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Abstract
Genotype-by-environment (G × E) interactions could play an important role in cattle populations, and it should be
considered in breeding programmes to select the best sires for different environments. The objectives of this study were to
study G × E interactions for female fertility traits in the Danish Holstein dairy cattle population using a reaction norm model
(RNM), and to detect the particular genomic regions contributing to the performance of these traits and the G × E
interactions. In total 4534 bulls were genotyped by an Illumina BovineSNP50 BeadChip. An RNM with a pedigree-based
relationship matrix and a pedigree-genomic combined relationship matrix was used to explore the existence of G × E
interactions. In the RNM, the environmental gradient (EG) was defined as herd effect. Further, the genomic regions affecting
interval from calving to first insemination (ICF) and interval from first to last insemination (IFL) were detected using single-
step genome-wide association study (ssGWAS). The genetic correlations between extreme EGs indicated that G × E
interactions were sizable for ICF and IFL. The genomic RNM (pedigree-genomic combined relationship matrix) had higher
prediction accuracy than the conventional RNM (pedigree-based relationship matrix). The top genomic regions affecting the
slope of the reaction norm included immunity-related genes (IL17, IL17F and LIF), and growth-related genes (MC4R and
LEP), while the top regions influencing the intercept of the reaction norm included fertility-related genes such as EREG,
AREG and SMAD4. In conclusion, our findings validated the G × E interactions for fertility traits across different herds and
were helpful in understanding the genetic background of G × E interactions for these traits.

Introduction

In the dairy cattle industry, fertility traits are some of the
most influential components, as declining fertility prolongs
the resume cycles after calving and increases veterinary
costs (De Vries 2006; Schneider et al. 2005). Some previous
studies have emphasized the importance of genetic eva-
luation and the improvement of fertility traits in spite of
their low heritability (below 5%) (Liu et al. 2017; Sun et al.
2010), and more balanced selection indices including pro-
duction, longevity, health and fertility have been used
instead of indices which simply focused on yield. Another
issue regarding selection for improved fertility is that a wide
range of environments often contribute to the phenomenon
of genotype-by-environment (G × E) interaction, which is
defined as different performances of animals and their off-
spring in different environments than those where they were
raised or selected (Falconer et al. 1996).

In the Danish milk production system, different herds
have different conditions in terms of feed, pharmaceuticals
and housing, which may further lead to G × E interactions
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(Strandberg et al. 2000), and can therefore be defined as an
environmental gradient (EG) to study the G × E interactions.
Two models are widely used to detect G × E interactions.
One is a multi-trait model, which assumes that phenotypic
expressions of a trait in various environments are different
traits (Kolmodin et al. 2002), and a low genetic correlation
among these different traits indicates the existence of a G ×
E interaction. The other one is the reaction norm model
(RNM) (Falconer et al. 1996), which models the trajectory
of animal performance as a function of the EG, and the
breeding value of an animal is therefore partitioned into an
environment-independent part (intercept) and an
environment-dependent (slope) part. Compared with multi-
trait models, RNMs are able to explore G × E interactions in
a range of continuous environments and quantify the G × E
interaction at any environment within the range.

The application of an RNM often uses the known EG as
a covariate. Traditionally, the covariate was postulated as
the phenotypic mean in different environments, which could
lead to bias due to misleading representation of EG. An
alternative method which infers the unknown EG using the
Bayesian method, was suggested, and more accurate esti-
mates could be obtained (Su et al. 2006, 2009). Although
the Bayesian method is able to handle the unknown EG, the
analysis is time consuming, and sometimes it is difficult to
get model convergence when the model becomes compli-
cated and too many parameters need to be estimated at the
same time. Calus et al. (2002) and Kolmodin et al. (2002)
proposed to first estimate the EG using a conventional linear
mixed model and substitute it into the RNM to study the
G × E interaction, which can be viewed as partitioning the
simultaneous estimation of the EG and other parameters
into two steps.

Furthermore, the inclusion of genotype information in
the RNM may be beneficial for the estimation of parameters
and prediction of breeding values. To integrate information
from genotyped and non-genotyped animals, a single-step
genomic BLUP (ssGBLUP) (Christensen and Lund 2010;
Misztal et al. 2009) can be used in complicated models such
as random regression or RNMs. In addition, Wang et al.
2012 proposed a new method to perform genome-wide
association study (GWAS) based on ssGBLUP, which is
called a single-step GWAS (ssGWAS). A simulation study
has shown that this method results in more accurate esti-
mates of SNP effects compared to BayesB and the con-
ventional GWAS methods with single-marker regression.

The objective of this study was to use the RNM with
information on genomic markers and pedigrees to explore
the G × E interaction of female fertility for Danish Holstein
dairy cows and to map the genomic regions contributing to
the fertility phenotypes across different EGs.

Materials and methods

Data

The fertility traits of Danish Holstein used in this study
included number of inseminations per conception (AIS),
interval from first to last insemination (IFL), non-return rate
at 56 days after first insemination (NRR) and interval from
calving to first insemination (ICF). Field records during the
period of insemination from 2011 to 2016 were collected
from 1775 herds. The records in the first three parities were
used in this study.

In addition, AIS and IFL included some censored records
because of no known date of confirmed successful insemi-
nation. In this study, penalty values were used to handle
censored data (Liu et al, 2017; Sun et al, 2009). For censored
IFL, a penalty of 40 days was added, which is the average
value of Danish Holstein cows, and a penalty of 1 was added
to censored AIS. The further criteria for the data editing
were in accordance with Nordic routine genetic evaluation.
Briefly, the criteria included age at first insemination
between 270 and 900 days, age at first calving between 500
and 1100 days, AIS between 1 and 5, IFL between 0 and
365 days, ICF between 20 and 230 days, and days open
(ICF+ IFL) between 20 and 365 days. Records with values
below the lower limit were removed, whereas records were
converted to upper-limit values if they were greater than the
upper limit. Herds were defined as the herds where the
animals got phenotypes. Animals that moved to other herds
between the first insemination and the last insemination were
removed. In addition, for each trait, the herd-year levels with
<20 records were merged with the nearest herd-year level,
and this combination was performed once more if the
number of records was still <20. Finally, the records in herd-
year levels with <20 records were discarded after two
combination runs. The detailed data editing procedure can
be found online (https://www.nordicebv.info/).

The number of records and animals for each trait obtained
after editing are listed in Table 1. The pedigree of the ani-
mals with phenotypes was traced three generations back
using the Nordic Cattle database (NAV, Skejby, Denmark).

Genotypes were available for 4534 bulls in the pedigree,
among which 1777 bulls have daughters with records in the
dataset. The bulls were genotyped using an Illumina
BovineSNP50 BeadChip (Illumina Inc., San Diego, CA,
USA) version 2 (containing 54,609 single nucleotide
polymorphisms (SNPs)). The SNP data were filtered by
removing markers with a minor allele frequency <1%, an
average GenCall score lower than 0.60, or an unknown
location in the UMD 3.1 assembly. After data editing,
46,342 SNPs were included in the analysis.
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Model

The EG defined in this study included the production
environments of herds, i.e., herd effects. We used a three-
step strategy to analyze the G × E interaction for different
traits. This three-step approach is an extension of the two-
step RNM proposed by Calus et al. (2002) and Kolmodin
et al. (2002). Briefly, the first two steps were designed to
estimate herd effects and weights of heterogeneous residual
variances in RNM of the third step, respectively, so that the
RNM was simplified. Compared with the one-step method
that estimates an unknown EG and other parameters
simultaneously using a Bayesian method (Su et al. 2006),
the three-step approach has much less computational
demand.

Step 1

Initially, a univariate animal model was used to fit obser-
vations for each trait. The model was as follows:

y¼Xbþ Ff þ Zaþ EcþWpeþ e ð1Þ
where y is the vector of observations; b is the vector of fixed
effects other than herd effect; f is the vector of fixed herd
effects; a is the vector of additive genetic effects, which are
assumed to follow the normal distribution N 0; Aσ2a

� �
for a

pedigree-based BLUP or N 0; Hσ2a
� �

for an ssGBLUP
model, where σ2a is the additive genetic variance and A is
the numerator (pedigree) relationship matrix and H is the
combined pedigree-genomic relationship matrix; c is
the vector of herd-year effects, which are assumed to be
normally distributed with N 0; Iσ2c

� �
, where σ2c is the

variance of herd-year effects and I is the identity matrix;
pe is the vector of permanent environmental effects, which
are assumed to be normally distributed with Nð0; Iσ2peÞ,
where σ2pe is the variance of permanent environmental
effects; e is the random residual vector following N 0; Iσ2e

� �
and σ2e is the random residual variance. X, F, Z, E and W
and are incidence matrices related to the fixed and random
effects in the model. The fixed effects included herd, parity,
year of first insemination (for AIS, IFL and NRR) or year of
calving (for ICF), month of first insemination (for AIS, IFL
and NRR) or month of calving (for ICF) and age at first

insemination (divided into five age groups of 270–419 days,
420–444 days, 445–469 days, 470–500 days and
500–900 days). The random effects included additive
genetic effects, herd-year effects (year of first insemination
for AIS, IFL and NRR; year of calving for ICF), and
permanent effects.

For the pedigree-based BLUP, the numerator relationship
matrix (A) was built based only on the pedigree, whereas for
the ssGBLUP model, a combined pedigree-genomic rela-
tionship matrix (H) was used, and the inverse H−1 was
calculated as follows (Aguilar et al. 2010; Christensen and
Lund 2010):

H�1 ¼ A�1 þ 0 0

0 G�1 � A22

� �
ð2Þ

where A22 is the subset of the numerator relationship matrix
for genotyped animals. G is the blended genomic relation-
ship matrix. G was constructed as (1−ω)G0+ωA22, where ω
is the relative weight that could explain the fraction of the
genetic variance not captured by markers and was set as 0.2
according to (Gao et al. 2012); G0 (VanRaden 2008) was
constructed using Gmatrix software (Su and Madsen 2011):

G0 ¼ ZDZ′=
Xm

i¼1
2pi 1� pið Þ ð3Þ

where the elements in column i of Z are 0−2pi, 1−2pi, and 2
−2pi for genotypes A1A1, A1A2 and A2A2, respectively,
where pi is the allele frequency of A2 at locus i calculated
from the current data; D is a diagonal weight matrix for each
SNP, and in this step, D is an identity matrix; .m is the
number of SNPs. At last, G was adjusted to be compatible
with A22 according to Christensen et al. 2012. The analysis
was performed using the DMUAI module implemented in
the DMU package (Madsen et al. 2013).

Step 2

In an RNM, heterogeneous residual variances are usually
fitted when residual variances differ among production
environments (Oliveira et al. 2018; Silva et al. 2014). To
account for various residual variances, the herds were
divided into five groups according to the quantiles of the

Table 1 Descriptive statistics for
female fertility traits and
heritabilities (standard errors)
estimated using a pedigree-
based linear mixed model

Trait No. of records No. of animals Mean SD Min Max Heritability

AIS 705,835 383,179 2.06 1.24 1 5 0.027 (0.001)

ICF 723,333 391,930 74.4 31.1 20 180 0.057 (0.003)

IFL 728,426 393,561 47.7 61.3 0 230 0.032 (0.002)

NRR 715,911 386,869 0.542 0.498 0 1 0.011 (0.001)

AIS number of inseminations per conception, ICF interval from calving to first insemination, IFL interval
from first to last insemination, NRR non-return rate at 56 days after first insemination, SD standard deviation,
Min minimum value, Max maximum value
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herd effects estimated in step 1, namely, (0, 10%), (10,
30%), (30, 70%), (70, 90%), and (90, 100%). The setting of
five groups was based on a balance between number of
observations in each group and the possible difference in
residual variance among different herd levels. Then, the
model in step 1 was re-run, and the variance components
were estimated by a Gibbs sampling approach using the
RJMC module in the DMU package (Madsen et al. 2013).

Step 3

Compared with conventional linear mixed model, the RNM
included genetic sensitivities represented by random
regressions on the herd effects estimated in the step 1 and
was analyzed using DMUAI. It was shown as follows:

y ¼ Xbþ Ff þ Z0a0 þ Z1a1 þ EcþWpeþ e ð4Þ

where it is assumed that
a0
a1

� �
� N

0; A� σ2a0 σa0a1
σa0a1 σ2a1

� �� �
. Z0 is an incidence matrix

connecting a0 (intercept) to y, and Z1 is an incidence matrix
containing herd effects estimated in step 1 as covariables to
connect y and a1 (slope). Other effects and incidence
matrices are the same as those for linear mixed models in
step 1. The random residual vector is assumed to follow
N 0; Rσ2e
� �

, where R is a diagonal matrix with elements for
observations in the ith group of herds equal to 1/wi, and

wi ¼
P5

i¼1 niσ
2
ei

σ2ei
P5

i¼1 ni
ð5Þ

where ni is the number of observations in the ith group of
herds and σ2ei is the residual variance of the ith group

estimated by RJMC. In addition, to evaluate the need to
include the G × E interaction in the model, a likelihood ratio
test (LRT) between the RNM and the reduced model (RM)
of (4) without considering random regression on herd
effects was performed based on the statistic of D=−2 * log
(likelihood) for the RM, + 2 * log(likelihood) for the RNM.
The P-value for the LRT was calculated as

0:5P χ21 d:f : � D
h i

þ 0:5P χ22 d:f : � D
h i

.

The heritability h2a
� �

of the linear mixed model was

calculated as h2a ¼ σ2a
σ2aþσ2peþσ2e

. The additive genetic variances

σ2a
� �

and heritability h2a
� �

of the RNM with a particular herd

effect (f) were calculated as σ2a ¼ σ2a0 þ σ2a1 f
2 þ 2σa0a1 f . The

residual variance σ�2e
� �

of the RNM in a particular herd

group was calculated as σ�2e ¼ 1
w σ

2
e . Consequently, the

heritability h2a
� �

of the RNM was calculated as

h2α ¼ σ2α
σ2αþσ2peþσ�2e

. Standard errors of heritabilities and genetic

correlations were calculated according to an expansion of
the Taylor series (Su et al. 2007).

Prediction of future performances

To evaluate and compare the prediction ability of different
models, the data were divided into training and validation
parts according to the birthdates of the bulls. The 20%
youngest bulls (born after 01/07/2010, 355 bulls) with
daughter information were regarded as the validation data-
set, and the other 80% were regarded as the training dataset.
In the RNM, the estimated breeding value of a particular
bull obtained from the pedigree-based BLUP (EBV) or from
the ssGBLUP (GEBV) was defined as

ba ¼ ba0 þ fba1 ð6Þ
where ba is the predicted breeding value for this bull; ba0 andba1 are estimates of the intercept and slope for this bull,
respectively; f is the mean effect of herds where daughters
of this bull were raised. Daughter yield deviation (DYD)
was used to evaluate the accuracies of the prediction. The
DYD was the average performance of daughters adjusted
for all fixed and non-genetic random effects as well as the
dam’s additive genetic effect. The accuracy of the
prediction was calculated as a Pearson correlation in the
form of cor(DYD, prediction). In addition, the accuracy of
the prediction obtained from the RNM was compared to that
calculated from the RM.

ssGWAS for ICF and IFL

ssGWAS as proposed by Wang et al. 2012 was applied to
locate the genomic regions related to the intercept and slope
in the RNM for ICF and IFL, as it was observed that there
existed significant G × E interactions across extreme EGs,
and slightly higher prediction accuracies for the RNM
compared to the RM for the two traits. In a typical
ssGBLUP model, it is assumed that all SNP effects have the
same variance. The ssGWAS allows heterogeneous var-
iance among different SNPs, which is realized by a
weighted G-matrix, and the weights can be obtained by an
iteration procedure. Thus, SNP effects and weights for
ssGWAS were calculated as follows:

1. Calculate the G matrix with Dii= 1 using (3).
2. Calculate the GEBV for all the genotyped animals

using the reaction norm based ssGBLUP.
3. Calculate the SNP effects buð Þ based on the GEBV withbu ¼ DZ′ ZDZ′ð Þ�1ba, where ba is the vector of the GEBV

with elements calculated using formula (6).
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4. Calculate the weight (Dii) for each SNP as
Dii ¼ bu2i 2pi 1� pið Þ, where pi is the allele frequency for the
ith SNP.

5. Calculate D by normalizing the SNP weights to keep
the total genetic variance constant.

6. Repeat steps 2–5.
Considering that too many iterations may cause some

subjective peaks, the ssGWAS was run for three iterations
(Wu et al. 2018), and in the last iteration, the SNP effects
for the intercept bu0ð Þ and slope bu1ð Þ were calculated asbus ¼ DZ′ ZDZ′ð Þ�1bas, where s equals 0 for the intercept and
1 for the slope. The percentage of genetic variances of the
slope or intercept explained by a discrete window of 20
adjacent SNPs was defined as Var astð Þ

σ2as
� 100%, where ast is

the genetic value for the intercept (s= 0) or slope (s= 1) of
the tth window and can be calculated as

P20
k¼1 Zkbusk, where

Zk is the matrix of gene content of the kth SNP for geno-
typed individuals, and busk is the SNP effect of the kth SNP
with the tth window for the intercept or slope; σ2as is the total
additive genetic variance for the intercept or slope. In
addition, the remaining SNPs (<20) at the end of the
chromosome were merged into the last window.

Candidate genes within the top 10 windows with the
highest percentages of genetic variances of the intercept or
slope were retrieved by the BioMart package (Durinck et al.
2005) based on UMD 3.1 assembly.

Results

Descriptive statistics

The summary statistics for each trait are listed in Table 1. A
large amount of phenotypic variation was observed for each
trait. Table 1 also lists the heritability of each trait estimated
by the conventional linear mixed model based on pedigree
information. As expected, the heritability estimates for these

fertility traits were quite low, which is consistent with an
earlier study (Liu et al. 2017).

Variance and covariance components estimated by
RNM

The estimates of variance components and their standard
errors obtained by the RNMs based on different relationship
matrices (A and H) were very similar (Table 2). Table 2 also
lists the correlation coefficients between the intercept and
slope for each trait. All of these correlation coefficients were
negative and ranged from −0.880 to −0.360.

The heritabilities among different herd levels (in the
range of mean ± 2.5 × standard deviation of herd effects)
estimated by the RNM based on the A matrix and those
from the RNM based on the H matrix were similar (Fig. 1).
The highest heritabilities for these traits were generally
observed in herds with the largest effects. The least amount
of variation in heritibilities among herd levels was observed
for NRR, but with large standard errors. Figure 1 also shows
the discrete lines of heritabilities along the continuous EGs,
which were caused by the heterogeneous residual variances
assumed for five groups of herds in the model. Generally,
the larger the herd effects were, the larger the residual
variance was and thus the smaller weights assigned to the
residual variance were, although this was not the case for
NRR and ICF (Table S1).

Environmental sensitivity

The genetic sensitivity to different environments for each
trait was indicated by the variance of the slope (Table 2),
which was statistically (P-values < 0.05) different from zero
for all traits based on one-tailed t-tests. The genetic corre-
lations between a herd at a particular quantile of herd effects
(in the range of mean ± 2.5 × standard deviation of herd
effects) and herd level at 5% (lowest), 55% (intermediate)

Table 2 Variance of the intercept ðσ2a0 Þ, variance of the slope ðσ2a1 Þ, covariance between the intercept and slope ðσa0a1 Þ, permanent environmental
variance ðσ2peÞ, variance of herd-year effects ðσ2hyÞ, residual variance ðσ2hyÞ and correlation between the intercept and slope ðra0a1 Þ, with their
standard errors in parentheses estimated using an RNM

Trait A|H σ2a0 σ2a1 σa0a1 σ2pe σ2hy σ2e ra0a1

AIS A 0.083 (0.025) 0.046 (0.009) −0.054 (0.015) 0.052 (0.003) 0.052 (0.003) 1.40 (0.003) −0.880 (0.030)

H 0.076 (0.024) 0.044 (0.009) −0.050 (0.014) 0.052 (0.003) 0.010 (0.0005) 1.40 (0.003) −0.871 (0.033)

ICF A 92.0 (15.8) 0.015 (0.003) −0.849 (0.193) 53.3 (2.05) 38.7 (0.930) 728.1 (1.70) −0.724 (0.047)

H 95.5 (15.9) 0.016 (0.003) −0.883 (0.195) 52.1 (2.10) 38.7 (0.929) 728.2 (1.70) −0.725 (0.046)

IFL A 48.0 (22.0) 0.052 (0.011) −0.621 (0.462) 168.2 (7.76) 18.3 (1.03) 3383.1 (8.03) −0.395 (0.178)

H 44.7 (21.3) 0.050 (0.011) −0.535 (0.446) 166.6 (7.85) 18.3 (1.03) 3383.9 (8.03) −0.360 (0.192)

NRR A 0.006 (0.002) 0.009 (0.005) −0.005 (0.003) 0.004 (0.0004) 0.001 (0.00007) 0.235 (0.0005) −0.709 (0.116)

H 0.005 (0.0017) 0.009 (0.005) −0.005 (0.003) 0.004 (0.0004) 0.001 (0.00007) 0.235 (0.0005) −0.690 (0.122)

AIS number of inseminations per conception, ICF interval from calving to first insemination, IFL interval from first to last insemination, NRR non-
return rate at 56 days after first insemination, A and H pedigree-based and pedigree-genomic combined matrices, respectively
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or 95% (highest) quantiles are shown in Fig. 2. The dif-
ferences of patterns between A and H are very small for ICF
and NRR, while the genetic correlations estimated by A
matrix were slightly lower than those estimated by H matrix
for AIS and IFL (Fig. 2). The values of genetic correlations
between extreme EGs are listed in Table 3. It was observed
that genetic correlations between quantiles of (1 and 99%),
(5 and 95%), (10 and 90%) and (20 and 80%) of herd levels
were significantly different from unity, mainly for ICF and
IFL. Table 4 lists the number of overlapping animals of the
top 50 sires between extreme EGs. The more extreme

between these EGs were, the lower the overlap of the top
sires was, which indicates that the re-ranking of sires can
happen across extreme EGs, especially for ICF.

Accuracy of predicted breeding values

Table S2 lists the LRT statistics for the RM and RNM,
which were all statistically significant, indicating the rea-
sonability of the RNM. The accuracies of predicted breed-
ing values for bulls in the validation dataset obtained by
different models are listed in Table 5. The highest accuracy

Fig. 1 Heritabilities estimated using an RNM with the A relationship
matrix (left) and H relationship matrix (right) for female fertility traits:
AIS (number of inseminations per conception), ICF (interval from
calving to first insemination), IFL (interval from first to last insemi-
nation), and NRR (non-return rate at 56 days after first insemination).

The x-axis represents the normalized herd effects with a range of mean
± 2.5 standard units. The lines with different colours show the herit-
abilities within different groups of heterogeneous residual variance
along different EGs, and the shades represent standard errors
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Fig. 2 The genetic correlations between performances in a herd at a
particular quantile of environmental gradients (EGs) and a herd at 5,
55 or 95% quantile of EGs for AIS (number of inseminations per
conception), ICF (interval from calving to first insemination), IFL
(interval from first to last insemination), and NRR (non-return rate at

56 days after first insemination) obtained from an RNM with the A
relationship matrix and H relationship matrix. The x-axis represents
different quantiles of EGs with a range of mean ± 2.5 standard units,
and y-axis represents genetic correlation

Table 3 Genetic correlations
(standard errors) across extreme
EGs

Trait A|H Genetic correlation (1
and 99%)a

Genetic correlation (5
and 95%)a

Genetic correlation
(10 and 90%)a

Genetic correlation
(20 and 80%)a

AIS A 0.773 (0.217) 0.883 (0.103) 0.932 (0.058) 0.971 (0.024)

H 0.793 (0.189) 0.891 (0.092) 0.938 (0.050) 0.974 (0.021)

ICF A 0.794* (0.105) 0.883* (0.063) 0.928* (0.039) 0.968* (0.018)

H 0.793* (0.104) 0.882* (0.062) 0.928* (0.039) 0.968* (0.018)

IFL A 0.901* (0.051) 0.952* (0.026) 0.970* (0.016) 0.987* (0.007)

H 0.911* (0.047) 0.956* (0.023) 0.973* (0.015) 0.988* (0.006)

NRR A 0.816 (0.172) 0.903 (0.096) 0.939 (0.060) 0.974 (0.026)

H 0.818 (0.165) 0.903 (0.093) 0.940 (0.058) 0.975 (0.024)

AIS number of inseminations per conception, ICF interval from calving to first insemination, IFL interval
from first to last insemination, NRR non-return rate at 56 days after first insemination, A and H pedigree-
based and pedigree-genomic combined matrices, respectively
aThe genetic correlations between the 1 and 99%, 5 and 95%, 10 and 90%, and 20 and 80% quantiles of EGs;
one asterisk (*) means the value deviates from unity by more than 1.645 × SE.
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(0.319) was observed between GEBV and DYD for ICF
using the RNM. The inclusion of genomic information
improved the prediction accuracy in both the RM and
RNM. The largest improvement was observed for AIS with
the RM, which increased from 0.154 to 0.248. The
accuracies for ICF and IFL obtained from the RNM were
slightly higher than those obtained from the RM, and the
largest improvement was observed in the EBV of IFL for
the RNM, which increased from 0.133 to 0.140.

ssGWAS for ICF and IFL

The percentages of genetic variances explained by genomic
windows are shown in the Manhattan plot in Fig. 3. Table
S3 shows the location information of top windows for the
intercept, slope and candidate genes included in those
windows. Some top windows that accounted for the largest
variance of the intercept were also found to be the top
windows that explained the largest variance of the slope for
ICF (6 windows) and IFL (1 window), but the effects of
these shared windows were mainly in opposite directions
because of the negative correlation coefficients between the
intercept and slope for ICF (−0.725), and for IFL (−0.360).
The top genomic window explained 4.34% of the variance
of the intercept for ICF, which also accounted for the largest
percentage (3.00%) of the variance of the slope for ICF.
Compared with ICF, the percentages of genetic variances
explained by genomic windows for IFL were smaller. There
were two genomic regions associated with both ICF and
IFL, namely, 24.04–24.90 Mb on BTA23 and 70.78–71.59
Mb on BTA17. The candidate genes in these two windows
were the immunity-related genes IL17, IL17F and LIF.

Discussion

In this study, we explored the G × E interaction for female
fertility traits using RNMs with or without genomic infor-
mation and evaluated prediction accuracies for future per-
formance. Further, we tried to locate the particular regions
in the genome that probably explain the genetic background
of ICF and IFL, which exhibited G × E interactions across
extreme EGs. The results showed that the slope variances of
the reaction norm for all the traits were statistically sig-
nificant from zero, while genetic correlations across the
extreme EGs could only be identified as significantly dif-
ferent from unity for ICF and IFL. Generally, the inclusion
of genotype information improved the prediction accuracy.
In addition, some candidate genes influencing intercepts and
slopes of reaction norms for ICF and IFL were also
identified.

Heritabilities estimated from conventional linear
mixed model

The heritabilities estimated from the conventional linear
mixed model (Table 1) were similar to those from previous
studies (Hou et al. 2009; Jamrozik et al. 2005; Liu et al.
2008, 2017). Several studies showed that heritability esti-
mates for interval traits (IFL and ICF) were generally higher
than those for count trait (AIS) and binary trait (NRR) for
dairy cattle (Berry et al. 2013; Ghiasi et al. 2011), which
was also true for our study.

Table 4 The number of overlapping animals of the top 50 sires along
two extreme EGs

Trait A|H Top 50
overlaps (1
and 99%)a

Top 50
overlaps (5
and 95%)a

Top 50
overlaps (10
and 90%)a

Top 50
overlaps (20
and 80%)a

AIS A 26 34 36 43

H 24 32 37 42

ICF A 23 26 29 37

H 19 26 33 39

IFL A 39 42 43 46

H 38 41 43 45

NRR A 37 40 42 44

H 34 38 41 46

AIS number of inseminations per conception, ICF interval from
calving to first insemination, IFL interval from first to last
insemination, NRR non-return rate at 56 days after first insemination,
A and H pedigree-based and pedigree-genomic combined matrices,
respectively
aThe number of overlapping animals in the top sires in the 1 and 99%,
5 and 95%, 10 and 90%, and 20 and 80% quantiles of EGs

Table 5 The prediction accuracies for different traits using an RM and
RNM

Trait Model Cor(EBV, DYD)a Cor(GEBV, DYD)b

AIS RM 0.154 0.248

RNM 0.147 0.236

ICF RM 0.262 0.318

RNM 0.265 0.319

IFL RM 0.133 0.218

RNM 0.140 0.228

NRR RM 0.123 0.127

RNM 0.103 0.117

AIS number of inseminations per conception, ICF interval from
calving to first insemination, IFL interval from first to last
insemination, NRR non-return rate at 56 days after first insemination,
RM reduced model, RNM reaction norm model
aThe correlation coefficients between DYD and predicted breeding
values estimated using the A matrix
bThe correlation coefficients between DYD and predicted breeding
values estimated using the H matrix
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Variance components estimated with the RNM

In this study, we estimated variance components using an
RNM with A or H matrices. A previous study on milk yield,
dry matter and body weight of Holstein dairy cattle com-
pared genetic variance estimates obtained from ssGBLUP
with those obtained from conventional BLUP and showed
that variance components estimated with the A matrix were
higher than the components obtained from the H matrix,
while the latter led to higher accuracy (Veerkamp et al.
2011). However, genetic variance estimates obtained from
the conventional RNM and those from the genomic RNM
were similar, which was consistent with the result of an
earlier study on G × E interactions for total number born in
pigs using an RNM (Silva et al. 2014).

Residual variances across different EGs could be dif-
ferent (Knap and Su 2008; Kolmodin et al. 2002). In our
study, the heterogeneous residual variances were defined for
different herd groups, but not at each herd level. This
resulted in discontinuous estimates of heritability between
herd groups, as shown in Fig. 1. We found that the residual
variance components did not always increase along with the
increase in herd effects for ICF and NRR. This pattern has
also been observed and discussed in previous studies for
G × E interactions in pigs (Silva et al. 2014) and cattle
(Cardoso and Tempelman 2012). Calus et al. (2006) sug-
gested that a higher-order RNM and alternative hetero-
skedastic error specifications might be used in analysis of
G × E interactions.

G × E interaction

In this study, the variance of the slope in the RNM was
significantly different from zero for all traits, suggesting that
all traits exhibited G × E interaction to some extent (Fal-
coner 1990). The correlations between the intercept and
slope for all the traits were strongly negative. Some studies
asserted that a low correlation between the intercept and
slope suggested the re-ranking of animals across different
environments, which means that the best animal in one
environment was not necessarily the best in another envir-
onment (Santana et al. 2013; Su et al. 2006). Actually, even
if the correlation between the intercept and slope is very
high, the re-ranking of animals can still occur as long as the
range of EG is large enough and the variance of the slope is
significantly different from zero, because the trajectories of
different animals’ performances along the EG are not par-
allel. Therefore, the selection of robust animals with flat
slopes and preferential intercepts in breeding practice is
very important because they maintain the superior perfor-
mance across different environments (Strandberg et al.
2000). In addition, environmental sensitivity must be taken
into account in the selection of animals as it offers the
opportunity to automatically include the environment in the
breeding goal (De Jong and Bijma 2002). Furthermore,
when RNM was used for a conventional breeding program,
the breeding value for each herd level could be appropriate
for selection of a heifer/cow, which is raised in a particular
farm. However, the breeding value at average effect of

Fig. 3 Proportions of the
intercept and slope variances
explained by each 20-SNP
region for ICF (interval from
calving to first insemination) and
IFL (interval from first to last
insemination) based on
ssGWAS. The x-axis represents
the chromosomes, and the y-axis
shows the percentages of genetic
variances
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herds could be appropriate for a bull, whose daughters are
raised in different farms.

Conventional RNMs and genomic RNMs led to similar
genetic correlations between different EGs for ICF and
NRR (Fig. 2), which was consistent with previous estimates
for yearling weight trait of beef cattle (Oliveira et al. 2018).
However, slightly lower genetic correlation coefficients
estimated by conventional RNMs were observed for AIS
and IFL, which were consistent with previous results for
total number born of pigs (Silva et al. 2014). As we have
mentioned above, there existed differences of variance
components estimated with different relationship matrices,
but genomic relationship matrix led to more accurate esti-
mates. Even so, the differences of estimates between
genomic and conventional RNMs led to the similar results
of existence of G × E interaction, i.e., the genetic correla-
tions between extreme EGs were significantly from unity
for ICF and IFL using both conventional and genomic
RNMs (Table 3), indicating that the re-ranking of sires may
occur if their daughters are distributed across different
extreme EGs, which can be observed in Table 4. It was
observed that re-ranking was more evident for ICF and AIS
than for IFL and NRR (Table 4). Some previous studies
have reported the existence of G × E interactions in different
fertility traits for cows under different environmental
descriptors. For instance, ICF was found to have a high
sensitivity under different calving months in Danish and
Swedish Holstein dairy cattle (Ismael et al. 2016). Sig-
nificant G × E interactions in different herds of conventional
and organic production systems were observed for calving
interval, days open and pregnant at first insemination only
in the second parity of Swedish Holsteins (Sundberg et al.
2010), but no G × E interactions existed in the first parity.
This suggests that the existence of G × E interactions
depends not only on the different environmental descriptors
but also on the different stages within lactations.

Accuracy of genomic prediction

Although the existence of G × E interactions between dif-
ferent EGs was not pervasive for all traits, the LRT results
showed that the RNM fit the data better than the RM
without considering G × E interactions of all these traits
(Table S2). However, the LRT simply measures the good-
ness of fit of the model rather than the accuracy of pre-
diction (Su et al. 2012). Therefore, the prediction accuracies
were compared between the RM and RNM, and the RNM
had slightly higher prediction accuracies for ICF and IFL,
which is also consistent with the existence of G × E inter-
actions across extreme EGs. Whether the accuracy of pre-
diction for future performance could be improved by the
inclusion of the reaction norm was examined by the eva-
luation of genomic predictions using the RNM with A and

H matrices. Compared with pedigree-based BLUP, higher
accuracies were obtained with the inclusion of genotype
information. In a previous study that evaluated the genomic
prediction accuracy using a conventional ssGBLUP model
in the same Holstein population, the genomic prediction
accuracy of ICF was evaluated to be 0.24 for pedigree-
based BLUP and 0.29 for ssGBLUP (Ismael et al. 2017),
which is comparable to the results we obtained in this study.

Mapping of genomic regions associated with the
intercept and slope of the reaction norm

This study performed ssGWAS to locate the particular
regions along the genome that were associated with fertility
phenotypes and environmental sensitivity. ICF and IFL
were chosen to perform ssGWAS as significant G × E
interactions were observed across extreme EGs for the two
traits (Table 3), and slightly higher prediction accuracies for
the RNM were observed compared to the RM (Table 5).
Some identified genomic windows were common for both
the intercept and slope for each of the two traits (Table S3),
and more were found for ICF. The latter result could be
because the absolute value of the correlation between the
intercept and slope was high (0.725) for ICF, and low
(0.360) for IFL. The overlaps of genomic windows between
ICF and IFL contain some immune genes such as IL17,
IL17F and LIF, which were proved to be related to fertility.
For instance, IL17 and IL17F encode interleukin 17 cyto-
kine, and the increased level of this cytokine in plasma has a
negative impact on human fertility (Ozkan et al. 2014). LIF
encodes another interleukin cytokine, leukaemia inhibitory
factor, which plays an important role in embryo implanta-
tion. It has been reported that aberrant leukaemia inhibitory
factor production is linked to implantation failure (Salleh
and Giribabu 2014). In addition, immunity-related genes
were observed in top genomic windows for the intercept
and slope of the two traits, such as IL17, IL17F, IL17RB,
LIF, CHDH, CD59 and TLR4, indicating influences of
immunity on fertility in cattle. It has been reported that
immunity and fertility could share some common elements
(Hurley 2014). As different antimicrobials are used in dif-
ferent herds among different production systems (Ben-
nedsgaard et al. 2006; Bennedsgaard et al. 2010), the
pleiotropy of these immunity-related genes may play roles
in the performance of fertility traits (Banos et al. 2013).
Some genes in the top regions of the intercept and slope for
ICF have been previously identified as contributing to cattle
fertility. For instance, TFG, EREG and AREG are related to
preovulatory follicles in cattle (Li et al. 2009), and TPR is
linked to age at first calving in Nellore cattle (Mota et al.
2017). For IFL, the genomic regions influencing the inter-
cept contain the SMAD4 gene, which is necessary for early
embryonic development and embryotrophic actions of
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follistatin in cattle (Lee et al. 2014). The genomic windows
related to the slope for both traits also contain two growth-
related genes, MC4R and LEP, both of which can regulate
obesity and energy expenditure (Dempfle et al. 2004; Pao-
lini et al. 2016; Rosenbaum and Leibel 2014; Rutanen et al.
2004). The association between these genes and ICF and
IFL suggests that that fertility of cattle is an energy-
dependent process, which could be influenced by another
energy-consuming process of growth, based on the energy
allocation theory (Heino 1999).

In conclusion, genetic parameters obtained from the
RNM suggested the existence of G × E interactions for all
traits, indicating that the breeding value of an individual may
be changed in different herds for these traits. However,
genetic correlations across extreme EGs indicated significant
G × E interactions for ICF and IFL. The RNM resulted in a
better goodness of fit than the RM for all the traits and
higher prediction accuracies for ICF and IFL than the RM.
Genotype information improved the prediction accuracies of
both the RM and RNM for all of the traits. Several repro-
duction-related, immunity-related and growth-related genes
were identified in the genomic regions affecting the inter-
cepts and slopes of the reaction norm for ICF and IFL.

Data archiving

Data supporting this paper were obtained from the com-
mercial dairy farms in Denmark. The phenotype and gen-
otype data are available only upon agreement with
commercial breeding organizations and should be requested
directly from the corresponding author.
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