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Investigating the molecular 
mechanism of positive and 
negative allosteric modulators in 
the calcium-sensing receptor dimer
Stine Engesgaard Jacobsen1, Ulrik Gether2 & Hans Bräuner-Osborne1

Allosteric modulators that are targeting the calcium-sensing receptor (CaSR) hold great therapeutic 
potential, and elucidating the molecular basis for modulation would thus benefit the development 
of novel therapeutics. In the present study, we aimed at investigating the mechanism of allosteric 
modulation in CaSR by testing dimers carrying mutations in the allosteric site of one or both of the 
subunits. To ensure measurements on a well-defined dimer composition, we applied a trans-activation 
system in which only the specific heterodimer of two loss-of-function mutants responded to agonist. 
Although one of these mutants was potentiated by a positive allosteric modulator, we showed that 
receptor activity was further potentiated in a trans-activation heterodimer containing a single allosteric 
site, however only when the allosteric site was located in the subunit responsible for G protein coupling. 
On the contrary, preventing activation in both subunits was necessary for obtaining full inhibition by a 
negative allosteric modulator. These findings correlate with the proposed activation mechanism of the 
metabotropic glutamate receptors (mGluRs), in which only a single transmembrane domain is activated 
at a time. CaSR and mGluRs belong to the class C G protein-coupled receptors, and our findings thus 
suggest that the activation mechanism is common to this subfamily.

The calcium-sensing receptor (CaSR) is essential for the maintenance of calcium homeostasis as it continually 
monitors the extracellular level of calcium1. The receptor is expressed at high levels in the parathyroid glands, 
thyroid glands, kidneys and bones where its signaling controls secretion of calcium-elevating and –decreasing 
hormones as well as absorption and excretion of calcium2. CaSR is moreover one of the few G protein-coupled 
receptors (GPCRs) in which a large number of naturally occurring mutations has been identified3,4. Importantly, 
many of these have been directly linked with severe diseases thus emphasizing the pathophysiological importance 
of CaSR5.

In GPCR drug discovery it can be advantageous to focus on the allosteric binding site, as the orthosteric site is 
highly conserved thereby making it difficult to achieve receptor selectivity for orthosteric ligands. Furthermore, 
allosteric drug compounds might be less likely to show adverse effects, since the modulatory effect is dependent 
on the presence of agonist6. Cinacalcet is a positive allosteric modulator (PAM) targeting CaSR and the very 
first GPCR allosteric modulator to get regulatory approval. It is used to treat secondary hyperparathyroidism in 
end-stage renal disease7, primary hyperparathyroidism where patients are unable to undergo parathyroidectomy8 
and severe hypercalcemia in patients with parathyroid carcinoma9. The use of Cinacalcet is however limited due 
to severe adverse effects10, and improved allosteric drug compounds are thus in request.

CaSR belongs to the class C GPCRs and contains the structural features that are characteristic for this receptor 
subfamily including a large amino-terminal domain (ATD) containing the orthosteric binding sites11–14 as well 
as the seven transmembrane (7TM) domain that is common to all GPCRs. Class C receptors function either 
as homo- or heterodimers at the cell surface, and homodimerization has indeed been verified for CaSR15–18. 
Most mechanistic studies of the class C receptors have been conducted on the metabotropic glutamate receptors 
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(mGluRs), and only limited information about the mode of action in CaSR is currently available. For the mGluRs, 
agonist binding in the ATDs has been shown to trigger conformational changes from an open to a closed state 
resulting in a change in the relative orientation of the two ATDs in the dimer19–21. This triggers further rear-
rangements at the 7TM dimer interface, which is involved in mediating activation and subsequent G protein 
coupling in the 7TMs22–25. In the heterodimeric γ​-amino butyric acid type B (GABAB) receptors, the GABAB1 
subunit is responsible for agonist binding while G protein coupling occurs only in the GABAB2 subunit26–28, and 
interestingly, it has also been reported that only one 7TM domain at a time is activated in the mGluR dimer29,30. 
Collectively, this demonstrates an asymmetry in the activation mechanism of class C receptors despite the 
requirement for dimerization. While recently published crystal structures of the ATD in CaSR confirmed that 
this receptor undergoes domain closure with formation of a dimer interface that is critical for activation of the 
receptor13,14, the 7TM domains in which the allosteric site is located has yet to be studied. Fully elucidating the 
mechanism of action and modulation in the 7TM domains could facilitate the development of novel allosteric 
drug compounds of CaSR.

In this study, we aimed to investigate the role of allosteric modulation in the CaSR dimer. Specifically, we 
examined whether it is a necessity to have modulators bound in both subunits or if one modulator per dimer is 
adequate. Our data suggest that a single allosteric site per CaSR dimer is sufficient for obtaining positive modula-
tion of activity, while full inhibition is only achieved if activation of both 7TM domains is prevented.

Results
CaSR is able to signal via trans-activation of the dimer.  When studying receptor dimers, it is of 
crucial importance to ensure that functional readouts arise only from a single, well-defined subunit composi-
tion. Here, we applied a trans-activation assay, which has previously been demonstrated for the mGluRs31,32 and 
CaSR33,34. Upon co-expression of a mutant preventing agonist activation and a mutant preventing G protein 
coupling, a recovery of functional response can be observed although each of the mutants is non-functional on its 
own. This functional response is specifically mediated by a heterodimer composed of the two mutants, as ligand 
binding occurring in the subunit with impaired G protein coupling triggers G protein coupling in the subunit 
with impaired ligand binding. The trans-activation mechanism thus allows for an assay in which a measured 
functional response can only arise from one specific dimer. Accordingly, two types of inactivating CaSR mutants 
were required in the present study in order to utilize the trans-activation system.

For class C receptors, a highly conserved orthosteric binding site is found in the cleft between the two lobes 
of the ATD35. Based on previously published mutagenesis studies of CaSR11,34,36, residues in this binding site were 
chosen for mutation. G protein coupling is particularly dependent on conserved residues in the intracellular loop 
3 (ICL3) of class C GPCRs27,37–39, hence residues in this part of the receptor were also chosen for mutation. All 
mutant constructs were tagged with an HA epitope allowing for validation of surface and total expression by use 
of an enzyme-linked immunosorbent assay (ELISA). Data showed that all mutants were expressed at the surface 
to the same extent or in significant higher levels than HA-tagged WT CaSR, except the S170A mutation, which 
only displayed 54% surface expression and 43% total expression compared to WT (Fig. 1a,b). S147A, D190A 
and S170A/D190A displayed a minor, yet significant, decrease in total expression (Fig. 1b). Functional char-
acterization of the mutants was conducted by testing the endogenous agonist Ca2+ in the IP-One assay, which 
measures activation of the Gq signaling pathway. None of the six constructs with mutations in the conserved 
orthosteric binding site displayed complete loss of function, however lower potency of Ca2+ was observed for 
all of them (Fig. 1c and Table 1). Only the S170A mutant displayed severe functional impairment with highly 
reduced potency and max response of only 17% of the WT response at the highest tested Ca2+ concentration. The 
two constructs with mutated ICL3 regions likewise demonstrated highly reduced potency of Ca2+ and only 25% 
(for L797A) and 5.9% (for F801A) of the WT maximum response (Fig. 1c and Table 1).

In spite of lower expression levels, S170A was chosen for further studies, as this mutation resulted in the great-
est loss of function compared to the other mutations in the orthosteric binding site. Henceforward, the S170A 
construct will also be referred to as the ATD mutant. Of the two constructs with mutations in ICL3, F801A was 
chosen as it demonstrated complete loss of function while no impairment of receptor expression was observed. 
F801A will be referred to as the ICL3 mutant.

These two mutants were subsequently investigated for heterodimeric trans-activation. In order to con-
firm expression of both mutants upon co-transfection, the HA-tag in the F801A construct was replaced with 
a myc-tag. In accordance with results described above, ELISA experiments demonstrated lower expression of 
HA-CaSR-S170A compared to WT HA-CaSR, while myc-CaSR-F801A displayed increased expression com-
pared to WT myc-CaSR. Importantly, the expression levels of each mutant were similar whether the mutant was 
co-expressed with the pEGFPN1 vector or co-expressed in the heterodimer (Fig. 2a,b), and co-transfection of the 
ATD and ICL3 mutants did consequently not influence the expression levels of each mutant. When tested in the 
functional IP-One assay, myc-CaSR-F801A was shown to be non-functional at concentrations up to 45 mM Ca2+, 
whilst HA-CaSR-S170A only displayed a very small increase in receptor activity at this concentration (Fig. 2c). 
Upon co-expression of the two mutants, a functional response constituting 30% of the WT CaSR response was 
detected (Fig. 2c, Table 2), which must arise from signaling in the S170A:F801A heterodimer. The potency of Ca2+ 
was decreased for the trans-activation response as observed from a rightward shift in the concentration-response 
curves (Fig. 2c) and the increase in EC50 of Ca2+ from 2.98 mM for WT to 12.7 mM for the heterodimer response 
(Table 2). In conclusion, the functionally impaired S170A and F801A mutants successfully demonstrated recov-
ery of activity upon co-expression, hence validating trans-activation of the CaSR dimer. In the present study, this 
trans-activation assay was thus used to ensure measurements on dimers with specific subunit compositions when 
investigating allosteric modulation in the CaSR dimer.
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The mutation E837A eliminates effects from both positive and negative allosteric modula-
tors.  Binding sites for positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs), 
respectively, have been identified in the 7TM region of CaSR. As these sites are overlapping although not 

Figure 1.  Expression levels and functional characterization of mutations located in the amino-terminal 
domain (ATD) or intracellular loop 3 (ICL3) of CaSR. HEK293T cells transiently transfected with the 
different HA-tagged CaSR mutants were tested. The (a) surface and (b) total expression levels of the CaSR 
mutants were determined by using anti-HA antibodies in ELISA. Data are shown as percentage of the 
expression level of WT HA-CaSR and are means ±​ S.E.M. of three independent experiments performed in 
triplicates. Statistical analysis was performed using one-way ANOVA followed by Dunnett’s post-test in which 
each mutant was compared to the WT receptor (*P < 0.05, **P <​ 0.01, ***P <​ 0.001). (c) The function of HA-
CaSR WT and mutants was assessed using the IP-One assay, which measures increases in d-myo-inositol 
monophosphate (IP1) upon activation of the Gq signaling pathway. The endogenous agonist Ca2+ was tested in 
increasing concentrations. Data are means ±​ S.D. of a single representative experiment performed in triplicates. 
Two additional experiments gave similar results.

EC50 (mM) pEC50 ± S.E.M. Max ± S.E.M. (%)a Hill coefficient ± S.E.M.

HA-CaSR WT 3.77 2.42 ±​ 0.01 100 3.62 ±​ 0.48

HA-S147A 9.07 2.04 ±​ 0.01 150 ±​ 17 3.50 ±​ 0.26

HA-S170A >​45 N.D. 17 ±​ 0.7 N.D.

HA-D190A 17.8 1.75 ±​ 0.01 110 ±​ 11 3.77 ±​ 0.39

HA-E297A 7.36 2.31 ±​ 0.02 130 ±​ 25 3.01 ±​ 0.07

HA-S147A/S170A 9.04 2.04 ±​ 0.02 130 ±​ 28 3.00 ±​ 0.07

HA-S170A/D190A 31.8 1.50 ±​ 0.04 49 ±​ 2.5 4.05 ±​ 0.43

HA-L797A 11.7 1.94 ±​ 0.04 25 ±​ 3.5 3.22 ±​ 0.71

HA-F801A >​30 N.D. 5.8 ±​ 0.4 N.D.

Table 1.   Functional parameters of WT CaSR and constructs with mutations in either the ATD or ICL3 
region. Ca2+-mediated activation of the Gq signaling pathway was measured using the IP-One assay, and data 
are means ±​ S.E.M. of three independent experiments performed in triplicates. aThe maximum response for 
each mutant is normalized to the maximum response of WT CaSR. EC50: the concentration of Ca2+ that is 
required for eliciting 50% of the maximum response. pEC50 =​ −​log(EC50). N.D.: not determined due to a very 
low activity at the highest tested Ca2+ concentration.
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identical, it should be possible to identify a mutation impairing effects of PAMs and NAMs. Based on mutagen-
esis studies reported in the literature40–43, five single point mutations in the allosteric site were generated, and 
ELISA experiments demonstrated that the constructs were all expressed to the same extent as WT HA-CaSR 
(Fig. 3a,b). Functional characterization was performed by testing increasing concentrations of Ca2+ in the 
presence or absence of the PAM NPS R-568 or the NAM NPS 2143. All mutations except E837A affected the 
potency of Ca2+ as they demonstrated a significant increase (F684A and F688A) or decrease (F821A and I841A) 
in the EC50 of Ca2+ compared to the WT receptor (Fig. 3c, Table 3), and these mutations thus interfered with the 
agonist-mediated signaling of the receptor although being located in the allosteric site. For the WT receptor, as 
well as the mutants F684A and F688A, EC50 values of Ca2+ were significantly decreased upon addition of PAM, 
while the presence of a NAM significantly increased the EC50 of Ca2+ for the WT receptor and all mutants except 
E837A (Fig. 3c, Table 3). For the E837A mutant, neither NPS R-568 nor NPS 2143 had any significant effect on 
the Ca2+-induced response (Fig. 3c, Table 3), and this mutation thus successfully impaired the overlapping PAM 
and NAM sites. For that reason, E837A was chosen for further studies.

Figure 2.  Trans-activation of the CaSR heterodimer. HEK293T cells transiently transfected with a HA-tagged 
CaSR construct (or pEGFPN1) and a myc-tagged CaSR construct (or pEGFPN1) in a 1:1 ratio were tested. The 
(a) surface and (b) total expression levels of the CaSR constructs were determined by using ELISA and either 
anti-HA antibodies or anti-myc antibodies as indicated in the figure. Data from using anti-HA antibody are 
shown as percentage of the expression level of WT HA-CaSR while data from using anti-myc antibody are 
shown as percentage of the expression level of WT myc-CaSR. All data are means ±​ S.E.M. of three independent 
experiments performed in triplicates. (c) Functional characterization was performed using the IP-One assay, 
which measures increases in d-myo-inositol monophosphate (IP1) upon activation of the Gq signaling pathway. 
Ca2+ was tested in increasing concentrations. Data are means ±​ S.D. of a single representative experiment 
performed in triplicates. Two additional experiments gave similar results.

EC50 (mM) pEC50 ± S.E.M. Max ± S.E.M. (%)a Hill coefficient ± S.E.M.

HA-CaSR WT +​ myc CaSR-WT 2.98 2.53 ±​ 0.02 100 4.24 ±​ 0.19

HA-S170A +​ myc-F801A 12.7 1.90 ±​ 0.03 30 ±​ 1.9 2.69 ±​ 0.19

Table 2.   Functional parameters of WT CaSR and the trans-activation response arising from the 
S170A:F801A heterodimer. Ca2+-mediated activation of the Gq signaling pathway was measured using 
the IP-One assay, and data are means ±​ S.E.M. of three independent experiments performed in triplicates. 
aThe maximum trans-activation response is normalized to the maximum response of WT CaSR. EC50: the 
concentration of Ca2+ that is required for eliciting 50% of the maximum response. pEC50 =​ −log(EC50).
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Co-expression of an ATD and ICL3 mutant allows for surface expression of specific ATD:ICL3 
heterodimers.  Because the E837A mutation eliminates the allosteric modulation in the subunit that contains 
the mutation, it was possible to identify whether the functional allosteric site in the other subunit was sufficient 
for obtaining the modulatory effect in the dimer. Four specific dimers were tested and the trans-activation con-
trol system was used to ensure measurements on the specific subunit composition in each; a dimer without any 
mutations in the allosteric sites, a dimer with an allosteric site mutation in one subunit, a dimer with a allosteric 
site mutation in the other subunit and a dimer with mutated allosteric sites in both subunits. The four dimers of 

Figure 3.  Expression levels and functional characterization of mutations located in the allosteric site 
of CaSR. HEK293T cells transiently transfected with the HA-tagged CaSR constructs were tested. The (a) 
surface and (b) total expression levels of the CaSR mutants were determined by using anti-HA antibodies in 
ELISA. Data are shown as percentage of the expression level of WT HA-CaSR and are means ±​ S.E.M. of three 
independent experiments performed in triplicates. (c) The function of HA-CaSR WT and mutants was assessed 
using the IP-One assay, which measures increases in d-myo-inositol monophosphate (IP1) upon activation 
of the Gq signaling pathway. The endogenous agonist Ca2+ was tested in increasing concentrations in the 
presence and absence of 1 μ​M NPS R-568 (positive allosteric modulator) and 5 μ​M NPS 2143 (negative allosteric 
modulator), respectively. Data are means ±​ S.D. of a single representative experiment performed in triplicates. 
Two additional experiments gave similar results.
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interest are shown schematically in Fig. 4a. For all of them, each subunit in itself should be nonfunctional due to 
the ATD or ICL3 mutant, and although the mutant homodimers would also be present at the cell surface, the only 
active dimer composition would thus be the heterodimer of interest.

At first, receptor expression was validated for each mutant upon co-expression in the four dimer combinations 
of interest. In accordance with results described above, the S170A mutant displayed only 42% surface expression 
and 59% total expression compared to WT HA-CaSR upon co-expression with pEGFPN1. When introducing 
the allosteric site mutation E837A in the HA-S170A construct, expression levels increased to the level of WT 
HA-CaSR expression (Fig. 4b). Both myc-F801A and myc-F801A/E837A were expressed in levels correspond-
ing to about 140% of the WT myc-tagged receptor (Fig. 4c). When co-transfecting mutants in the four dimer 
combinations, the expression level of each mutant was not significantly different from the expression level upon 
co-expression with pEGFPN1 (Fig. 4b,c), and the heterodimer co-expression did consequently not interfere with 
the expression levels of each subunit.

Dimerization between a myc-tagged receptor construct and a HA-tagged receptor construct can be validated 
by use of a time-resolved fluorescence resonance energy transfer (TR-FRET) dimerization assay44. When adding 
an anti-HA antibody conjugated to a donor fluorophore and an anti-myc antibody conjugated to an acceptor 
fluorophore, FRET occurs when the two fluorophores are in close proximity. This would be the case upon receptor 
dimerization. At first, the assay setup was validated by co-expressing WT HA-CaSR and WT myc-CaSR, which 
resulted in an 11.8 fold increase in FRET signal thus confirming homodimer formation. When each of the WT 
constructs was instead co-expressed with pEGFPN1, no FRET signal could be detected (Fig. 4d). In order to 
confirm the specificity of the assay, CaSR was tested in the presence of the closest related mammalian receptor 
GPRC6A. Co-expressing WT HA-CaSR and WT myc-GPRC6A or WT myc-CaSR and WT HA-GPRC6A only 
triggered very minor, non-significant FRET signals, which were likely to arise merely from the over-expression of 
both receptors. In comparison, co-expressing WT HA-GPRC6A and WT myc-GPRC6A gave rise to a 9.80 fold 
increase in FRET signal (Fig. 4d) thereby confirming the previously reported homodimerization of GPRC6A44. 
In conclusion, only specific dimer formation gave rise to an increase in FRET ratio.

Upon co-expressing a myc-tagged and a HA-tagged version of each of the four CaSR mutants, increases in 
FRET signal were detected for each and homodimerization was thus verified (Fig. 4e). Although the S170A 
mutant displayed a significant decrease in FRET signal compared to the WT receptor while the FRET signal of 
the F801A mutant was equal to, if not higher than, the WT receptor (Fig. 4e), these findings correlate with the 
expression levels determined for each mutant. On the contrary, the S170A/E837A mutant and the F801A/E837A 
mutant were both expressed in equal or higher levels than the WT receptor, while the FRET signal was decreased 
compared to WT, although not significantly for F801A/E837A. When testing the four dimer combinations of 
interest, a large increase in FRET signal was detected for all of them, which confirmed heterodimerization. The 
increases in FRET signal were not significantly different from that of the WT receptor, and in conclusion, the four 

Ca2+

EC50 (mM)a pEC50 ± S.E.M. Max ± S.E.M. (%)b

HA-CaSR WT 3.21 2.49 ±​ 0.01 ≈​100

HA-F684A 6.60 (***) 2.18 ±​ 0.01 97 ±​ 3.4

HA-F688A 6.11 (***) 2.21 ±​ 0.01 86 ±​ 3.1

HA-F821A 2.35 (***) 2.63 ±​ 0.02 87 ±​ 4.3

HA-E837A 3.40 (ns) 2.47 ±​ 0.01 87 ±​ 16

HA-I841A 2.59 (**) 2.59 ±​ 0.01 81 ±​ 14

Ca2+ with 1 μ​M NPS R-568 Ca2+ with 5 μ​M NPS 2143

EC50 (mM)c pEC50 ±​ S.E.M. Max ±​ S.E.M. (%)d EC50 (mM)c pEC50 ±​ S.E.M. Max ±​ S.E.M. (%)d

HA-CaSR WT 1.28 (***) 2.89 ±​ 0.01 110 ±​ 11 8.40 (***) 2.08 ±​ 0.01 72 ±​ 5.6

HA-F684A 2.89 (***) 2.54 ±​ 0.02 99 ±​ 11 8.17 (***) 2.09 ±​ 0.004 70 ±​ 8.1

HA-F688A 2.86 (***) 2.54 ±​ 0.02 110 ±​ 9 8.31 (***) 2.08 ±​ 0.01 79 ±​ 6.9

HA-F821A 1.92 (ns) 2.72 ±​ 0.01 110 ±​ 14 5.72 (**) 2.25 ±​ 0.05 51 ±​ 8.0

HA-E837A 3.88 (ns) 2.41 ±​ 0.04 100 ±​ 5 3.46 (ns) 2.46 ±​ 0.02 91 ±​ 5.7

HA-I841A 3.68 (ns) 2.54 ±​ 0.05 99 ±​ 18 5.29 (*) 2.28 ±​ 0.03 97 ±​ 7.6

Table 3.   Functional parameters of WT CaSR and constructs with mutations in the allosteric site. 
Activation of the Gq signaling pathway was measured using the IP-One assay, in which the endogenous agonist 
Ca2+ was tested in the presence and absence of 1 μ​M NPS R-568 and 5 μ​M NPS 2143, respectively. Data are 
means ±​ S.E.M. of three independent experiments performed in triplicates. aStatistical analysis was performed 
using one-way ANOVA followed by Dunnett’s post-test in which the EC50 of Ca2+ for each mutant was 
compared to the EC50 for WT CaSR (ns, P >​ 0.05, **P <​ 0.01, ***P <​ 0.001). bThe maximum response for each 
mutant when stimulating with Ca2+ alone was normalized to the maximum response of WT CaSR. cStatistical 
analysis was performed using one-way ANOVA followed by Dunnett’s post-test in which the EC50 of Ca2+ in 
the presence of PAM or NAM for each construct was compared to the EC50 for Ca2+ alone for that construct 
(ns, P >​ 0.05, *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001). dThe maximum response when stimulating with Ca2+ in the 
presence of NPS R-568 or NPS 2143 is normalized to the maximum response when stimulating with Ca2+ alone 
for each construct. EC50: the concentration of Ca2+ that is required for eliciting 50% of the maximum response. 
pEC50 =​ −​log(EC50).
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Figure 4.  Validation of the expression levels and dimerization of the four CaSR heterodimers of interest. 
HEK293T cells transiently transfected with a HA-tagged construct (or pEGFPN1) and a myc-tagged construct 
(or pEGFPN1) in a 1:1 ratio were tested. (a) Schematic figure depicting the four heterodimers of interest. Each 
dimer contains the ATD mutant in which activation by agonist is prevented and the ICL3 mutant in which G 
protein coupling is prevented. As a consequence, only the heterodimer is functional active. (b) and (c) Surface 
and total expression were assessed for each mutant upon co-expression with pEGFPN1 or another mutant. 
Expression levels were determined using ELISA and (b) anti-HA antibodies or (c) anti-myc antibodies. Data 
from measurements of surface expression are shown as percentage of the surface expression of WT CaSR, while 
measurements of total expression are shown as percentage of the total expression of WT CaSR. All data are 
means ±​ S.E.M. of three independent experiments performed in triplicates. Statistical analysis was performed 
using one-way ANOVA followed by Tukey post-test (ns, P >​ 0.05). (d) and (e) Dimerization of HA-tagged 
receptor constructs and myc-tagged receptor constructs was assessed using the TR-FRET dimerization assay, 
which measures FRET between a donor fluorophore conjugated to an anti-HA antibody and an acceptor 
fluorophore conjugated to an anti-myc antibody. Constructs were co-expressed and tested as indicated in the 
figure. (d) WT receptor constructs were tested for validation of the assay. (e) Mutant CaSR constructs were 
tested as homodimers and upon co-expression in the four heterodimers of interest. The FRET ratio (acceptor 
emission/donor emission) for each condition was normalized to the FRET ratio of pEGFPN1. Data are 
means ±​ S.E.M. of three independent experiments performed in triplicates. Statistical analysis was performed 
using one-way ANOVA followed by Dunnett’s post-test in which each condition was compared to (d) pEGFPN1 
or (e) WT CaSR (**P <​ 0.01, ***P <​ 0.001).
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heterodimers were present in the cell membrane in levels that were equal to the amount of WT CaSR dimers, 
although varying expression levels were observed for each individual subunit.

One allosteric site is sufficient for obtaining potentiation of CaSR.  Potentiation of Ca2+-mediated 
responses from the four heterodimers of interest was investigated by testing increasing concentrations of Ca2+ 
in the presence of 0.05 μ​M, 0.1 μ​M and 1 μ​M NPS R-568, respectively. The S170A:F801A heterodimer contains 
functional allosteric sites in both subunits and accordingly, leftward shifts of the Ca2+ curves were observed thus 
demonstrating a concentration-dependent potentiation by NPS R-568 (Fig. 5a). On the contrary, the response 
of the S170A/E837A:F801A/E837A heterodimer was not potentiated, as the heterodimer contains mutations 
in both allosteric sites, (Fig. 5b). The S170A:F801A/E837A and S170A/E837A:F801A dimers both contain only 
one functional allosteric site per dimer, however responses of the former was potentiated (Fig. 5c) whilst those 
of the latter was not (Fig. 5d). In the S170A:F801A/E837A heterodimer, the functional allosteric site is located 
in the subunit that is responsible for G protein coupling, thus it seems that potentiation can only occur when the 
functional allosteric site and the G protein coupling site are in the same subunit. In the S170A/E837A:F801A 
heterodimer, the allosteric site is located in the subunit in which G protein coupling is prevented and accordingly, 
no potentiation was observed. The Ca2+-mediated response of this heterodimer was in fact inhibited by the high-
est tested concentration of NPS R-568. Importantly, potentiation of the Ca2+-induced response in the WT CaSR 
dimer was not significantly increased compared to the potentiation obtained in the S170A:F801A heterodimer 
containing two allosteric sites and in the S170A:F801A/E837A heterodimer containing only one site (Fig. 5e), and 
one allosteric site per dimer thus seemed sufficient for fully potentiating the agonist-mediated response of CaSR.

Although the activity of each subunit in the four heterodimers was impaired by the S170A or F801A mutation, 
they would nevertheless be present at the cell surface as homodimers. In order to confirm the loss of activity for 
these homodimers, 10 mM Ca2+ was tested at each mutant in the presence or absence of 0.05 μ​M, 0.1 μ​M and 
1 μ​M NPS R-568, respectively (Fig. 5f). While F801A, S170A/E837A and F801A/E837A were all inactive upon 
addition of Ca2+ and PAM, an increase in IP1 was observed for the S170A construct upon addition of 10 mM Ca2+ 
+​1 μ​M of NPS R-568 although no response was detected for Ca2+ alone (Fig. 5f). To study the potential influ-
ence from the mutant homodimers at increased agonist concentrations, the highest tested Ca2+ concentration 
from the heterodimer experiments (23 mM Ca2+) was likewise tested at each mutant in the presence of 0.05 μ​M, 
0.1 μ​M and 1 μ​M NPS R-568, respectively (Fig. 5g). At this Ca2+ concentration, F801A and F801A/E837A were 
still inactive upon addition of Ca2+ and PAM, while the S170A/E837A construct elicited a small, yet significant, 
increase in Ca2+-mediated signaling, although potentiation of this agonist response was successfully impaired by 
the E837A mutation (Fig. 5g). In conclusion, neither of these mutants should thus influence the measurements 
of potentiation in the heterodimers. Surprisingly, a concentration-dependent potentiation was observed for the 
S170A construct in spite of the very limited Ca2+-mediated activity (Fig. 5g), and this potentiation was thus 
likely to contribute when measuring on the S170A:F801A and S170A:F801A/E837A heterodimers, as they both 
contain the S170A subunit. Importantly, the potentiated concentration-response curves of the S170A mutant 
(Fig. 5h) were right-shifted in comparison to the curves obtained when co-expressing S170A and F801A (Fig. 5a) 
or S170A and F801A/E837A (Fig. 5c), and the NPS R-568-mediated activity in Fig. 5a and c can therefore not be 
solely mediated by S170A homodimers. As a consequence, the heterodimers must be partly responsible for the 
measured potentiation.

To further emphasize these findings, a low Ca2+ concentration (4.6 mM), at which the contribution from the 
S170A homodimer was highly limited, was chosen from the curves shown in Fig. 5a–d,h. For S170A, a very small, 
yet significant, increase in IP1 was observed only at the highest tested PAM concentration, whereas no significant 
agonist effect or potentiation was observed for any of the other mutants. On the contrary, robust and highly sig-
nificant potentiation was detected for the responses of the S170A:F801A and S170A:F801A/E837A heterodimers 
(Fig. 5h). In conclusion, S170A homodimers are likely to contribute when measuring on the S170A:F801A and 
S170A:F801A/E837A heterodimers, however the S170A homodimers alone can not account for the observed 
activity, and the heterodimers must thus also be subjected to NPS R-568-mediated potentiation.

Preventing activation in both subunits of CaSR is required for full inhibition of activity.  In 
order to study the negative modulation of CaSR activity, Ca2+ was tested in the presence of 0.2 μ​M NPS 2143, 
1 μ​M NPS 2143 and 5 μ​M NPS 2143, respectively. The S170A:F801A heterodimer that contains allosteric sites in 
both subunits displayed concentration-dependent inhibition by NPS 2143, in which full inhibition was observed 
at the highest tested NPS 2143 concentration (Fig. 6a). As expected, the activity of the S170A/E837A:F801A/
E837A heterodimer was not subjected to inhibition by NPS 2143 (Fig. 6b), as the allosteric site in both subunits 
was impaired by mutation. The S170A:F801A/E837A dimer contains a functional allosteric site in the subunit 
responsible for G protein coupling and displayed concentration-dependent inhibition with full inhibition at 5 μ​M  
NPS 2143 (Fig. 6c), while NPS 2143 triggered only 30% inhibition of the Ca2+-induced max response of the 
S170A/E837A: ​F801A heterodimer that contains an allosteric site in the subunit unable to couple G proteins 
(Fig. 6d). Consequently, full inhibition of a dimer with only one NAM binding site was not observed when the 
adjacent subunit allowed G protein coupling, whereas the activity of the S170A:F801A/E837A dimer was fully 
prevented due to NAM binding in the S170A subunit and mutational impairment of G protein coupling in the 
F801A/E837A subunit. In accordance with results from the PAM testing, a small, but significant, increase in 
IP1 production was observed for the S170A/E837A mutant upon stimulation with 23 mM Ca2+, which was not 
subjected to inhibition by NPS 2143 due to the E837A mutation (Fig. 6e). No effect of Ca2+ or NPS 2143 was 
observed when testing S170A, F801A and F801A/E837A, respectively, and neither of the mutant homodimers 
thus had any influence on the responses measured for the heterodimers (Fig. 6e).



www.nature.com/scientificreports/

9Scientific Reports | 7:46355 | DOI: 10.1038/srep46355

Figure 5.  Positive allosteric modulation of the four CaSR heterodimers of interest. HEK293T cells transiently 
transfected with a HA-tagged CaSR construct (or pEGFPN1) and a myc-tagged CaSR construct (or pEGFPN1) 
in a 1:1 ratio were tested. Specifically, cells co-expressing (a) HA-S170A and myc-F801A, (b) HA-S170A/E837A 
and myc-F801A/E837A, (c) HA-S170A and myc-F801A/E837A and (d) HA-S170A/E837A and myc-F801A were 
tested. The function of these heterodimers was assessed using the IP-One assay, which measures increases in  
d-myo-inositol monophosphate (IP1) upon activation of the Gq signaling pathway. The endogenous agonist Ca2+ 
was tested in increasing concentrations in the presence and absence of 0.05 μ​M, 0.1 μ​M and 1 μ​M NPS R-568, 
respectively. (e) Effect of 1 μ​M NPS R-568 on the EC50 of Ca2+ on WT HA-CaSR and the S170A:F801A and 
S170A:F801A/E837A heterodimers. EC50 values are shown as fold decrease of the EC50 value of Ca2+ alone for each 
of the constructs. EC50: the ligand concentration that is required for eliciting 50% of the maximum response. Data 
are means ±​ S.E.M. of three independent experiments performed in triplicates. Statistical analysis was performed 
using one-way ANOVA followed by Dunnett’s post-test (ns, P >​ 0.05). (f,g) The function of each mutant upon 
co-expression with pEGFPN1 was assessed by testing (f) 10 mM Ca2+ or (g) 23 mM Ca2+ in the presence and 
absence of 0.05 μ​M, 0.1 μ​M and 1 μ​M NPS R-568, respectively. In (g), statistical analysis was performed using 
one-way ANOVA followed by Dunnett’s post-test in which the Ca2+ response for each mutant was compared to 
the Ca2+ response of S170A (*P  < 0.05) (h) Ca2+ concentration-response curves of HA-S170A were generated 
in the presence and absence of 0.05 μ​M, 0.1 μ​M and 1 μ​M NPS R-568, respectively. Data obtained in Fig. 5a–d,h 
from stimulation with 4.6 mM Ca2+ is depicted in (i). Statistical analysis was performed using one-way ANOVA 
followed by Dunnett’s post-test in which responses in the presence of PAM were compared to the Ca2+-mediated 
response alone for each mutant homodimer or heterodimer (*P  < 0.05, ***P <​ 0.001). All data are shown as fold 
increase over the basal level of IP1 upon incubation in ligand buffer and are means ±​ S.E.M. of three independent 
experiments performed in triplicates.
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Discussion
In the current study, we have shown that one allosteric site per CaSR dimer was sufficient for obtaining the mod-
ulatory effect of the PAM NPS R-568, while prevention of activation in both 7TM domains were required for 
achieving full inhibition by the NAM NPS 2143.

In order to investigate the allosteric modulation in CaSR, we needed an assay that allowed for measurements 
on a dimer comprised of well-defined subunits each carrying specific mutations. For that purpose, we applied 
a trans-activation system, in which only the heterodimer comprised of a mutant preventing agonist activation 
and a mutant preventing G protein coupling was functionally active. This trans-activation signaling mechanism 
has previously been reported for CaSR33. In the present study, the S170A and F801A mutants were chosen for 
setting up the trans-activation system, as F801A was non-functional at concentrations up to 45 mM Ca2+, while 
S170A demonstrated very limited activity at this concentration. S170 is a highly conserved residue located in the 
orthosteric binding site of class C receptors26,36,45,46, and F801 is found in the ICL3 in which it has proven crucial 

Figure 6.  Negative allosteric modulation of the four CaSR heterodimers of interest. HEK293T cells 
transiently transfected with a HA-tagged CaSR construct (or pEGFPN1) and a myc-tagged CaSR construct (or 
pEGFPN1) in a 1:1 ratio were tested. Specifically, cells co-expressing (a) HA-S170A and myc-F801A, (b) HA-
S170A/E837A and myc-F801A/E837A, (c) HA-S170A and myc-F801A/E837A and (d) HA-S170A/E837A and 
myc-F801A were tested. The function of the heterodimers was assessed using the IP-One assay, which measures 
increases in d-myo-inositol monophosphate (IP1) upon activation of the Gq signaling pathway. The endogenous 
agonist Ca2+ was tested in increasing concentrations in the presence and absence of 0.2 μ​M, 1 μ​M and 5 μ​M 
NPS 2143, respectively. All data are shown as percentages of the maximum response for Ca2+ in the absence of 
NPS 2143 and are means ± S.E.M. of three independent experiments performed in triplicates (e) The function 
of each mutant upon co-expression with pEGFPN1 was assessed by testing 23 mM Ca2+ in the presence and 
absence of 0.2 μ​M, 1 μ​M and 5 μ​M NPS 2143, respectively. Statistical analysis was performed using one-way 
ANOVA followed by Dunnett’s post-test in which the Ca2+ response for each mutant was compared to the Ca2+ 
response of S170A (**P <​ 0.01). Data are shown as fold increase over the basal level of IP1 upon incubation in 
ligand buffer and are means ± S.E.M. of three independent experiments performed in triplicates.
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for G protein coupling in the mGluRs, CaSR and GABAB receptors27,38,39. The specific S170A:F801A heterodimer 
displayed a recovery of receptor activity with a Ca2+-mediated response constituting 30% of the WT response. 
CaSR thus only requires one subunit for agonist binding and one subunit for G protein coupling, however the 
response was less efficacious than for the WT receptor. This is consistent with previously reported trans-activation 
responses, which also demonstrated a considerable decrease in max response31–33. For the mGluRs, it has been 
shown that agonist binding in both ATDs in the dimer was required for achieving the full receptor response19,32 
and likewise, full activation was only obtained in dimers having both 7TM domains available for G protein cou-
pling29. This would explain the observed decrease in efficacy for the trans-activation response in CaSR, as the 
heterodimer contains only one functional ATD and one subunit that allows G protein coupling. Furthermore, 
non-functional homodimers of each mutant was also formed upon the co-expression, and the functional pro-
portion of receptors was thus smaller than for the WT receptor. In conclusion, we have confirmed that CaSR can 
signal via trans-activation, which supports that signal transduction from the ATDs to the 7TM domains depends 
on intersubunit rearrangements rather than intrasubunit movements in accordance with studies conducted on 
the mGluRs31.

By applying the trans-activation assay, it was possible to test CaSR dimers containing allosteric sites in one or 
both of the subunits. The responses of a heterodimer containing an allosteric site in both subunits (S170A:F801A) 
and a heterodimer with only one allosteric site (S170A:F801A/E837A) were both subjected to potentiation upon 
addition of NPS R-568, and our findings thus proved that one allosteric site was sufficient for obtaining potentia-
tion of the agonist response in CaSR. Importantly, this potentiation was only achieved when the PAM was bound 
to the subunit in which G protein coupling occurred. If the allosteric site was located in a subunit with impaired 
G protein coupling, a small NPS R-568-mediated inhibition was instead observed. These findings are in perfect 
correlation with results obtained for an mGluR5/mGluR1 dimer, in which an mGluR5 PAM fully enhanced the 
agonist response in spite of the dimer having only one mGluR5 PAM site, while an mGluR1 PAM acted as a 
non-competitive antagonist, when G protein coupling was prevented in the mGluR1 subunit30.

Although the applied S170A mutant was virtually inactive, substantial NPS R-568-mediated potentiation was 
observed, hence suggesting that the mutation did not completely eliminate agonist activation in CaSR, although 
the potency of Ca2+ was greatly reduced. It is well established that agonist binding in CaSR is highly cooperative 
with a Hill coefficient of 3–447, thus strongly indicating that numerous agonist binding sites are found in this 
receptor. At least five putative Ca2+ sites were identified in CaSR by use of homology modeling47,48, while recent 
crystal structures of the ATD provided further evidence to the existence of multiple divalent cation sites13,14, 
although the precise location differed between studies. Additionally, it has been shown that agonist stimulation of 
CaSR triggers an increase in the level of receptors at the cell surface, which also contributes to the cooperativity 
of the Ca2+-mediated response of CaSR49. In the present study, the low potent activity of the S170A construct 
seems likely to arise from the additional agonist binding sites in the receptor. While the NPS R-568-mediated 
activity of S170A was likely to contribute to the responses measured upon co-expression of S170A and F801A or 
S170A and F801A/E837A, the S170A homodimers alone was not sufficient to trigger the observed potentiation, 
hence demonstrating that the S170A:F801A and S170A:F801A/E837A heterodimers must also be subjected to 
potentiation. Nevertheless, it is difficult to evaluate the exact contributions from S170A against the contributions 
from the relevant heterodimer, and is has therefore not been possible to asses the extent of potentiation for the 
heterodimers in the current study. This limitation should be kept in mind when interpreting the results from 
testing PAMs at the heterodimers.

Negative modulation of receptor activity was likewise studied by using CaSR dimers carrying mutations in 
one or both of the allosteric sites. Results showed that the activity of the S170A:F801A/E837A dimer with a 
single allosteric site was subjected to full inhibition by 5 μ​M NPS 2143, and the NAM thus seemed able to com-
pletely inhibit the activity of CaSR when binding in only one subunit. Noticeably, neither of the subunits in 
the S170A:F801A/E837A dimer was however able to trigger intracellular signaling, as the F801A mutation was 
impairing G protein coupling in the adjacent subunit. The S170A/E837A:F801A dimer also contained only one 
allosteric site, however NPS 2143 triggered only 30% inhibition of the max response of this receptor dimer, as 
the S170A/E837A subunit was still available for activation and G protein coupling. In conclusion, only a dimer in 
which activation and/or G protein coupling were prevented in both 7TM domains demonstrated full inhibition of 
CaSR activity. These results also correlate well with studies conducted using the mGluRs, for which it was shown 
that full inhibition required binding of antagonist in both subunits29.

According to the model of receptor activation that has been proposed for the mGluRs, only one 7TM domain 
in the dimer is activated at a time29,30. The 7TM domain alternates between active and inactive conformations, 
of which PAM favors the active conformation that allows for G protein coupling while NAM stabilizes the 7TM 
domain in an inactive conformation. In the present study, potentiation was observed for dimers containing 
only one allosteric site, which suggests that only one 7TM domain in CaSR is stabilized in an active conforma-
tion. This model also provides an explanation to the NPS R-568-mediated inhibition of activity for the S170A/
E837A:F801A dimer, as PAM binding in F801A favored activation of this subunit in spite of the impairment of 
G protein coupling. Favoring the active conformation of one subunit would simultaneously prevent activation of 
the adjacent subunit, and signaling in the S170A/E837A subunit was thereby inhibited by NPS R-568. Our results 
from testing negative modulation in CaSR further supports this activation mechanism as inhibition of activity in 
both subunits would be required for fully preventing receptor signaling if a single 7TM domain is activated at a 
time. Accordingly, full inhibition of CaSR was observed only when one subunit was inactivated by NAM whilst 
G protein coupling was impaired in the other subunit. On the contrary, the S170A/E837A:F801A heterodimer 
retained 70% activity as the S170A/E837A subunit was still available for G protein coupling.

In conclusion, we have shown that one allosteric site per dimer was sufficient for obtaining potentiation of 
the agonist-mediated activity of CaSR, while prevention of activation in both 7TM domains was required for full 
inhibition of the functional response. These findings correlate with the current model for mGluR activation, in 
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which only one 7TM domain is activated at a time, and our study thus suggests that the activation mechanism is 
shared among the class C receptors. This asymmetry in the activation of the 7TM domains is however puzzling, as 
dimerization has proven crucial for the functional coupling between the ATDs and the 7TM domains, and more 
studies are therefore required in order to fully understand the molecular basis for activation and modulation in 
the 7TM domains of class C receptors. Such knowledge would be highly beneficial for the development of much 
needed novel therapeutics targeting CaSR.

Methods
Materials.  Dulbecco’s modified eagle medium (DMEM), 10.000 units/mL penicillin and 10.000 μ​g/mL strep-
tomycin mixture (P/S), dialyzed fetal bovine serum (dFBS), Opti-MEM, Dulbecco’s Phosphate Buffered Saline 
(DPBS), Hank’s Balanced Salt Solution (HBSS) and Lipofectamine 2000 were all purchased from Thermo Fisher 
Scientific (Waltham, MA, USA). NPS R-568 hydrochloride was purchased from Tocris Bioscience (Bristol, UK), 
while NPS 2143 hydrochloride was synthesized as previously published50 and kindly provided by Dr. Daniel Sejer 
Pedersen, University of Copenhagen, DK. All other chemicals were purchased from Sigma-Aldrich (St. Louis, 
MO, USA) unless otherwise stated.

Constructs.  The previously described myc-tagged rat GPRC6A-pEGFPN1 construct, which contains the 
mGluR5 signal peptide upstream of the myc tag51, was used as template for generating the CaSR constructs used 
in the present study. myc-tagged CaSR was generated by replacing the rat GPRC6A sequence with the rat CaSR 
sequence by use of the restriction sites MluI and NotI. A sequence comprised of the mGluR5 signal peptide and 
an HA tag was synthesized by Genscript (Piscataway, NJ, USA) and inserted in myc-CaSR-pEGFPN1 instead 
of the mGluR5 signal peptide and the myc tag by use of XhoI and MluI thus generating HA-CaSR. All mutants 
were generated by Genscript (Piscataway, NJ, USA) using the HA-CaSR-pEGFPN1 construct as template and 
mutations were verified by sequencing. myc-tagged mutants were generated by exchanging the mGluR5 signal 
peptide and HA-tag sequence with the mGluR5 signal peptide and myc-tag sequence by using the XhoI and MluI 
restriction sites.

Cell culturing and transfection.  Human embryonic kidney (HEK) 293T cells were cultured in DMEM 
supplemented with 10% dFBS and 1% P/S at 37 °C and 5% CO2. 48 h prior to assay, transient transfection was per-
formed using Lipofectamine 2000 as the transfection reagent. White opaque 96-well culture plates (PerkinElmer, 
Waltham, MA, USA) were used for the ELISA and the TR-FRET dimerization assay, while clear tissue culture 
treated 96-well plates (Corning, Corning, NY, USA) were used for the IP-One assay. Both plate types were coated 
with poly-d-lysine before addition of cells and transfection mix. 0.25 μ​l/well of Lipofectamine 2000 were diluted 
in 25 μ​l/well of Opti-MEM and incubated at room temperature (RT) for 5 min. 0.03 μ​g/well of DNA was diluted 
in 25 μ​l/well of Opti-MEM, and subsequently mixed with the Lipofectamine 2000 dilution and incubated 20 min 
at RT before addition to the plates. Cell suspensions of 170.000 HEK293T cells/mL were prepared in complete 
growth medium and 100 μ​l/well (17.000 cells/well) was added to the plates, which were incubated for 48 h at 37 °C 
and 5% CO2 before performing assays.

ELISA.  For assessment of surface and total expression of WT and mutant CaSR constructs, ELISA was per-
formed as previously described44. In brief, cells were fixated using 4% paraformaldehyde in DPBS for 5 min at 
RT. For measurements of total expression, cells were permeabilized using 0.1% Triton-X in DPBS. All wells were 
incubated in blocking solution (ddH2O with 3% skim milk, 1 mM Ca2+, 50 mM Trizma hydrochloride solution, 
pH 7.4) for 30 min after which primary antibody incubation for 45 min at RT was performed by addition of either 
anti-HA antibody (Nordic BioSite, Täby, Sweden) or anti-myc antibody (Thermo Fisher Scientific, Waltham, MA, 
USA) diluted 1:1000 in blocking solution. Subsequently, horseradish peroxidase conjugated anti-mouse antibody 
(GE Healthcare Biosciences, Pittsburgh, PA, USA) diluted 1:1500 in blocking solution was added and plates were 
incubated for 45 min at RT. Receptor levels were detected by addition of 80 μ​l/well of DPBS supplemented with 
1 mM CaCl2 and 10 μ​l/well of SuperSignal ELISA Femto Substrate (Thermo Fisher Scientific, Waltham, MA, 
USA). Chemiluminescence was measured on an EnSpire plate reader (PerkinElmer, Waltham, MA, USA) and 
normalized to the level of WT CaSR.

Functional IP-One assay.  Functional activity was measured using the IP-One assay, which is an IP1 accu-
mulation assay52. For agonist testing, ligands were prepared in final concentrations in ligand buffer (HBSS, 20 mM 
HEPES, pH 7.4 supplemented with 20 mM LiCl). Cells were washed once with 100 μ​l/well of assay buffer (HBSS, 
20 mM HEPES, pH 7.4) and 50 μ​l/well of agonist solution was added after which plates were incubated at 37 °C 
for 30 min. Subsequently, ligand solutions were removed and cells were washed with 100 μ​l/well of assay buffer. 
Cell lysis was performed by addition of 30 μ​l/well of IP-One Conjugate & Lysis Buffer (Cisbio Bioassays, Codolet, 
France) and plates were incubated at RT for 30 min. Afterwards, 30 μ​l/well of assay buffer was added to dilute the 
cell lysate. 10 μ​l/well of cell lysate was transferred from the 96-well plate to a 384-well Optiplate and 10 μ​l/well of 
detection solution (Assay buffer +​ 2.5% of anti-IP1 antibody cryptate Terbium conjugate +​ 2.5% IP1-d2 conjugate 
(Cisbio Bioassays, Codolet, France)) was also added. The 384-well plate was incubated for 1 h at RT in dark before 
being measured on an EnVision plate reader (PerkinElmer, Waltham, MA, USA). Upon excitation at 340 nm, 
emission at 615 nm and 665 nm was measured, and the FRET ratio (665 nm/615 nm) was converted to IP1 con-
centrations by interpolating values from an IP1 standard curve generated from a provided IP1 calibrator (Cisbio 
Bioassays, Codolet, France). When testing allosteric modulators, cells were pre-incubated for 30 min at 37 °C 
with 50 μ​l/well of ligand buffer supplemented with allosteric modulator and a final concentration of 1% DMSO. 
Afterwards, the buffer solution was removed and 50 μ​l/well of agonist solution in ligand buffer supplemented with 
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allosteric modulator and a final concentration of 1% DMSO was added. Plates were incubated for 30 min at 37 °C 
followed by one wash in 100 μ​l/well of assay buffer. Cell lysis and detection was performed as described above.

TR-FRET dimerization assay.  Dimerization of a HA-tagged receptor construct and a myc-tagged receptor 
construct was assessed by a TR-FRET-based assay as previously described44. In brief, cells were washed once in 
100 μ​l/well of 4 °C assay buffer (HBSS, 20 mM HEPES, 0.5 mM CaCl2, 0.5 mM MgCl2, 5 mg/mL bovine serum 
albumin, pH 7.4) before addition of the fluorophore-conjugated antibodies. Tb3+ conjugated anti-HA antibody 
(Cisbio Bioassays, Codolet, France) was used as the donor fluorophore and was diluted in 4 °C assay buffer to 
a final concentration of 1 nM, while d2 conjugated anti-myc antibody (Cisbio Bioassays, Codolet, France) was 
used as the acceptor fluorophore and was diluted in 4 °C assay buffer to a final concentration of 50 nM. 25 μ​l/well 
of each fluorophore was added to the plate, which was incubated for 24 h at 4 °C. Cells were washed four times 
with 100 μ​l/well of 4 °C assay buffer before being measured on an EnVision plate reader (PerkinElmer, Waltham, 
MA, USA). Upon excitation at 340 nm, emission at 615 nm and 665 nm were measured, and the FRET ratio 
(665 nm/615 nm) was calculated for each condition and normalized to the FRET ratio of pEGFPN1.

Data analysis.  Data were analyzed using GraphPad Prism version 6 (GraphPad Software, San Diego, CA) 
and normalized as indicated in figure legends.
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