology of present SDs, were designed as universal, i.e. they recognize both sequences, 
within and downstream of the gene.

The detailed characteristics and sequences of all probes used in this study are presented in Supplementary 
data (Table S3). All probes were generated by Integrated DNA Technologies Inc. (IDT, Coralville, IA, USA;  
www.idtdna.com) in 100 nmole scale and purified by PAGE.

MLPA analysis.  MLPA reactions were performed according to published results45 and the manufacturer’s 
protocol (MRC-Holland, Amsterdam, Netherlands; www.mrc-holland.com). All of the MLPA reagents, except 
for probe-mixes (which were prepared separately from designed and generated oligonucleotides), were purchased 
from MRC-Holland.

In brief, 100 ng of sample DNA was denatured and hybridized with MLPA probe-mix for 16 hours. All probes 
that correctly hybridized to their targets were ligated and amplified with the use of universal primer pair. PCR 
products were separated by capillary electrophoresis on ABI Prism 3130XL Analyzer (Applied Biosystems, 
Carlsbad, CA, USA). Obtained electropherograms were analyzed with the use of GeneMarker software v1.91 
(SoftGenetics, State College, PA, USA; www.softgenetics.com) and signal intensity values (peak heights) were 
transferred to prepared Microsoft Excel sheets. The signals of all probes were first normalized. To this end, 
each individual signal was divided by the average signal of control probes to avoid run-to-run signal variation. 
Then, the normalized MLPA signal of all probes specific for a particular gene was averaged and presented in 
one-dimensional (1D) signal scatter plot. Because the MLPA signal is proportional to CN of tested region/gene, 
the plot signals from all analyzed samples formed distinct clusters representing CN-genotypes, which were 
assigned according to previously described method35,47.

All graphs and statistical analyses were performed using Microsoft Excel and GraphPad Prism v.5.00.
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