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Molecular simulations have provided valuable insight into the microscopic mechanisms
underlying homogeneous ice nucleation. While empirical models have been used
extensively to study this phenomenon, simulations based on first-principles calculations
have so far proven prohibitively expensive. Here, we circumvent this difficulty by using
an efficient machine-learning model trained on density-functional theory energies and
forces. We compute nucleation rates at atmospheric pressure, over a broad range of
supercoolings, using the seeding technique and systems of up to hundreds of thousands
of atoms simulated with ab initio accuracy. The key quantity provided by the seeding
technique is the size of the critical cluster (i.e., a size such that the cluster has equal
probabilities of growing or melting at the given supersaturation), which is used together
with the equations of classical nucleation theory to compute nucleation rates. We find
that nucleation rates for our model at moderate supercoolings are in good agreement
with experimental measurements within the error of our calculation. We also study the
impact of properties such as the thermodynamic driving force, interfacial free energy,
and stacking disorder on the calculated rates.
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Ice crystallization from supercooled liquid water is one of the most emblematic phase
transformations to be found in nature. It is of key importance in the regulation of
our planet’s climate (1) and in many applications, such as artificial cloud seeding,
cryopreservation, and food processing. Molecular simulations have proven an invaluable
tool to obtain insight into molecular-level details of this process and to make predictions at
conditions not readily accessible to experiments. For instance, Lupi et al. (2) considered the
effect of stacking disorder (i.e., the presence of alternate layers of hexagonal and cubic ice)
on the nucleation rates, and Sanz et al. (3) used systems of more than 100,000 molecules
in order to compute nucleation rates at low supercoolings.

However, simulations of ice nucleation carried out so far have employed relatively
simple empirical models, such as the coarse-grained monoatomic model of water mW (4)
or the four-site rigid TIP4P water models (5). A different route to study this phenomenon
is using ab initio molecular dynamics (MD) (6). In this technique, the forces acting on the
atomic nuclei are derived from electronic structure calculations. At variance with empirical
models, the ab initio potential energy surface does not rely on empirical information,
captures complex bonding behavior between atoms, and describes the formation and
breaking of chemical bonds. The solution of the many-body electronic Schrödinger
equation is, in general, not tractable, and a widely used approximation in this context
is Kohn–Sham density-functional theory (7) (DFT). The application of ab initio MD,
however, has been limited for several decades to the simulation of relatively small systems
(∼1,000 atoms) and short times (∼100 ps) due to its high computational cost. This
limitation has precluded the study of ice nucleation from first principles.

A solution to this conundrum has been the use of machine-learning algorithms that are
able to learn the energies and forces derived from DFT data (8). The machine-learning
interatomic models constructed in this fashion reproduce the ab initio potential energy
surface with high fidelity, are several orders of magnitude faster than DFT, and also show
linear scaling with the number of nuclei. Such models have recently been applied to the
study of crystal nucleation in silicon (9) and gallium (10). Previous simulations using first-
principles models, however, explored only relatively large supercoolings, for which systems
of a few thousand atoms are able to contain the required crystalline cluster.

Here, we compute ice-nucleation rates using an ab initio machine-learning model
of water. We employ the seeding technique (3) and systems of up to 300,000 atoms
in order to obtain nucleation rates in a broad range of supercoolings. Our results
allow us to compare predictions from a model derived from first principles with direct
experimental measurements of nucleation rates. Although we only simulate explicitly
clusters of hexagonal ice, we take into account the effect of stacking disorder using a model
for the chemical potential of ice with stacking disorder.

Significance

Until recently, simulating ice
nucleation with quantum
accuracy was deemed impossible
due to the prohibitive
computational cost of
quantum-mechanical calculations.
Recent progress enabled by
machine learning has made these
calculations tractable and thus
greatly extended the field of
application of molecular dynamics
based on ab initio
quantum-mechanical theory. We
apply these advances to predict
the rate of formation of ice nuclei
in supercooled water and to study
other quantities relevant to
nucleation without relying on
empirical force fields, albeit
invoking the organizing
framework of classical nucleation
theory. This work is a step toward
modeling nucleation processes in
more realistic environments and
at conditions in which chemical
reactions play an important role.

Author affiliations: aDepartment of Chemistry, Princeton
University, Princeton, NJ 08544; bDepartment of Chemical
and Biological Engineering, Princeton University, Prince-
ton, NJ 08544; and cDepartment of Physics, Princeton
University, Princeton, NJ 08544

Author contributions: P.M.P., J.W., A.Z.P., P.G.D., and R.C.
designed research; P.M.P. and J.W. performed research;
P.M.P., J.W., A.Z.P., P.G.D., and R.C. analyzed data; and
P.M.P., J.W., A.Z.P., P.G.D., and R.C. wrote the paper.

Reviewers: A.M., University of Cambridge; and V.M., The
University of Utah.

The authors declare no competing interest.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
ppiaggi@princeton.edu or rcar@princeton.edu.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2207294119/-/DCSupplemental.

Published August 8, 2022.

PNAS 2022 Vol. 119 No. 33 e2207294119 https://doi.org/10.1073/pnas.2207294119 1 of 10

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2207294119&domain=pdf&date_stamp=2022-08-06
http://orcid.org/0000-0003-0225-0081
http://orcid.org/0000-0002-8152-6615
http://orcid.org/0000-0003-1881-1728
http://orcid.org/0000-0001-5243-2647
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ppiaggi@princeton.edu
mailto:rcar@princeton.edu.
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://doi.org/10.1073/pnas.2207294119


During homogeneous ice nucleation, an ice cluster is formed
within bulk liquid water. Typically, this phenomenon takes place
below the melting temperature, and, thus, there is a driving
force for the formation of ice. However, the formation of an
ice cluster in the liquid creates a liquid–solid interface with an
associated energetic penalty. The competition between a favorable
bulk term and an unfavorable surface term leads to a free-energy
barrier that the system must surmount in order to proceed with
the transformation. The existence of a free-energy barrier makes
nucleation a rare event and severely hinders the ability to study the
phenomenon directly by using molecular simulations. Although
there have been attempts to study ice nucleation by using straight-
forward molecular simulations (11), in general, the problem must
be tackled by using more sophisticated techniques.

A possible route to study ice nucleation on the computer is
rare-event techniques, such as path sampling (2, 12), forward-flux
sampling (13, 14), or metadynamics (15, 16). These approaches
can provide valuable insights into the nucleation mechanism,
albeit at a high computational cost. A simpler alternative is the
seeding technique (3), which is based on performing a series of
relatively short simulations at different temperatures, starting from
a configuration that contains an ice cluster embedded in liquid
water. The aim of these simulations is to find the temperature T ∗,
for which the chosen cluster is critical—that is, to say, at T ∗,
the cluster has equal probabilities of growing and thawing. This
information is then used in combination with the equations of
classical nucleation theory (CNT) (17) to calculate the nucleation
rate. This approach has several potential pitfalls that can affect
the calculated rates, such as the appropriate choice of an order
parameter to calculate the cluster size, and the applicability of
CNT to the nucleation process under study. These limitations
have been carefully considered in the literature (18), and the
seeding technique has been shown to provide nucleation rates in
good agreement with other methods (19, 20).

Another crucial ingredient in the simulation of ice nucleation is
an accurate description of the interatomic interactions. Here, we
derive the forces between nuclei from first-principles calculations.
In particular, we use DFT adopting the Strongly Constrained and
Appropriately Normed (SCAN) (21) exchange and correlation
functional. SCAN is arguably one of the best semilocal functionals
available, and many properties of ice and water have been studied
using this functional—e.g., in refs. 22 and 23. Driving the dynam-
ics directly using DFT forces would be unduly costly, and, instead,
we use a machine-learning model trained on DFT data. The
model is based on deep neural networks and was constructed by
using the deep potential methodology developed by Zhang et al.
(24). Below, we refer to this model as SCAN-ML (i.e., SCAN-
trained, machine-learning-based model). The SCAN-ML model
was carefully trained to reproduce data over a vast region of the
phase diagram of water (25). SCAN-ML has been used to provide
evidence of the existence of a liquid–liquid transition at deeply su-
percooled conditions (26) and to study the ice Ih–ice XI transition
(27). The thermodynamic properties of this model relevant to ice
nucleation were thoroughly characterized in ref. 23. The model
has a melting temperature of 312 K, around 40 K larger than the
experimental value. The density change upon melting is 6% in
the model, somewhat smaller than the 9% found in experiments.
Another important property is the relative stability between ice Ih
and ice Ic, which are the two competing polymorphs during ice
nucleation at ambient pressure. The SCAN-ML model correctly
predicts that ice Ih is more stable than ice Ic, in agreement with
experiments. Ref. 23 also analyzed the ability of the SCAN-ML
model to reproduce SCAN energies in configurations that contain
atomic environments compatible with both liquid water and ice

Table 1. Melting temperature (Tm), densities of ice Ih
and liquid water at coexistence (ρice and ρl), and
enthalpy of fusion (ΔHf ) of SCAN-ML, experimental
water, and the empirical models TIP4P/Ice and mW

Tm (K) ρice (g/cm3) ρl (g/cm3) ΔHf (kJ/mol)
SCAN-ML (23) 312(1) 0.949(1) 1.002(3) 7.6(1)
Experiment 273.15 0.917 0.999 6.01
TIP4P/Ice (5) 270 0.906 0.985 5.40
mW (28, 29) 273 0.978 1.001 5.3

and found that the model is a faithful representation of SCAN
with deviations of less than 1.3 meV per H2O molecule. We
provide in Table 1 a summary of the properties of the SCAN-ML
model, and we compare them with experimental data and results
using the empirical water models TIP4P/Ice and mW.

Before describing the results of our simulations, we briefly dis-
cuss the advantages of SCAN-ML over empirical models. SCAN-
ML is an all-atom, fully flexible model at variance with empirical
potentials such as mW, which is a coarse-grained model, and
TIP4P/Ice, which is an all-atom rigid model. Since SCAN-ML
reproduces the DFT potential energy surface, the flexibility of the
OH bonds depends on the environments, while in flexible empir-
ical models, such as TIP4P/2005f (30), the flexibility of the bonds
is modeled by using simple functional forms and a few parameters
that do not depend on the environment. Another property that
depends on the environment is the dipole moment of the water
molecule. For instance, the dipole moment is different in liquid
water and ice (22), but can also exhibit more subtle changes with
the environment (31, 32). SCAN-ML is polarizable and able
to capture the effects connected to changes in dipole moment
(27, 32). SCAN-ML is also fully reactive and can describe the
proton-transfer process in water. This model captures many-body
interactions beyond two- and three-body, while mW is limited
to three-body interactions, and TIP4P/Ice is based only on two-
body interactions. SCAN-ML and TIP4P/Ice can both describe
an important feature of ice Ih—namely, proton disorder, which is
absent in the coarse-grained mW due to the lack of protons.

Our simulations based on SCAN-ML also have several lim-
itations. While the electronic degrees of freedom are treated
quantum-mechanically, the dynamics of the nuclei are based on
the equations of motion of classical mechanics. Therefore, we
ignore nuclear quantum effects (NQEs) that could be modeled
by using path-integral MD. Another disadvantage is that SCAN-
ML is around 1 to 2 orders of magnitude more computationally
expensive than empirical models. Also, the properties of SCAN-
ML differ somewhat from experimental properties, and this shows
the limitations of the SCAN functional in the description of water
and ice. Lastly, the model is short-ranged, with an interaction
cutoff of 6 Å. It thus cannot capture the long-range electrostatic
interactions (present, for instance, in TIP4P models) or van der
Waals forces beyond this range. Long-range electrostatic interac-
tions could be modeled by using the recently introduced deep
potential long-range scheme (33).

We now turn to discuss the results of the seeding simula-
tions. We studied ice Ih clusters of around 200; 700; and 4,500
molecules embedded in liquid water, and the corresponding total
number of water molecules in the simulation boxes were around
4,000; 12,000; and 100,000, respectively. The choice of system
size is discussed in detail in SI Appendix. The initial, equilibrated
configurations of such ice clusters are shown in Fig. 1 A–C. We
refer the reader to Materials and Methods for information about
the equilibration procedure. The clusters are nearly spherical,
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Fig. 1. Ice Ih clusters employed in the seeding simulations. A–C show snapshots of the equilibrated cluster configurations, in which only oxygen atoms are
shown. Atoms with ice Ih-like environments (34, 35) are shown in orange, and atoms with liquid-like environments are shown in gray. D shows the supercooling
for which each of the clusters is critical in the SCAN-ML model. The curve labeled fit-linear γ is based on the CNT formula N∗ = (32πγ3)/(3ρ2

ice|Δμ|3) and uses
the linear fit to γ (see Fig. 3A). Results from ref. 36 for empirical models mW and TIP4P/Ice are also shown. E, F, and G show the quantum-mechanical average
dipole moment of the water molecule as a function of the distance from the center of the ice clusters. Hyperbolic tangent functions were fit to the data and are
shown in solid blue lines. Reference values for bulk ice Ih and liquid water were calculated at the equilibration temperatures (240 K, 275 K, and 290 K) and are
shown with dashed orange and gray lines. The reference value for the liquid at 240 K is not provided due to the very long relaxation times at this temperature.

an observation that will be important when CNT is used to
calculate several physical properties (see below). Some faceting
of the clusters can be observed, and the hexagonal shape of the
clusters is compatible with the sixfold symmetry of the basal plane
of ice Ih.

MD simulations were performed at different temperatures,
starting from the equilibrated configurations. The change in clus-
ter size as a function of time is shown in SI Appendix, Fig. S1 for
the three cluster sizes at different temperatures. From these simu-
lations, we identified the temperatures T ∗ at which these clusters
have equal probabilities of growing and thawing. In Fig. 1D, we
show T ∗ for the three cluster sizes studied here with the SCAN-
ML model. In order to determine the cluster size N ∗, we must
choose a local order parameter. The results depend somewhat on
this choice (18), and, here, we employ a criterion similar to the
one used by Espinosa et al. (19) in order to compare our results
with the data reported therein (see Materials and Methods for
details about our criterion to identify ice-like molecules). We also
include in Fig. 1D the comparison with the results of Espinosa
et al. (36) for two widely used empirical models—namely, mW
and TIP4P/Ice. The results show that the critical cluster sizes
are fairly independent of the model. At the highest supercooling
studied here, around 50 K, the dynamics of liquid water are very
slow, and thermal equilibration might not have been reached (see
SI Appendix for a detailed discussion on the relaxation times of
liquid water in the SCAN-ML model).

In order to illustrate the ability of SCAN-ML to capture
subtle quantum-mechanical polarization effects, we calculated the

average dipole moment of the water molecule as a function of
the distance from the center of the ice Ih clusters. The quantum-
mechanical molecular dipole moment was computed according
to the modern theory of polarization (37, 38), adopting the
formulation in terms of Wannier centers (39). The dependence of
the Wannier centers on the coordinates of the atoms in the system
was described by a deep neural network, as described in refs. 31
and 32 (see SI Appendix for further details of the calculation).The
results are shown in Fig. 1 E–G. The average dipole moment
changes from around 3.25 D in the ice Ih cluster to around
3.1 D in the liquid water surrounding the cluster. We also show
in Fig. 1 E–G the reference values for bulk ice Ih and liquid
water (dashed lines), and the agreement with the dipoles in the
cluster configurations is very good. There is also good agreement
between the bulk dipole moments calculated here and reference
values obtained with SCAN DFT (22). The experimental dipole
moment of liquid water at 298 K is 2.9 ± 0.6 D and is reproduced
relatively well by SCAN (22). We note that the average dipole
moment of the water molecule is a function of the temperature.
Since each cluster has been equilibrated at a different temperature,
the reference bulk values differ in Fig. 1 E–G. Furthermore, in the
configurations with the ice cluster embedded in liquid water, the
average dipole moment transitions smoothly from the bulk ice
Ih value to the bulk liquid value, and the water molecules at
the interface have, on average, intermediate values of the dipole
moment.

We now turn to assess the performance of the SCAN-ML
model to describe ice nucleation. We calculate nucleation rates by
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combining the information obtained from the seeding simulations
with CNT. The predictions of CNT rest on various assumptions
(17)—for instance, CNT assumes that clusters are spherical and
show bulk ice Ih properties. Within CNT, the nucleation rate
(nuclei per unit time per unit volume) is,

J = ρlZf exp(−βΔG∗), [1]

where ρl is the density of the liquid; Z is the Zeldovich factor,
which represents the probability of a critical cluster to cross the
energy barrier; f is the attachment rate; β = 1/(kBT ); T is the
temperature; and kB is the Boltzmann constant. The nucleation
free-energy barrier, ΔG∗, can be calculated by using the CNT
formula,

ΔG∗ =
|Δμ|N ∗

2
, [2]

where Δμ is the difference in chemical potential between liquid
water and ice Ih, and N ∗ is the number of water molecules in the
critical cluster. Eq. 2 provides a convenient way to calculate rates
from N ∗ and T ∗ obtained in the seeding simulations. ρl and Δμ
of the SCAN-ML model were calculated in ref. 23, and further
details about the determination of N ∗, Z , f , ρl , and Δμ can be
found in Materials and Methods and SI Appendix.

The nucleation rates thus calculated are shown in Fig. 2, to-
gether with results of experiments (40–46) and simulations using
empirical models mW (36) and TIP4P/Ice (14, 16, 36). Most ex-
periments are performed on micrometer-sized droplets and yield
nucleation rates in the supercooling range 35 to 40 K (41, 42).
However, experiments in the last 10 y have also used nano-sized
droplets to reach much deeper supercoolings (40, 43). We have
not included in our plot the experimental results of Laksmono
et al. (49) since there are discrepancies between their rates and
most measurements. Furthermore, it has been argued that more
than one nucleus could have formed in those experiments (50).
We have included in Fig. 2 a horizontal line representing the
experimental homogeneous nucleation limit—i.e., the rate at
which a micrometer-sized droplet freezes in 1 s (19). We note

Fig. 2. Ice nucleation rates as a function of supercooling. Rates of the SCAN-
ML model calculated in this work are compared with experimental data (40–
46) and results from other works obtained using the models TIP4P/Ice (14,
16, 36) and mW (13, 36, 47, 48). We refer the reader to SI Appendix, Fig. S12 for
further details about the computational techniques used to compute the rates
of empirical models. The solid green line labeled SCAN-ML linear γ was ob-
tained by using the CNT Eq. 1 and a linear fit to the interfacial free-energy data
presented in Fig. 3. The green shaded area is an estimate of the error in this
calculation. The experimental homogeneous nucleation limit (19) is shown as
a horizontal gray dashed line and corresponds to log10 (J)(m−3 · s−1) = 14.
The calculation of error bars is described in SI Appendix.

that there are significant differences between the nucleation rates
calculated from simulations using different methods. For instance,
in the case of TIP4P/Ice, estimates from forward-flux sampling
(14), metadynamics (16), and seeding (36) span about 10 orders
of magnitude, which is, however, the typical error bar of the
seeding technique. Nucleation rates of the SCAN-ML model are
in good agreement with experimental measurements within the
uncertainty of our calculation. Furthermore, the rates of SCAN-
ML are intermediate between those of mW and TIP4P/Ice.
Therefore, the performance of SCAN-ML is similar to that of
the best available semiempirical models. As we shall see later, the
inclusion of stacking disorder makes rates faster and reduces to
some extent the discrepancy with experiment.

Another quantity that can be easily obtained from the seeding
simulations is the interfacial free energy averaged over all orienta-
tions γ̄. For this purpose, we employ the CNT expression,

γ̄ =

(
3N ∗

32π

)1/3

ρ
2/3
ice |Δμ|, [3]

where the symbols have the same meaning as in Eq. 1 and Eq. 2,
and ρice is the density of ice Ih. The results of this calculation
are shown in Fig. 3A. Data for the mW and TIP4P/Ice models
obtained from seeding simulations (36) are also shown. The
dependence of γ̄ on supercooling is a consequence of two different
factors. The first is that the interfacial free energy of a flat interface
depends on the temperature, and the second is that each cluster
has a different size, and this will affect γ̄, as shown by the Tolman
equation (17).

In order to validate the results obtained using seeding simula-
tions, we also calculated the interfacial free energy γ at coexistence
for flat interfaces using advanced sampling simulations. For this
purpose, we computed γ for the most relevant interfaces in ice
Ih—namely, the prismatic (11̄00), secondary prismatic (112̄0),
and basal (0001) planes. The method to compute γ for flat inter-
faces at coexistence is based on the reversible interconversion of the
liquid and the respective liquid–ice Ih interface. This is achieved
by a suitably designed bias potential that increases the probability
of observing the high free-energy interfacial configuration. A
schematic of the interface sampled during the simulation of the
secondary prismatic plane is shown in Fig. 3B. Further details of
this approach and its validation can be found in Materials and
Methods. We also computed the interfacial free energy averaged
over all orientations (γ̄) as the mean of the three studied interfaces
(19). The results of the free-energy calculations are summarized in
Table 2, and γ̄ is shown in Fig. 3A. As seen in this figure, the
agreement between γ̄ obtained from advanced sampling calcula-
tions and seeding is very good. For reference, we show in Table 2
results for the models mW and TIP4P/Ice, as reported in ref. 52.

We have also included in Fig. 3A and in Table 2 experimental
results for γ̄ at the melting temperature (53). There is no direct ex-
perimental measurement of γ̄ at other temperatures, and estimates
based on CNT differ significantly (53). For this reason, we have
not included them in our analysis. The spread of the experimental
results at the melting temperature is relatively large (∼20 mJ/m2)
and has a mean value ∼31.5 mJ/m2 after removing outliers. It
has also been argued (19, 53) that the experiments of Hardy (51)
based on the shape of the grain-boundary groove provide the most
reliable estimate, with a value of 29.1± 0.8 mJ/m2. γ̄ for SCAN-
ML is well within the region of uncertainty of the experimental
measurements. However, the interfacial free energy of SCAN-ML
is higher than the average experimental estimate. This behavior
can be rationalized by taking into account that SCAN-ML has a
melting temperature and enthalpy of fusion higher than both the
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B
A

Fig. 3. Liquid water–ice Ih interfacial free energy. (A) Interfacial free energy as a function of supercooling. Results for SCAN-ML at supercooling different from
zero were obtained by using data from the seeding simulations and assuming the validity of CNT. We have included data from refs. 36 and 52 for the models
mW and TIP4P/Ice and experimental measurements at the melting temperature (53). Linear fits to the results of the different models are shown as solid lines.
The distribution of the experimental data is shown in red using a violin plot. The calculation of error bars is described in SI Appendix. (B) Planar interface between
liquid water and the secondary prismatic plane of ice Ih. This configuration was extracted from an advanced sampling simulation at 312 K driven by SCAN-ML,
during which the interface reversibly forms and melts.

corresponding numbers for real water (experiments) and TIP4P/
Ice. Turnbull (54) observed that there is a strong correlation
between the interfacial free energy and the enthalpy of fusion,
and Laird (55) has made a similar observation for the correlation
between the interfacial free energy and the melting temperature.
It is thus expected that the interfacial free energy of SCAN-
ML should be higher than in the experiment and in TIP4P/Ice
[melting temperature ∼270 K (5)]. In SI Appendix, Fig. S4, we
show that, indeed, the interfacial free energy correlates very well
with the melting temperature in the TIP4P family and SCAN-
ML. An option to account for the different melting tempera-
tures of the models is to compare γ̄ using units of kBT for
the energy. A plot of γ̄ in units of kBT/m2 vs. supercool-
ing is shown in SI Appendix, Fig. S11. One could also estimate
the value of γ̄ in mJ/m2 that SCAN-ML would have if its
melting temperature were the experimental one. An appropriate
rescaling of γ̄ is γ̄′ = γ̄ T exp

m /T SCAN−ML
m , where T exp

m and
T SCAN−ML

m are the melting temperatures in the experiment
and SCAN-ML, respectively. In this way, we obtain a interfacial
free energy for SCAN-ML of γ̄′ = 31.5 mJ/m2 at the melting
temperature.

We now turn to analyze the thermodynamic properties of the
models that affect nucleation rates by assuming the validity of
CNT. The nucleation barrier ΔG∗ controls nucleation rates at
low and moderate supercoolings since it is exponentiated in Eq. 1.
The CNT expression for ΔG∗ is,

Table 2. Interfacial free energy of ice Ih with liquid
water at coexistence

Interfacial free energy (mJ/m2)
γ(11̄00) γ(112̄0) γ(0001) γ̄

SCAN-ML 36(2) 34(2) 37(2) 36(2)
Experiment (51) — — — 29.1(8)
Experiment (avg.) — — — ∼31.5
TIP4P/Ice (52) 31.6(8) 30.7(8) 27.2(8) 29.8(8)
mW (52) 35.1(8) 35.2(8) 34.5(8) 34.9(8)

We report results for the prismatic (11̄00), secondary prismatic (112̄0), and basal (0001)
planes. The interfacial free energy averaged over all orientations γ̄ is also reported. We
have included experimental results (51, 53) (see text for details) and calculations using the
mW and TIP4P/Ice models (52).

ΔG∗ =
16πγ̄3

3ρ2ice|Δμ|2 . [4]

Therefore, the central physical quantities that govern nucleation
rates at low and intermediate supercoolings are 1) the difference
in chemical potential between liquid water and ice Ih (Δμ), 2)
the interfacial free energy of ice Ih with liquid water (γ̄), and 3)
the density of ice (ρice ). In the next paragraphs, we analyze these
quantities for SCAN-ML, TIP4P/Ice, and mW.

In Fig. 4A, we show the difference between |Δμ| in different
models and in the experiment |Δμexp| as a function of supercool-
ing. |Δμexp| cannot be measured directly, and its calculation from
experimentally measured heat capacities of liquid water and ice
Ih (56) is described in SI Appendix. |Δμ| − |Δμexp| is reported
in units of kBT in Fig. 4A in order to compare models with
different melting temperatures. At 35 K of supercooling, |Δμ|
is underestimated by 9% in SCAN-ML. The performance of
SCAN-ML in describing this property is somewhat better than
that of TIP4P/Ice, which underestimates Δμ by 17% at the same
supercooling. The mW model is the most accurate among the
models considered here, with |Δμ| at 35 K within 1% of the
experimental value. However, mW changes from a underestima-
tion of |Δμ| at low supercoolings to an overestimation at large
supercoolings. This is a consequence of a much weaker deviation
of Δμ from a linear dependence with temperature than the other
models (SI Appendix, Fig. S8).

Results for the interfacial free energy are presented in Fig. 3A.
There is limited experimental information to ascertain the devi-
ation of the interfacial free energy with respect to experiments.
However, the values of γ̄ for TIP4P/Ice and SCAN-ML (adjusted
for the different melting temperature) are in relatively good agree-
ment with most experimental results and most likely within a 5%
error. Instead, γ̄ in the mW model is around 35 mJ/m2, which
is higher than the most reliable experimental estimates of γ̄ and
is most likely overestimated by around 10%. It is also possible to
characterize the temperature dependence of γ̄ using the interfacial
entropy, Sγ =−∂γ̄/∂T , that can be estimated from the slope of
γ̄, with respect to temperature in Fig. 3A. We observe that mW has
a lower slope ∂γ̄/∂T than SCAN-ML and TIP4P/Ice, and that
the latter two models have a similar slope. This indicates that the
interfacial entropy of the coarse-grained mW model is higher than

PNAS 2022 Vol. 119 No. 33 e2207294119 https://doi.org/10.1073/pnas.2207294119 5 of 10

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207294119/-/DCSupplemental
https://doi.org/10.1073/pnas.2207294119


A

B

Fig. 4. Analysis of the influence of supersaturation on nucleation barriers.
(A) Difference between the driving force for nucleation in computer models
|Δμ| and in the experiment |Δμexp| as a function of supercooling. |Δμ| for
the mW and TIP4P/Ice models was obtained from ref. 19. The calculation
of |Δμexp| is based on experimental heat capacities (56). Above 38 K of
supercooling results are shown as dashed lines to highlight the uncertainty
in |Δμexp| due to the lack of experimental measurements of the heat capacity
of liquid water at these conditions. See SI Appendix for further details on the
calculation of |Δμ|. (B) Nucleation barrier ΔG∗ calculated using CNT (Eq. 4—
see text for details). Results from umbrella sampling and metadynamics free
energy calculations (FEC) reported in refs. 16, 29, and 57 are also shown.

in the TIP4P/Ice and SCAN-ML all-atom models that include
protons explicitly. Following ref. 28, the interfacial entropy can
also be calculated by using,

Sγ ≈− γ̄(Tm)ΔCp(Tm)

ΔHf
, [5]

where ΔHf is the enthalpy of fusion, and ΔCp(Tm) is the
difference in heat capacity between liquid water and ice Ih at
the melting temperature Tm . Using the values of ΔHf and γ̄,
reported in Tables 1 and 2, and ΔCp(Tm) = 49 J/(mol ·K) (23),
we obtain Sγ ≈−232 μJ ·m−2 ·K−1 for SCAN-ML. This result
is in good agreement with Sγ calculated from experimental data
(−215 μJ ·m−2 ·K−1) (28). A similar analysis for TIP4P/Ice
gives Sγ ≈−226 μJ ·m−2 ·K−1, also in good agreement with
the experiment. The mW model has a Sγ of −44 μJ ·m−2 ·K−1

(28) that is around a fifth of the experimental value. These results
are in agreement with the discussion above based on the slopes of
the lines in Fig. 3A. From this discussion, we deduce that an all-
atom description seems essential to capture γ̄ and its temperature
dependence.

The density of ice Ih in the different models considered here
is shown in Table 1 and in SI Appendix, Fig. S8 (data from refs.
29, 36, and 58). The density of SCAN-ML ice Ih is around 3%
higher than in the experiment, and, according to Eq. 4, this would
partially compensate the somewhat low |Δμ| in this model. For
TIP4P/Ice, the density of ice Ih is around 1% lower than in the
experiment, and we expect it to have a negligible effect compared
to other errors. Finally, the mW model overestimates the density
of ice Ih with respect to experiment by ∼7%, and this might
compensate in part for a large γ̄.

We then computed the nucleation free-energy barriers using
Eq. 4, the values forΔμ and ρice reported in SI Appendix, Fig. S8,
and the linear fits to γ̄ shown in Fig. 3A. The results are shown
in Fig. 4B. We have included barriers from refs. 16, 29, and 57
obtained by using umbrella sampling and metadynamics free-
energy calculations. For SCAN-ML, we expect that the barrier

should be overestimated since |Δμ| is underestimated. This is
compatible with the nucleation rates being somewhat slower than
the experiment (Fig. 2). In the TIP4P/Ice water model, |Δμ|
is underestimated more than in SCAN-ML, and, therefore, we
would expect an overestimation of the nucleation barrier and
nucleation rates slower than in the experiment. At variance with
this prediction, the seeding nucleation rates (36) of TIP4P/Ice
seem to agree relatively well with the experiments. The rates
calculated by Niu et al. (16) and Haji-Akbari and Debenedetti
(14) for TIP4P/Ice, however, are slower than the experimental
measurements. In the case of the mW water model, Δμ is in
very good agreement with the experiment. For this reason, we
surmise that the slow nucleation rates in this model can be traced
back to an overestimation of γ̄ not fully compensated by the
overestimation of ρice.

Another important aspect of ice nucleation is stacking disorder.
There is significant experimental (59) and computational (2)
evidence that nucleating ice clusters contain stacking faults—i.e.,
alternating layers of ice Ih and ice Ic—and the solid polymorph
that exhibits this feature is called ice Isd (60). The prevalence of
stacking faults in ice at equilibrium depends on two thermody-
namic properties—namely, the difference in chemical potential
between ice Ih and ice Ic, ΔμIh→Ic , and the interfacial free
energy between these two polymorphs, γIh→Ic . The experimental
evidence on the value of ΔμIh→Ic is limited due to the difficulty
in obtaining pure ice Ic, although very recently, it has become
possible to prepare samples with high structural purity (61). The
available experimental data put ΔμIh→Ic in the range from 0 to
∼200 J/mol (see ref. 62 for a review). An alternative point of view
is provided by Lupi et al. (2), who argue that the experimental
results reported in ref. 63 put an upper limit to ΔμIh→Ic at
16.5± 1.7 J/mol. On the computational side, the TIP4P/Ice
and mW models have very small values of ΔμIh→Ic of ∼0 (64)
and ∼5 J/mol (29, 65), respectively. In ref. 23, we have found a
ΔμIh→Ic for the SCAN-ML model of 65± 37 J/mol. As we shall
see, the precise value of ΔμIh→Ic has an influence on rates, and
further experimental and computational efforts are needed to shed
light on its value.

We described the effect of stacking disorder using a model
for the chemical potential of ice Isd that rests on the following
assumptions: 1) The entropy of mixing of ice Ic and ice Ih
layers is ideal; 2) the interfacial free energy is negligible: and
3) stacking is only relevant in one direction—namely, the direc-
tion perpendicular to the basal plane of ice Ih. It can be shown
that the first two assumptions give a lower bound for the chemical
potential of ice Isd. Since the effect of stacking disorder is more
relevant when the chemical potential of ice Isd is lower, then our
model gives an upper bound for the possible effects of stacking
disorder. A more sophisticated two-dimensional model has been
used by Lupi et al. (2), and it was found that the simplified one-
dimensional model underestimates the entropic stabilization due
to stacking disorder. We also note that a similar model has been
used by Pronk and Frenkel (66). Further details can be found
in Materials and Methods. In Fig. 5A, we show the difference
in chemical potential between ice Isd and ice Ih, ΔμIsd→Ih , as
a function of supercooling, as obtained from our model. The
model takes as input the difference in chemical potential between
ice Ic and ice Ih, ΔμIh→Ic . We used two different values for
this quantity, one compatible with the free energy of the mW
model, ΔμIh→Ic = 5 J/mol, and another one compatible with
the SCAN-ML model, ΔμIh→Ic = 65 J/mol. In both cases,
ΔμIsd→Ih becomes negligible as the supercooling goes to zero and
the critical cluster size goes to infinity. This reflects the fact that
ice Ih is the most stable phase in the thermodynamic limit. At
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A

B

C

Fig. 5. Influence of stacking disorder on the rates. (A) Difference in chemical potential between ice Isd and ice Ih, ΔμIsd→Ih = μIh − μIsd , as a function of
supercooling. (B) Cubicity as a function of the number of molecules N in a spherical ice cluster. The threshold to distinguish ice Isd from ice Ih is shown with a
dashed gray line and corresponds to a 1% cubicity. (C) Nucleation rates as a function of supercooling. Rates for ice Ih are compared with experimental data and
the results for ice Isd obtained with a model for stacking disorder. The green shaded region corresponds to the error in the rate of ice Ih and was calculated
as described in SI Appendix. Two values are considered for μIc − μIh in Eq. 10, one compatible with mW (5 J/mol) and another one compatible with SCAN-ML
(65 J/mol).

larger supercoolings, the finite size effects start to be important,
and ice Isd becomes progressively more stable against ice Ih.
The magnitude of the stabilization, around 50 J/mol, is small
compared with |Δμ|, even at relatively large supercoolings.

It is also interesting to evaluate how ΔμIh→Ic affects the
cubicity of the nucleating clusters. We evaluated the cubicity as
a function of the size of the cluster, and the results are reported in
Fig. 5B. We found that forΔμIh→Ic = 5 J/mol, the cubicity drops
below 1% for clusters of around 100,000 molecules, in excellent
agreement with findings of Lupi et al. (2) for the mW water model.
Instead, for ΔμIh→Ic = 65 J/mol, the cubicity drops below 1% at
around 2,000 molecules. Therefore, the extent to which stacking
disorder is relevant in small clusters depends largely on ΔμIh→Ic .

ΔμIsd→Ih can be used within CNT to estimate the nucleation
rates of ice Isd. In Fig. 5C, we show the nucleation rates of ice
Isd calculated in this fashion. For clarity, we only show the results
using a low value of ΔμIh→Ic—namely, 5 J/mol, since this gives
the greatest effect for the rates and is easier to visualize. For this
reason, it should be considered an upper bound for the effect,
rather than the most reliable estimate. Despite the systematic
choices we have made to obtain the maximum possible influence
of stacking disorder on the rates, the effect of stacking disorder
is around 2 or 3 orders of magnitude at deep supercoolings.
This relatively small change, however, improves somewhat the
agreement of SCAN-ML with the experiment. We also calculated
nucleation rates using ΔμIh→Ic = 65 J/mol, and the results are
shown in SI Appendix, Fig. S9.

This work shows that the latest advances in ab initio MD allow
studies of complex phenomena such as ice nucleation from first
principles. Our findings indicate that nucleation rates predicted
based on SCAN DFT are in reasonably good agreement with
experiment. The rates are similar to those estimated with the
TIP4P/Ice model and somewhat faster than the rates of the mW
model. The nucleation rate is a complex quantity that depends
on many different properties of an atomistic model, such as the
density of liquid water and ice, the water–ice interfacial free
energy, and the difference in chemical potential between water and
ice. We have performed a careful analysis of these properties, and

we have also compared them to the results of empirical models.
SCAN-ML gives a balanced description of these properties that
results in good agreement between the calculated rates and the
experimental measurements.

We have also highlighted limitations of the SCAN functional
in describing some of the properties of liquid water and ice. More
accurate functional approximations and/or higher-level quantum
chemical data are expected to improve the description of the
properties of water. It has also been shown that the MB-pol model
(67) based on Coupled Cluster CCSD(T) calculations reproduces
experimental properties with high accuracy and is thus an inter-
esting model to study in the future. Furthermore, in this work,
we have neglected NQEs that may have an important impact on
some properties. For instance, the difference in chemical potential
between liquid water and ice is influenced by heat capacities, and
the latter are affected significantly by NQEs (68). Despite their
possible relevance, modeling NQEs through path-integral MD
is still computationally impractical for nucleation simulations
that employ large system sizes, such as the ones considered here.
Understanding the impact of NQEs on ice nucleation is an
interesting direction for future work. Finally, ab initio machine-
learning models of water can be extended to describe a substrate in
order to simulate heterogeneous ice nucleation, a process of direct
relevance to atmospheric science and climate modeling. This
would allow one to include hitherto-neglected phenomena, such
as the effect of pH and the spontaneous hydroxylation of surfaces.
For these reasons, we foresee continued progress in the simulation
of ice nucleation from first principles and the prediction of rates
that are in progressively improved agreement with experiments,
as a result of an accurate description of the thermodynamic and
kinetic properties of water and ice.

Materials and Methods

Molecular Dynamics. Simulations were performed by using LAMMPS (69)
patched with the DeePMD-kit (70). The temperature was kept constant with the
stochastic velocity-rescaling algorithm (71) using a relaxation time of 0.1 ps. A
Parrinello–Rahman-type barostat was used to maintain the pressure at 1 bar,
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and a relaxation time of 1 ps was employed. For the seeding simulations, an
isotropic barostat was used, whereas for the advanced sampling simulations,
only the pressure component in the direction perpendicular to the interface was
controlled. The SCAN-ML model used with the DeePMD-kit was exactly the same
as the one employed in ref. 23. The performance of the implementation that
we used was around 1 ns/d using an optimal number of graphical processing
units (GPUs) for a given system size. The performance with the latest version of
DeePMD-kit would have been faster, at around 10 ns/d.

Seeding Simulations. Configurations for the seeding simulations were con-
structed in the following way. A simulation box with water molecules was pre-
pared, and then a spherical cavity was carved from its center. This region was
later filled with a seed of ice Ih with proton disorder created by using GenIce
(72). This procedure was repeated for three different system sizes. These systems
contained 3,934; 11,872; and 99,404 water molecules, respectively. Afterward,
the energy was minimized to a relative accuracy 10−6, and a 1-ns MD simulation
for equilibration was performed at a temperature below the one for which the
cluster is critical, in order to avoid partial melting of the cluster. The corresponding
temperatures were 240; 275; and 290 K for the smallest, intermediate, and
largest cluster, respectively. After equilibration, MD simulations were run at dif-
ferent temperatures to find T∗. The simulations for the largest system were run on
the Summit supercomputer using 600 Nvidia V100 GPUs. Each of the simulations
would have required∼5 y to be completed in a single GPU. The intermediate and
small system sizes used 100 and 24 GPUs per simulation, respectively.

The size of the clusters was determined by using the local Steinhardt param-
eter Q̄6 proposed by Lechner and Dellago (73). Q̄6 was calculated by using the
Freud (74) Python library (version 2.7.0). The threshold value of Q̄6 that separates
liquid and ice Ih environments was determined for each temperature by using the
criterion that an environment with the threshold value of Q̄6 has equal probabili-
ties of being classified as liquid or ice Ih. Probability densities of Q̄6 for the liquid
and ice Ih at different temperatures are shown in SI Appendix, Fig. S5A. The cho-
sen thresholds as a function of temperature are shown in SI Appendix, Fig. S5B
and show a linear correlation. We used a linear fit to these data to determine
the threshold at any intermediate temperature. All seeding simulations were
analyzed by using a threshold appropriate for the temperature of the simulation.
We note that the overlap of the liquid and ice Ih distributions increase sharply
upon crossing the Widom line. This can be expected, given that below the Widom
line, liquid water resembles the low-density liquid (LDL) water phase and ice Ih

is known to be more similar to LDL than to the high-density liquid. In Fig. 1,
the classification in ice-like and liquid-like environments was performed with the
Polyhedral Template Matching algorithm (34), as implemented in OVITO (35).

The prefactor in the CNT expression for the nucleation rates (Eq. 2) requires the
calculation of the Zeldovich factor Z and the attachment rate f . Z was calculated
using,

Z =

√
|Δμ|

6πkBTN∗ , [6]

and f was calculated using (19),

f =
〈(N(t)− N(0))2〉

2t
, [7]

where N(t) is the cluster size at time t. In practice, we computed f from the slope
of 〈(N(t)− N(0))2〉 vs. 2t. Results for f are shown in SI Appendix, Fig. S7.

Advanced Sampling Simulations. The calculation of the ice Ih–liquid-water in-
terfacial free energy was performed with LAMMPS augmented with the PLUMED
enhanced sampling plugin (75, 76). The initial configuration was made by using
GenIce and consisted of 288 water molecules in the ice Ih structure with proton
disorder. An equilibration of 1 ns at 312 K and 1 bar was then carried out, and
the box dimensions were set to their average values during this run. In order to
obtain simulation boxes adequate for the simulation of the prismatic, secondary
prismatic, and basal interfaces, the box was replicated along one of the three main
axes, and then the solid configuration was melted in a 1-ns run at 450 K, while
only the direction along which the box was replicated was barostated.

Next, we performed an advanced sampling simulation for each interface, in
which a bias potential was constructed using the On-the-fly Probability Enhanced
Sampling (OPES) method (77). This method is an evolution of the well-known

metadynamics technique (15). The OPES bias potential was built as a function of
a collective variable that counts the number of environments compatible with ice
Ih in a region around an arbitrarily chosen atom (for instance, atom number 1).
The number of environments compatible with ice Ih was calculated by using
the environment similarity (78) metric, taking the four tetrahedral reference
environments of ice Ih χi with i = 1, .., 4. As a result of the introduction of the bias
potential, during the biased simulations, a slab of the ice Ih crystal is reversibly
formed and melted. The free-energy difference between the liquid and the slab
was calculated using,

ΔG =−kBT log
(

Z‡

Zl

)
, [8]

where Z‡ and Zl are the partition functions of the slab and the liquid. The
interfacial free energy can then be calculated as,

γ =
|ΔG|

2A
, [9]

with A the cross-section of the interface. Further details are provided in
SI Appendix.

This approach was validated by calculating the interfacial free energy of
TIP4P/Ice that is known from literature (52). The interfacial free energy of
TIP4P/Ice averaged all interfaces was found to be 31(1) mJ/m2 in good agreement
with the estimate from literature 29.8(8) mJ/m2.

Model for Stacking Disorder. Stacking disorder was modeled by using the
following expression for the difference between the chemical potential of ice Isd

and Ih:

μIsd(C, N)− μIh = C(μIc − μIh)−
1
N

TSmix +
1
N

∑
i

γsf Ai, [10]

where C is the cubicity, N is the number of molecules, the index i runs through the
ice Ih–ice Ic interfaces,γsf is the interfacial free energy of the stacking faults, and Ai

is the area of the ith interface. The first term in Eq. 10 is the bulk contribution of ice
Ih and ice Ic. The second term is the contribution from the entropy of mixing of the
stacked layers. We assume that stacking is relevant only in one direction—i.e., the
direction perpendicular to the basal plane of ice Ih. The last term in Eq. 10 takes
into account the penalty to form an ice Ih–ice Ic interface. The second and third
terms go to zero as N →∞, reflecting that stacking disorder is only relevant for
finite systems.

Since the effect of stacking disorder on the rates and chemical potentials is
small, we do the following approximations. First, we neglect the third term in
Eq. 10 that is always positive. Second, we approximate the entropy of mixing with
the ideal entropy of mixing,

Smix ≈−NlkB(C log(C) + (1 − C) log(1 − C)), [11]

where Nl is the number of stacked layers. The ideal entropy of mixing is always
larger than Smix. These choices give a lower bound for μIsd(C, N)− μIh and thus
the greatest possible influence on the rates. We make the additional assumption
that the cluster of N molecules is approximately spherical and calculate Nl using
the expression,

Nl(N) =
D
d
=

(
6N
πρice

)1/3 1
d

, [12]

where D is the diameter of the cluster and d is the distance between layers of
the basal plane. The cubicity and chemical potential in equilibrium are found
by minimizing μIsd(C, N) with respect to C. In order to obtain μIsd(C, N) as a
function of temperature, we replace N with the number of molecules N∗

Isd
(T) in

a critical cluster with stacking disorder at a given temperature T . N∗
Isd
(T) is not

known, but can be approximated by the number of molecules N∗
Ih(T) in a critical

cluster of ice Ih that has been computed by using seeding simulations.
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Data, Materials, and Software Availability. Input and output files of
the simulations reported here and analysis scripts are openly available on
DataSpace (https://doi.org/10.34770/xrd9-3d18) (79), and on PLUMED-NEST,
the public repository of the PLUMED consortium (https://www.plumed-nest.
org/; plumID:22.016) (80). LAMMPS, Plumed, and DeepMD are free and-open
source codes available at https://www.lammps.org/, https://www.plumed.org,
and https://deepmodeling.com/, respectively.
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42. B. Krämer et al., Homogeneous nucleation rates of supercooled water measured in single levitated
microdroplets. J. Chem. Phys. 111, 6521–6527 (1999).

43. A. Manka et al., Freezing water in no-man’s land. Phys. Chem. Chem. Phys. 14, 4505–4516 (2012).
44. B. J. Murray et al., Kinetics of the homogeneous freezing of water. Phys. Chem. Chem. Phys. 12,

10380–10387 (2010).
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