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Abstract: Polypharmacologic human-targeted antimicrobials (polyHAM) are potentially useful
in the treatment of complex human diseases where the microbiome is important (e.g., diabetes,
hypertension). We previously reported a machine-learning approach to identify polyHAM from
FDA-approved human targeted drugs using a heterologous approach (training with peptides and
non-peptide compounds). Here we discover that polyHAM are more likely to be found among
antimicrobials displaying a broad-spectrum antibiotic activity and that topological, but not chemical
features, are most informative to classify this activity. A heterologous machine-learning approach was
trained with broad-spectrum antimicrobials and tested with human metabolites; these metabolites
were labeled as antimicrobials or non-antimicrobials based on a naïve text-mining approach. Human
metabolites are not commonly recognized as antimicrobials yet circulate in the human body where
microbes are found and our heterologous model was able to classify those with antimicrobial activity.
These results provide the basis to develop applications aimed to design human diets that purposely
alter metabolic compounds proportions as a way to control human microbiome.

Keywords: polypharmacological compounds; heterologous machine learning; broad-spectrum
antibiotics; human metabolites

1. Introduction

Drug discovery nowadays involves high-throughput screenings of compounds with or without
knowledge of the molecular target to treat a condition or disease [1–3]; after conducting in vitro and
in vivo experiments (e.g., toxicity and efficiency tests), drugs are ready to be tested on humans. It has
been noted that although the mechanism of action for some drugs is well studied (e.g., inhibitors
of GPCRs [4], protein kinases [5] and penicillin-binding proteins [6]) for many others this is not the
case [7]. In fact, it has been recognized that the pharmacological activity of many FDA-approved drugs
depends on having multiple targets [8]. This situation has led to drug re-purposing (e.g., viagra [9],
aspirin [10]).

In parallel with drug discovery efforts, researchers in biomedicine have discovered the prevalent
role of the gut microbiome in human health [11,12]. For instance, the unsupervised antibiotic
consumption can induce dysbiosis in gut microbiome that has been associated with celiac disease [13,14]
or inflammatory bowel disease [15,16], among others [17].

Considering these two scenarios, polypharmacologic drugs and human microbiome, it has
been argued that some FDA-approved human-targeted drugs (FHD) may act through a secondary
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antimicrobial activity [18]; that is, since the microbiome control different aspects of human health, some
drugs that are acting as their primary target on a human protein may also have an antimicrobial activity
as a secondary activity. To support these observations, a high-throughput drug screening on human
gut microbes was performed using FHD by Maiers and collaborators [19]; 24% of FHD had a secondary
antimicrobial activity. The authors noted that antimetabolites and antipsychotics were enriched in 24%
of antimicrobial FHD, and found few previous reports about the antibacterial activity on a particular
class of antipsychotics. While Maiers and collaborators were concerned about resistance gained by
infectious agents exposed to these polypharmacological compounds, here we focus on a different
aspect not explored before, the use of antimicrobials as a source to identify polypharmacological
compounds. We will focus in this study to polypharmacological compounds that act on human
and on microbial molecular targets, which, from now on, we will refer to as polypharmacologic
Human-targeted AntiMicrobials or polyHAMWe have previously reported that using peptide and
non-peptide antimicrobial compounds (heterologous training set) was an effective method to identify
polyHAM from FDA human-targeted drugs [20]. Here we show that polyHAM are more likely
found among antimicrobials presenting antibiotic activity against multiple bacterial strains than from
antimicrobials acting against a single microbe. Since metabolism is controlled by and controls the
microbiome, we tested this model in identifying human metabolites with antimicrobial activity with
reliable results. Thus, we report features relevant for the activity of polyHAM compounds that are
also found among human metabolites. The implications about these findings in the diagnosis and/or
possible treatment of complex diseases are discussed.

2. Results

We built three different training datasets: anti-infective, anti-gut1 and anti-gut4 (see Methods).
All these sets include the 1181 FDA-approved compounds previously tested by Maier and collaborators
for gut antimicrobial activity; consequently, some compounds will change their classification as
antimicrobial or non-antimicrobials in these groups as shown in Figure 1. Figure 1A shows the 1096
non-antimicrobials annotated in the three groups, while Figure 1B shows 436 antimicrobials annotated
in those same three groups, indicating there are 351 compounds (1532–1181) that are interchanged
between antimicrobials and non-antimicrobials in these three groups. The anti-infective set includes
137 compounds annotated as antimicrobials (see Supplementary File S1) by the Anatomical Therapeutic
Chemical (ATC) classification [21]; the anti-gut1 set includes 398 compounds (see Supplementary File S2)
found to have antimicrobial activity against one or more gut bacterial strains; the anti-gut4 set includes
255 compounds (see Supplementary File S3) with antimicrobial activity against four or more gut bacterial
strains; these 255 compounds are also antimicrobials of the anti-gut1 set. In Supplementary Files S1–S3,
antimicrobials are instances of class 1 and non-antimicrobials of class 0. The anti-infective is the control
group by not including antimicrobial compounds with a known human target so far, while anti-gut1 and
anti-gut4 include multifunctional compounds, that is, antimicrobials with a human target. We expect
that the number of antimicrobials with human targets would increase from anti-gut1 to anti-gut4,
if broad antimicrobial activity would imply acting on multiple targets. Anti-gut1 or anti-infective,
on the other hand, are sets with less broad antimicrobial activity than those found in anti-gut4 set.
These three sets were used along this study to either: (i) identify all publications on PubMed for those
compounds with antimicrobial ontological annotations and, (ii) characterize and classify antimicrobials
from non-antimicrobials using molecular features (see Methods).
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Figure 1. Datasets. The three datasets used throughout this work, including 1181 FDA-approved 
drugs. Anti-infective set (red ovals) includes 137 compounds that had been classified by the ATC as 
anti-infective, anti-gut1 set (blue ovals) includes 398 compounds with antimicrobial activity against 1 
or more gut bacterial strains, anti-gut4 set (green ovals) includes 255 compounds with antimicrobial 
activity against four or more gut bacterial strains; the actual compound names and chemical formulas 
are reported in Supplementary Files S1–S3, respectively. These 3 sets are derived from the same set of 
compounds hence share some overlaps that are presented in Venn diagrams for (A) non-
antimicrobials and (B) antimicrobials. 

2.1. Publications about Antimicrobial Activity for polyHAM 

To identify how many of the compounds with a human target studied by Maier and 
collaborators had previous publications as antimicrobials, we designed a naive text-mining 
procedure to identify publications reporting antimicrobial activity for a chemical compound (see 
Methods). This identification was based on ontological terms associated with broad antimicrobial 
activity (see Table 1); these ontological terms were identified from each PubMed entry in MedLine 
format (see Methods). The proportion of publications including antimicrobial terms is presented in 
Figure 2A–C; this proportion is derived by dividing the number of publications with antimicrobial-
related ontological terms by the total number of publications reported (see Methods) for every FHD 
studied by Maier and collaborators. These results indicate that the broader the antimicrobial activity 
the more frequent antimicrobial publications: the proportion of antimicrobial publications for dataset 

Figure 1. Datasets. The three datasets used throughout this work, including 1181 FDA-approved
drugs. Anti-infective set (red ovals) includes 137 compounds that had been classified by the ATC as
anti-infective, anti-gut1 set (blue ovals) includes 398 compounds with antimicrobial activity against 1
or more gut bacterial strains, anti-gut4 set (green ovals) includes 255 compounds with antimicrobial
activity against four or more gut bacterial strains; the actual compound names and chemical formulas
are reported in Supplementary Files S1–S3, respectively. These 3 sets are derived from the same set of
compounds hence share some overlaps that are presented in Venn diagrams for (A) non-antimicrobials
and (B) antimicrobials.

2.1. Publications about Antimicrobial Activity for polyHAM

To identify how many of the compounds with a human target studied by Maier and collaborators
had previous publications as antimicrobials, we designed a naive text-mining procedure to
identify publications reporting antimicrobial activity for a chemical compound (see Methods).
This identification was based on ontological terms associated with broad antimicrobial activity
(see Table 1); these ontological terms were identified from each PubMed entry in MedLine format (see
Methods). The proportion of publications including antimicrobial terms is presented in Figure 2A–C;
this proportion is derived by dividing the number of publications with antimicrobial-related ontological
terms by the total number of publications reported (see Methods) for every FHD studied by Maier
and collaborators. These results indicate that the broader the antimicrobial activity the more frequent
antimicrobial publications: the proportion of antimicrobial publications for dataset anti-gut4 is larger
than for anti-gut1 as expected (compare the mean values presented by the black line crossing the
boxplots in Figure 2B,C). Although the antimicrobials in the anti-infective set have more publications
with ontological terms related to antimicrobial activity than the other training sets, several compounds
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in the anti-gut4 have more publications with ontological terms related to antimicrobial activity than
those found in the anti-infective set, confirming that anti-gut4 set includes compounds with more
studied antimicrobial activity than the ones included in the anti-infective or anti-gut1 sets, as expected.

Table 1. Antimicrobial ontological terms.

Antifungal agents pharmacology Antifungal agents
administration and dosage

Antifungal agents
administration and dosage

therapeutic use

Antifungal agents chemical
synthesis chemistry

pharmacology

Antifungal agents therapeutic use Drug resistance fungal Fungi drug effects Virus replication drug effects

Antiviral agents therapeutic use Anti-bacterial
agents analysis

Anti-bacterial agents
pharmacology

Anti-bacterial agents
therapeutic use

Drug resistance bacterial Drug-resistance
multiple bacterial

Mycobacterium tuberculosis
drug effects Anti-bacterial agents

Anti-bacterial agents
administration and dosage

adverse effects

Anti-bacterial agents
administration and dosage

pharmacology

Anti-bacterial agents
administration and dosage

therapeutic-use

Anti-bacterial agents
adverse-effects

Anti-bacterial agents chemistry
Anti-bacterial agents

pharmacology
therapeutic-use

Anti-bacterial agents toxicity Bacterial infections
drug-therapy

DNA-bacterial genetics Drug-resistance
bacterial-genetics

Gram-negative-bacteria
drug-effects

Gram-positive-bacteria
drug-effects

Helicobacter infection
drug-therapy microbiology Helicobacter pylori Helicobacter pylori

drug-effects
Mycobacterium avium
complex-drug-effects

The actual data summarized in Figure 2 are in supplementary Table S1. Table S2 includes the
16 compounds (out of 203 reported by Maier and collaborators as FHD) that are known to act through a
human target having two or more publications with ontological terms associated to broad antimicrobial
activity. Our results indicate that the use of ontological terms related to antimicrobials did not identify
every polyHAM analyzed. While it is possible to use other terms to identify antimicrobial compounds,
our aim here was to explore the broad-spectrum activity of the antimicrobial activity.

2.2. Classifying Antimicrobials Using Physicochemical Features

We have previously described a procedure to increase the training set size for antimicrobial
compound classification and consequently increase the reliability of predictions; we referred to this
procedure as heterologous machine learning, because sets of peptides and non-peptide chemical
compounds are used to train models that efficiently classified antimicrobial from non-antimicrobial
compounds [20]. Here we further explored this approach to classify antimicrobial compounds in the
anti-infective, anti-gut1 and anti-gut4 sets; for that end, we added 7999 antimicrobial peptides and
3546 non-antimicrobial peptides to each of these sets for the heterologous training set construction
(see Methods). Our aim is to compare the classification efficiency of antimicrobial compounds
using molecular features relevant for heterologous machine learning with that achieved using
ontological terms.

To achieve this goal, we characterized the applicability domain of any model derived from these
datasets using two general aspects of peptides and non-peptidic chemical compounds. Figure 3 shows
the comparison in molecular weight observed between these two sets; as expected, peptides tend to be
larger than non-peptidic chemical compounds, ranging from 100 up to 6600 Daltons, with peaks at
300–400, 3000, and 4500 Daltons.
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Figure 2. PubMed citations with ontological terms associated with antimicrobial activity. (A) Anti-
infective, (B) anti-gut1 and (C) anti-gut4 data sets. The images present the distribution of the 
proportion of publications that included an ontological term related to antimicrobial activity with 
respect to the total number of publications reported for every compound tested by Maier and 
collaborators; to see the actual ontological terms, please refer to Table 1. The data are presented in box 
plots, where the first and third quartile are represented below and above the black line that 
corresponds with the mean value of the distribution. Every box plot presents the data for each of the 
572 compounds that presented at least one publication with ontological terms associated with 
antimicrobial activity, out of the 1181 compounds tested by Maier and collaborators. Red boxes 
represent antimicrobials, white otherwise. 

The actual data summarized in Figure 2 are in supplementary Table S1. Table S2 includes the 16 
compounds (out of 203 reported by Maier and collaborators as FHD) that are known to act through 
a human target having two or more publications with ontological terms associated to broad 

Figure 2. PubMed citations with ontological terms associated with antimicrobial activity.
(A) Anti-infective, (B) anti-gut1 and (C) anti-gut4 data sets. The images present the distribution
of the proportion of publications that included an ontological term related to antimicrobial activity
with respect to the total number of publications reported for every compound tested by Maier and
collaborators; to see the actual ontological terms, please refer to Table 1. The data are presented in box
plots, where the first and third quartile are represented below and above the black line that corresponds
with the mean value of the distribution. Every box plot presents the data for each of the 572 compounds
that presented at least one publication with ontological terms associated with antimicrobial activity,
out of the 1181 compounds tested by Maier and collaborators. Red boxes represent antimicrobials,
white otherwise.
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symbols correspond with the number of molecules observed every range of 100 Da in molecular 
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Identifying chemical functional groups from a chemical formula is not a standard or a trivial 
matter [22]. Indeed, it has been recently noted that no automatic procedure to accomplish this goal 
leading to the development of a machine-learning-based approach for that goal (see Methods); this 
machine learning implementation, however, only detects chemical groups that are too broad. For 
instance, we identified 274 chemical groups in both peptides and non-peptides (see Methods) and 
observed some similarities in the frequency observed of some of these chemical groups (oxygen, 
nitrogen, nitrogen aromatic, sulfur, acid, amide; see Figure 4). These chemical groups are different 

Figure 3. Molecular weights comparison between peptides and non-peptides in the training set. Red
squares represent peptides and non-peptides are black squares. The y-axis presents the observed
frequency of molecules within the specified range of molecular weights (x-axis). Molecular weights
were accumulated in bins of size 100 Da (0–100, 101–200, . . . , 6401–6500, 6501–6600). Thus, every
symbols correspond with the number of molecules observed every range of 100 Da in molecular weight.

Identifying chemical functional groups from a chemical formula is not a standard or a trivial
matter [22]. Indeed, it has been recently noted that no automatic procedure to accomplish this
goal leading to the development of a machine-learning-based approach for that goal (see Methods);
this machine learning implementation, however, only detects chemical groups that are too broad.
For instance, we identified 274 chemical groups in both peptides and non-peptides (see Methods)
and observed some similarities in the frequency observed of some of these chemical groups (oxygen,
nitrogen, nitrogen aromatic, sulfur, acid, amide; see Figure 4). These chemical groups are different
from the features calculated by PaDel-descriptor [23]. To compare the frequency of occurrence of
the detected functional group, percentages reported in Figure 5 are normalized per total number of
peptides or total number of non-peptidic chemical compounds.
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Figure 4. Chemical groups comparison. Functional group frequency (%) is compared between peptides
(red circles) with non-peptidic chemical compounds (black squares). The names of the functional
groups found in both sets are indicated on the x-axis (see Methods).

In our previous work, training for drugs that acted against a single gut bacterium identified
broad-spectrum antibiotics among FDA approved antibiotics [20]. Our heterologous model in that
previous work was not trained to identify broad-spectrum antibiotics, but we were able to identify
them because FDA-approved antibiotics are targeted against pathogens while our model would predict
these to also act on the healthy gut microbiome. In our current work, we trained our models to
predict compounds acting against multiple microbes; hence these models were trained to identify
broad-spectrum antibiotics. The best features, model and corresponding parameters were identified
using an automatic optimization procedure (see Methods); then the models were tested using a 10-fold
cross-validation (see Methods). The use of cross-validation is useful in cases where there is no evidence
of noise or incorrect labeling of instances; hence it is a convenient option for our approach.
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Figure 5. Learning efficiency based on physicochemical features. (A) Anti-infective, (B) anti-gut1,
and (C) anti-gut4 training sets. True positive (TP) rates (number of correct predictions divided by
the number of positive instances) for classifying antimicrobials and non-antimicrobials are shown for
models trained with each training sets (green symbols) and for a 10-fold cross-validation test (blue
symbols). Squared symbols correspond with models trained with heterologous data (peptides and
non-peptide compounds); triangle symbols represent models trained with peptides; circular symbols
represent models trained with non-peptidic compounds.

Twelve different models were generated for each training set: four sets for heterologous training,
four sets using only non-peptidic chemical compounds and other four sets using only peptidic chemical
compounds (see Methods and Supplementary Files S4–S39). For instance, a set of compounds (e.g.,
anti-gut1) is complemented with antimicrobial and non-antimicrobial peptides to create a heterologous
training set; the original set includes only non-peptide compounds hence are considered as training
set with non-peptidic compounds; for the only peptidic chemical compounds, we used the set of
antimicrobial and non-antimicrobial peptides used to create the heterologous set. For each of these sets
(heterologous, only peptides, non-peptidic chemical compounds), four different representations of the
PadelDescriptor features were generated: (a) nominal (classes –antimicrobial and non-antimicrobials,
were labeled as nominal), (b) nominal and normalized (nominal plus PadelDescriptor features were
normalized and nominal), (c) nominal, normalized and attribute selection (as b plus PadelDescriptor
features were selected by the CfsSubsetEval Weka filter), and (d) nominal and attribute selection
(see Methods). Figure 5A–C show the true positive rates (see Methods) for antimicrobials and
non-antimicrobials achieved by these models on each training set. Noticeable, models trained with
anti-gut4 achieved the best classification rates and heterologous datasets (square symbols in Figure 5)
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rendered some of the best models followed by models trained with only peptides (triangles in Figure 5);
these results indicate that polyHAM are to be found among antibiotics that act on multiple species,
as expected. The confusion matrices and MCC score for every model are reported in Supplementary
Files S40–S42; the best models achieved MCC scores above 0.95.

The names of the models found for all training sets are presented in Table S3. The best model
(dataset anti-gut4 using heterologous and nominal data using the random forest model) was able to
classify correctly 89% of every antimicrobial and non-antimicrobial compound in the anti-gut4 set
as reported by AutoWeka. The top 10 features used by the best model, out of the 507 features used
by the model, are shown in Table 2. Please note that all these features are related to the information
or graph theory parameters of chemical groups, rather than chemical attributes; this is in agreement
with our previous observation that peptides and non-peptide compounds shared few and too general
chemical groups, hence chemical features were not useful for classification purposes. TP rates were
used to evaluate the possible bias in classification induced by the biased composition in the training
sets. For instance, the anti-infective data set has 137 positive and 1044 negative instances (see Figure 2);
yet, we observed that the best models (heterologous sets that added 7999 antimicrobial peptides and
3546 non-antimicrobial peptides, rendering a total of 8136 positives and 4590 negatives) did not favor
the classification of antimicrobials or non-antimicrobials as it can be observed in Figure 5A, where the
square blue symbols show around 0.9 of TP rate for non-antimicrobial and around 0.7 of TP rate
for antimicrobial, a strong influence of the class imbalance should have produced a larger than the
observed gap (0.9 vs 0.7) between these two cases (8136 vs 4590).

Table 2. Top 10 features for the best model (random forest) during training.

Attribute Name 1 Description

BCUTw-1h Eigenvalue based descriptor noted for its utility in chemical diversity

AATS5m Average Broto—Moreau autocorrelation—lag 5/weighted by mass

MIC5a Modified information content index (neighborhood symmetry of 5-order)/ weighted by atoms

AATS6m Average Broto—Moreau autocorrelation—lag 6/weighted by mass

AATS7m Average Broto—Moreau autocorrelation—lag 7/weighted by mass

IC5 Information content index (neighborhood symmetry of 5-order)

MIC4 Modified information content index (neighborhood symmetry of 4-order)

AATSC0m Average centered Broto—Moreau autocorrelation—lag 0/weighted by mass

topoDiameter Topological diameter (maximum atom eccentricity)

AATS0m Average Broto—Moreau autocorrelation—lag 0/weighted by mass
1 Attribute ranking was based on the information Gain Ranking filter implemented in Weka (see Methods).

Based on this data, we performed a test of the 12 anti-gut4 models (four models with heterologous
training set, four models with only peptides, and four models with non-peptidic compounds; the four
models correspond to four different ways to process the data, see Methods) with a set of 17 metabolites
(see Supplementary Table S4) that are part of the Human Metabolome Database, which includes
metabolites found in the human body. Please note that none of the compounds in the testing set
were part of the original training set. While plants and microbes are known to produce secondary
metabolites with antimicrobial activity, human metabolites are not commonly recognized to harbor
this antimicrobial activity. Applying our naïve text-mining approach, six metabolites on this test set
were identified as antimicrobials based on publications that included the ontological terms associated
to antimicrobial activity (see Section 2.1) and for the other 11 there was no publication about their
antimicrobial activity. According to the ZINC database, the 17 human metabolites have a human target
and six have antimicrobial activity corresponding with true polyHAM compounds; four out of these
six true polyHAM are broad-spectrum antibiotics (see Supplementary Table S4). We observed that in
this test set, the best model is derived from non-peptidic compounds as training set using nominal
representation of the data (see red circle on Figure 6). We also noted that overall heterologous models
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classified better the non-antimicrobials than the models trained with only peptides or non-peptidic
chemical compounds (see Figure 6): three out of the four models trained with only peptides predicted
none of the non-antimicrobials (observation derived from data presented in Figure 6; these three
models are observed as a single remarked triangle at the upper left corner of the plot); three out of the
four models trained with non-peptidic chemical compounds predicted every non-antimicrobial, but no
antimicrobial (observation derived from data presented in Figure 6; these three models are observed as
a single remarked circle at the bottom right corner of the plot). Hence in general, the models obtained
with heterologous sets rendered more balanced predictions. Yet, it is clear that this test set was not an
easy task for any of the models.
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Figure 6. Testing models on human metabolites. True positive (TP) rates (number of correct predictions
divided by the number of true positives) for classifying antimicrobials and non-antimicrobials are
shown for models trained in the anti-gut4 dataset using heterologous data (peptides and non-peptide
compounds; squares), only peptides (triangles) and non-peptidic compounds (circles). There are four
instances of each symbol corresponding with the four data representation used: (i) nominal (red);
(ii) nominal and normalized (black); (iii) nominal normalized and selected attributes (green); and (iv)
nominal and selected attributes (blue) (see Methods).

Considering the relatively low performance to classify polyHAM in human metabolites,
we evaluated how different were the testing set compounds from those found in the training sets.
The dataset rendering the best model (anti-gut4 using heterologous and nominal modeling of data)
was used to compute the shortest Manhattan distance between the polyHAM in the training and the
testing sets (D1); as a reference, we also computed the shortest distance between the non-polyHAM
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and polyHAM in the same training set (D2); the Manhattan distance was calculated from the vector
representation of every compound, in which the vector values were the features calculated for each
compound. If D1 > D2 then, the compounds in the testing set were more different to the polyHAM
than the non-polyHAM compounds, yet D1 = D2 = 0; as noted in Figures 3 and 4, the diversity in mass
and chemical groups in the training set was large, hence this result is in agreement with these previous
observations. We then identified the shortest distance between the polyHAM in the testing sets with
those of the non-polyHAM in the training set (D3 = 6708088) and compared it with the shortest distance
between polyHAM and non-polyHAM in the training set (D2 = 0) and observed that the testing set was
more distant from the non-polyHAM compounds in the training sets than the polyHAM compounds
in the training set. These results indicate that the testing set was more distant from the non-polyHAM
compounds yet, close to the polyHAM compounds in the training set. This distinct distribution of the
testing set may provide an explanation for the difficulty in classification for the best models, that is,
the best models may have traced frontiers between the positive and negative antimicrobial compounds
that excluded several of the compounds in the test set that were too distant from the true positive
polyHAM in the training set.

3. Discussion

The story of penicillin set a hallmark for antibiotic discovery: it supported the magic-bullet idea
proposed by Paul Erlich in which a single drug would traverse the body and only act on a specific
target [24]. However, the discovery of antimicrobial peptides as part of the defense mechanism of
every cell brought a new concept into the antibiotics field: natural antimicrobial peptides are less likely
to evoke resistance in microbes because they act on multiple targets [25]. Thus, while it is possible to
kill microbes targeting essential cellular functions coded into a single protein (e.g., penicillin-binding
proteins), it is also possible to kill microbes by targeting multiple targets. This last view is important
for many complex diseases humans are facing nowadays that are related to gut microbiome, such
as obesity [26], hypertension [27], among others [28,29], where the antimicrobial activity in drugs is
relevant to either treat the disease (by killing microbes associated with the disease) or prevent it (by
not killing microbes that prevent the development of the disease).

Drug repositioning or repurposing frequently identifies antibiotics to treat diseases other than
infections [30]; such is the case of minocycline that is a semisynthetic tetracycline-derived antibiotic
that has shown to have neuroprotective activity and it is currently being tested in treating Parkinson’s
disease [31]. Hence, it seems that polypharmacologic antimicrobials that act on human targets,
polyHAM, represent a resource to identify effective drugs to treat different conditions beyond infections.
In our previous work, we were interested in testing the reliability of heterologous training sets in
identifying polyHAM [20]. In this study we characterize several features of these compounds using
different computational approaches. We show that there are very few chemical similarities between
peptides and non-peptide human-targeted drugs, and consistent with these findings we observed that
topological features of chemical structures are more informative than chemical descriptors of molecules
for the classification of polyHAM. Thus, for polyHAM to act on multiple targets it is relevant to display
specific topological features rather than particular chemical groups. This suggests that the structural
organization of chemical groups rather than the chemical groups, per se, are relevant for acting on
multiple targets. These results indicate that antimicrobial classifications based on chemical descriptors
(see, for instance, [32–34]) may not work properly to classify polyHAM.

We used three different training sets for identifying the best model to classify polyHAM:
anti-infective, anti-gut1, and anti-gut4; these last two sets differ in the number of bacterial strains that
these compounds act against to, increasing from anti-gut1 to anti-gut4, and expecting that anti-gut4 had
the most broad ability to act as antimicrobials than the other compounds in anti-infective and anti-gut1
sets. Indeed, we verified by an automatic bibliographic search that anti-gut4 had a larger proportion
of known broad antimicrobial compounds than anti-gut1. As noted above, anti-gut4 also rendered
the best model to classify polyHAM from non-polyHAM. This result indicates that broad-spectrum



Pharmaceuticals 2020, 13, 204 12 of 17

antimicrobials make better polyHAM than specific ones and that broad-spectrum antimicrobials are
more likely to act on multiple targets.

Finally, human metabolites were used to test our trained model to classify polyHAM;
these compounds are not commonly regarded as a source of antimicrobial compounds. Here we show
that there is a group of these human metabolites with previous reports about their broad-spectrum
antimicrobial activity, hence, these may represent a natural way for humans to control microbiome
composition. For instance, the presence of 3-phenylpropionic acid has been shown to be affected by
antibiotics altering the healthy microbiome composition [35], and at the same time has been shown to
prevent the growth of the pathogenic Listeria monocytogenes in combination with a natural antimicrobial
peptide [36]. In this case, the quantification of this metabolite may indicate the susceptibility of a
healthy individual to be infected by pathogens such as L. monocytogenes. Thus, predictions of polyHAM
among human metabolites may promote the development of tools to design human diets aimed to
alter the specific composition of human metabolites. It is expected that certain diets would promote the
accumulation of metabolites with broad antimicrobial activity that, in turn, promote gut microbiome
dysbiosis. Further studies are required to validate this idea, yet our findings represent an important
advance in that direction.

4. Materials and Methods

4.1. Dataset Preparation

Three datasets were constructed for the purpose of training machine-learning models, including
anti-infective (Supplementary File S1), anti-gut1 (Supplementary File S2), and anti-gut4 (Supplementary
File S3); all these datasets were derived from the work reported by Maier and collaborators that
included 1181 FDA-approved compounds [19]. These sets differ in the labels identifying compounds as
antimicrobials or non-antimicrobials; for instance, in the anti-infective set the compounds were labeled
as antimicrobials if they belong to class J in the Anatomical Therapeutic Chemical (ATC) Classification
System, in the anti-gut1 set, compounds were labeled as antimicrobials when Maier and collaborators
identified antimicrobial activity against at least one gut bacteria and anti-gut4 those hitting at least
four gut bacteria. The features were normalized and/or performed a selection of features using the
weka.attributeSelection.CfsSubsetEval filter [37].

For each of these three training sets (anti-infective, anti-gut1 and anti-gut4), 12 different
sets were generated: four for heterologous data, four for non-peptidic compounds, and four for
only peptidic compounds; each of these four sets corresponds with nominal, nominal-normalized,
nominal-normalized-selected attributes, and nominal selected attributes, in a similar fashion as
described previously [20]. For the non-peptidic compounds set, 1181 non-peptidic compounds
were used (the number of antimicrobials and non-antimicrobials depended on the training set,
see Figure 7); the only peptidic compounds set included 11,545 peptides (7999 antimicrobial
and 3546 non-antimicrobials) that were obtained from a non-redundant compilation of multiple
antimicrobial peptide databases [38]; the heterologous set included all non-peptidic (1181 compounds)
and peptidic compounds (11,545 peptides). In order to obtain the features describing each compound
the PaDelDescriptor software was used [23]; to do that, non-peptidic compounds were represented
in SMILES format while for peptides, since the FASTA format is not readable by PaDelDescriptor,
they were converted to MOL2 format (version V200) by the program Seq2Mol.jar (see supplementary
material to get the code and instructions to execute it). Every feature with values equals to 0 or null
in 50% or more of all instances was removed. Finally, 12 different models were generated for each
training set: four sets for heterologous training, four sets using only non-peptidic chemical compounds
and other four sets using only peptidic chemical compounds (see Figure 7). These training sets were
converted into ARFF format (see supplementary files S4–S39). The reliability of every Weka classifier
trained with any of these training sets was tested using a 10-fold cross-validation. The script to run the
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cross-validation test that includes the model name and its corresponding parameters are available at
the supplementary Files S43 (anti-infective), S44 (anti-gut1), and S45 (anti-gut4).

Pharmaceuticals 2020, 13, x FOR PEER REVIEW 15 of 20 

 

 
Figure 7. Dataset construction. The steps described to build the datasets (anti-infective, anti-gu1, and 
anti-gut4) used throughout this work are described. From 1,181 non-peptidic compounds and 11,545 
peptides, three sets were derived: heterologous, only peptides and non-peptidic compounds. Each of 
these sets was converted into ARFF format using the specified combination of the following 
procedures: nominal representation of the class (antimicrobial or non-antimicrobial), features 
normalized, and/or feature selection. 

4.2. Naïve Text Mining Approach 

The bibliographic data was obtained from PubChem [39]. The PubChem ID from every 
compound used in the training sets was obtained from its SMILES formula; from this PubChem ID, 
every associated PMID was retrieved using PubChem REST server. The PMID was used to retrieve 
the MedLine format of each publication from PubMed server and to identify the corresponding 
ontologic terms (entries identified by the headers MH or OT in the MedLine registry). The code used 
for this purpose is available as a supplementary file named GetPubMedEntriesFromSMILES.java. 
Figure 3 displays the proportion of references that included an antimicrobial-related ontological term 
according to the formula: 

Proportion = NCAMP/TotalNC (1) 

where Proportion is the proportion of antimicrobial citations; NCAMP is the number of publications 
of the compound of interest including an antimicrobial-related ontological term; TotalNC is the total 
number of publications for the compound of interest. 

The test data set was obtained from the ZINC database (version 15) [40] and corresponds with 
metabolites identified from The Human Metabolome Database [41]. We chose human metabolites for 
the test set because of the known relationship between microbiome and human metabolism relevant 
for human health and disease [42]. Every feature describing a compound was calculated as in the 
training sets, using the PaDelDescriptor software [23]. Briefly, the chemical features correspond with 
any of the 1,444 two-dimensional features calculable by PaDelDescriptor that include chemical 
features (e.g., acidic groups count, longest aliphatic chain, Hbond donor count) and topological 
features (e.g., atom type electrotopological state, path counts, topological distance matrix); these 

Figure 7. Dataset construction. The steps described to build the datasets (anti-infective, anti-gu1,
and anti-gut4) used throughout this work are described. From 1,181 non-peptidic compounds and
11,545 peptides, three sets were derived: heterologous, only peptides and non-peptidic compounds.
Each of these sets was converted into ARFF format using the specified combination of the following
procedures: nominal representation of the class (antimicrobial or non-antimicrobial), features
normalized, and/or feature selection.

4.2. Naïve Text Mining Approach

The bibliographic data was obtained from PubChem [39]. The PubChem ID from every compound
used in the training sets was obtained from its SMILES formula; from this PubChem ID, every
associated PMID was retrieved using PubChem REST server. The PMID was used to retrieve the
MedLine format of each publication from PubMed server and to identify the corresponding ontologic
terms (entries identified by the headers MH or OT in the MedLine registry). The code used for this
purpose is available as a supplementary file named GetPubMedEntriesFromSMILES.java. Figure 3
displays the proportion of references that included an antimicrobial-related ontological term according
to the formula:

Proportion = NCAMP/TotalNC (1)

where Proportion is the proportion of antimicrobial citations; NCAMP is the number of publications
of the compound of interest including an antimicrobial-related ontological term; TotalNC is the total
number of publications for the compound of interest.

The test data set was obtained from the ZINC database (version 15) [40] and corresponds with
metabolites identified from The Human Metabolome Database [41]. We chose human metabolites for
the test set because of the known relationship between microbiome and human metabolism relevant
for human health and disease [42]. Every feature describing a compound was calculated as in the
training sets, using the PaDelDescriptor software [23]. Briefly, the chemical features correspond
with any of the 1444 two-dimensional features calculable by PaDelDescriptor that include chemical
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features (e.g., acidic groups count, longest aliphatic chain, Hbond donor count) and topological features
(e.g., atom type electrotopological state, path counts, topological distance matrix); these features
were obtained directly from the SMILES representation of each of the 17 metabolites in the test set.
These 17 metabolites were those found with at least one publication including the ontological terms
associated with antimicrobial activity identified in the training set. The same features obtained for
every model during the training (12 models for anti-gut4) were included for the test set. Antimicrobials
were considered those compounds that contained two or more publications with ontological terms
related to antimicrobial activity (see Supplementary Table S4); the annotation as antimicrobial was
done after a human reviewed the literature to confirm the antimicrobial activity.

4.3. Machine-Learning Approach

Weka version 3.8 [43] and the AutoWeka [44] plugin were used to train and randomly cross-validate
the models. It is worth to mention that AutoWeka includes the state-of-the-art machine-learning
algorithms, like SVM, random forest, and logistic regression, among others, so the resulting learning
model can be considered as the most suitable for the classification task at hand. For identifying
chemical groups (these are different than the features calculated by PaDel descriptor) in peptides and
non-peptidic chemical compounds, we used a Python implementation developed for that purpose [22].
Briefly, molecules in SMILES format were integrated into the python code, and the program named
rdkitpy was installed as instructed by the developers of Python program; the code searches for
3080 known chemical groups in molecules. True positive rates (TP rates) were used to estimate the
proportion of correctly classified instances for antimicrobials and non-antimicrobials; this would allow
evaluating for any possible bias in the classification. True positives refer to those instances that were
predicted correctly within a class; e.g., an antimicrobial compound that was predicted as antimicrobial
is a true positive. Attribute ranking for the best model identified in the training and cross-validation
test was performed using the information gain for attribute evaluation filter implemented in Weka;
briefly, the information gain for each attribute is derived from the information entropy for each attribute
for each class.

All data required to reproduce and analyze the results presented in this work is available through
GitHub: https://gdelrioifc.github.io/PolyHAM/.

5. Conclusions

In summary, we characterize human-targeted antimicrobials using heterologous training sets and
machine learning approaches. PolyHAM display broad-spectrum antibiotic activity and are found
circulating the human body where microbes are found.

Supplementary Materials: The following are available online at https://gdelrioifc.github.io/PolyHAM/, File S1.
Anti-Infective set of compounds; File S2. Anti-Gut1 set of compounds; File S3. Anti-Gut4 set of compounds;
File S4. Anti-Infective Hetero Nominal training set in ARFF format; File S5. Anti-Infective Hetero Nominal
Normalized training set in ARFF format; File S6. Anti-Infective Hetero Nominal Normalized Selected Attributes
training set in ARFF format; File S7. Anti-Infective Hetero Nominal Selected Attributes training set in ARFF
format; File S8. Anti-Infective Non-peptidic Chemical Compounds Nominal training set in ARFF format; File S9.
Anti-Infective Non-peptidic Chemical Compounds Nominal Normalized training set in ARFF format; File S10.
Anti-Infective Non-peptidic Chemical Compounds Nominal Normalized Selected Attributes training set in ARFF
format; File S11. Anti-Infective Non-peptidic Chemical Compounds Nominal Selected Attributes training set
in ARFF format; File S12. Anti-Infective Peptidic Chemical Compounds Nominal training set in ARFF format;
File S13. Anti-Infective Peptidic Chemical Compounds Nominal Normalized training set in ARFF format; File S14.
Anti-Infective Peptidic Chemical Compounds Nominal Normalized Selected Attributes training set in ARFF
format; File S15. Anti-Infective Peptidic Chemical Compounds Nominal Selected Attributes training set in
ARFF format; File S16. Anti-Gut1 Hetero Nominal training set in ARFF format; File S17. Anti-Gut1 Hetero
Nominal Normalized training set in ARFF format; File S18. Anti-Gut1 Hetero Nominal Normalized Selected
Attributes training set in ARFF format; File S19. Anti-Gut1 Hetero Nominal Selected Attributes training set in
ARFF format; File S20. Anti-Gut1 Non-peptidic Chemical Compounds Nominal training set in ARFF format;
File S21. Anti-Gut1 Non-peptidic Chemical Compounds Nominal Normalized training set in ARFF format;
File S22. Anti-Gut1 Non-peptidic Chemical Compounds Nominal Normalized Selected Attributes training set in
ARFF format; File S23. Anti-Gut1 Non-peptidic Chemical Compounds Nominal Selected Attributes training set in
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ARFF format; File S24. Anti-Gut1 Peptidic Chemical Compounds Nominal training set in ARFF format; File S25.
Anti-Gut1 Peptidic Chemical Compounds Nominal Normalized training set in ARFF format; File S26. Anti-Gut1
Peptidic Chemical Compounds Nominal Normalized Selected Attributes training set in ARFF format; File S27.
Anti-Gut1 Peptidic Chemical Compounds Nominal Selected Attributes training set in ARFF format; File S28.
Anti-Gut4 Hetero Nominal training set in ARFF format; File S29. Anti-Gut4 Hetero Nominal Normalized training
set in ARFF format; File S30. Anti-Gut4 Hetero Nominal Normalized Selected Attributes training set in ARFF
format; File S31. Anti-Gut4 Hetero Nominal Selected Attributes training set in ARFF format; File S32. Anti-Gut4
Non-peptidic Chemical Compounds Nominal training set in ARFF format; File S33. Anti-Gut4 Non-peptidic
Chemical Compounds Nominal Normalized training set in ARFF format; File S34. Anti-Gut4 Non-peptidic
Chemical Compounds Nominal Normalized Selected Attributes training set in ARFF format; File S35. Anti-Gut4
Non-peptidic Chemical Compounds Nominal Selected Attributes training set in ARFF format; File S36. Anti-Gut4
Peptidic Chemical Compounds Nominal training set in ARFF format; File S37. Anti-Gut4 Peptidic Chemical
Compounds Nominal Normalized training set in ARFF format; File S38. Anti-Gut4 Peptidic Chemical Compounds
Nominal Normalized Selected Attributes training set in ARFF format; File S39. Anti-Gut4 Peptidic Chemical
Compounds Nominal Selected Attributes training set in ARFF format; File S40. Confusion matrix parameters
and MCC score for anti-infective set; File S41. Confusion matrix parameters and MCC score for anti-gut1 set;
File S42. Confusion matrix parameters and MCC score for anti-gut4 set; File S43. Weka Script for cross-validation
of the anti-infective set; File S44. Weka Script for cross-validation of the anti-gut1 set; File S45. Weka Script
for cross-validation of the anti-gut4 set; Table S1. PubMed Citations with ontological terms associated with
antimicrobial activity; Table S2. PolyHAM in training set; Table S3. Best models hyperparameters; Table S4. Testing
set. Three codes (GetPubMedEntriesFromSMILESTraining.java, GetPubMedEntriesFromSMILESTesting.java and
Seq2Mol.jar) and two files (TableS1_Prestwick_STRINGWithNames.tsv, hmdbmetab-metabolites.csv) for testing
these codes are also available at the github web site: https://github.com/gdelrioifc/PolyHAM.
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