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Received: 11 December 2021

Accepted: 7 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Single-Cell RNA Sequencing with Spatial Transcriptomics of
Cancer Tissues
Rashid Ahmed 1,2,3,4,*, Tariq Zaman 5, Farhan Chowdhury 6, Fatima Mraiche 7 , Muhammad Tariq 3 ,
Irfan S. Ahmad 4,8,9 and Anwarul Hasan 1,2,*

1 Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University,
Doha 2713, Qatar

2 Biomedical Research Centre, Qatar University, Doha 2713, Qatar
3 Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and

Technology, Mirpur 10250 AJK, Pakistan; tariq.awan@must.edu.pk
4 Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign,

Urbana, IL 61801, USA; isahmad@illinois.edu
5 College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA;

tariqzaman.ak@gmail.com
6 Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale,

Carbondale, IL 62901, USA; farhan.chowdhury@siu.edu
7 Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;

fatima.mraiche@qu.edu.qa
8 Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign,

Urbana, IL 61801, USA
9 Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
* Correspondence: rashidh@illinois.edu (R.A.); ahasan@qu.edu.qa (A.H.)

Abstract: Single-cell RNA sequencing (RNA-seq) techniques can perform analysis of transcriptome
at the single-cell level and possess an unprecedented potential for exploring signatures involved in
tumor development and progression. These techniques can perform sequence analysis of transcripts
with a better resolution that could increase understanding of the cellular diversity found in the tumor
microenvironment and how the cells interact with each other in complex heterogeneous cancerous
tissues. Identifying the changes occurring in the genome and transcriptome in the spatial context is
considered to increase knowledge of molecular factors fueling cancers. It may help develop better
monitoring strategies and innovative approaches for cancer treatment. Recently, there has been a
growing trend in the integration of RNA-seq techniques with contemporary omics technologies
to study the tumor microenvironment. There has been a realization that this area of research has
a huge scope of application in translational research. This review article presents an overview of
various types of single-cell RNA-seq techniques used currently for analysis of cancer tissues, their
pros and cons in bulk profiling of transcriptome, and recent advances in the techniques in exploring
heterogeneity of various types of cancer tissues. Furthermore, we have highlighted the integration of
single-cell RNA-seq techniques with other omics technologies for analysis of transcriptome in their
spatial context, which is considered to revolutionize the understanding of tumor microenvironment.

Keywords: intratumor heterogeneity; single-cell RNA sequencing techniques; spatial transcriptomics

1. Introduction

Tumor heterogeneity is the most complex contributor to misdiagnosis and is often
associated with the failure of identifying its margins in different tissues. There is a dire
need for the development of new approaches that can precisely detect molecular mecha-
nisms fueling tumor heterogeneity and better help diagnose cancers in clinical practices.
Molecular approaches developed so far provide limited information about tumor cells
and their microenvironment as these approaches can perform bulk transcriptome analysis
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without addressing their spatial context [1]. In the case of heterogeneous cancer, imaging
and molecular analysis face the challenges of identification of aggressive clones in their
spatial context leading to poor efficacy of therapeutic interventions [2]. Single-cell RNA-seq
can perform sequence analysis of the whole transcriptome of cancer tissue sections to
understand the complex landscape of the tumor microenvironment [3]. Homogenization of
tissue samples during single-cell RNA seq analysis (before sequencing) usually disrupts the
spatial information of cells and thus leads to failure in the understanding of organizations
of cells and their interaction with each other in the native tissue landscape. The issue of
loss of spatial information about RNA analytes has been resolved by combining single-cell
RNA-seq with spatial transcriptomics. The combination of these approaches helped profile
RNA expression in their native site and improved understanding of the factors that deter-
mine morphology, genotype, and microenvironment of the cells, which can help develop
precise diagnosis and effective treatment strategies [4].

Analysis of RNA expression in their spatial context provides important information
about cellular heterogeneity of tissues, tumors, and immune cells as far as the application
of spatial transcriptomics is concerned. This also helps to decipher subcellular localization
and expression of RNA in various conditions, which leads to a better understanding of
the architecture of tissues [5]. Spatial transcriptomics approaches provide an opportunity
to understand the functioning of individual cells in complex multicellular organisms by
knowing their physical location in tissue sections. In the past few years, there have been
tremendous efforts to map the transcriptome of cells in their spatial context, and in this
direction different omics approaches have been successfully applied for the analysis of cells
in tumor tissue [6]. It has been proved that these methods are complementary to the single-
cell RNA-seq and can be integrated for the mapping of RNA analytes within tissue samples.
For instance, it is found that when in situ hybridization (ISH) is combined with the single-
cell RNA-seq technique we obtain information of transcriptional heterogeneity existing
among various types of cells in tissue architecture. However, ISH methods face certain
challenges for the molecular analysis of RNA as there is no reliable ISH method for the
analysis of solid tumors that display varied gene expression patterns due to variable tissue
architecture. In addition, ISH techniques have limited throughput and are only applicable to
a small subset of transcripts only. However, recent developments in omics technologies such
as spatial transcriptomics have largely resolved the limitations of ISH methods, especially
issues of limited throughput and accuracy. Furthermore, these platforms can profile
the expression patterns of RNA analytes within cells without tissue homogenization [7].
Recent progress in spatial transcriptomics technologies has made it possible to visualize
the transcriptome of 100–200 cells [8]. Thus, a combination of single-cell RNA seq and
spatial transcriptomics provides an unbiased and in-depth analysis of heterogeneous tissue
samples, especially when spatial visualization of RNA transcripts is required.

This review article describes potential applications of the emerging single-cell RNA-
seq techniques for the analysis of unbiased RNA sequencing within the heterogeneous
tumor and highlights the importance of single-cell RNA-seq techniques in terms of their
accuracy, sensitivity, reliability, and resolution for exploring and understanding the mi-
croenvironment. The review article also provides an in-depth knowledge of the integration
of single-cell RNA-seq with data generated by omics technologies towards a comprehen-
sive analysis of intratumor heterogeneity. It is expected that the literature presented here
will help researchers expand their work for exploring splicing and post-transcriptional
modifications of RNA methylation, without compromising the spatial context of the cancer
cell using single-cell RNA-seq techniques.

2. History of Single-Cell RNA-Seq Techniques

The journey of single-cell RNA-seq started in 2009 when this technique was used for
the first time for the analysis of mouse blastomere dividing at the four-cell stage [9]. In
the same year, the first-ever single-cell transcriptome was analyzed with this technique,
and work was published by using the next-generation sequencing platform to assess the
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characteristics of the cells from early developmental stages. James Eberwine et al. [10] and
Iscove along with their colleagues [11] were pioneers for sequencing the entire transcrip-
tome at the single-cell level. The first multiplex single-cell RNA-seq library was created
by Islam et al. using mouse embryos [12]. Up till 2012, single-cell RNA-seq techniques
were able to explore unprecedented details in gene expression analyses. However, their
efficient application to single-cell transcripts analysis was challenged by the small starting
amounts of RNA. This problem was overcome by the development of cell expression
by linear amplification and sequencing (CEL-Seq), a method for overcoming this limita-
tion by barcoding and pooling the samples [13]. The first multiplex single-cell RNA-seq
methodology was commercialized in 2014, which greatly helped decrease the time and
labor required for isolation and library preparation of single cells [14]. In the following
year, the drop-seq technique was developed for barcoding the RNA from thousands of
individual cells [15], which showed a surprisingly low noise profile during its application
for transcripts analysis. By the end of 2016, Tirosh et al. explored the distinct genotypic and
phenotypic states of melanoma tumors by application of single-cell RNA-seq to 4645 single
cells isolated from 19 patients [16]. Furthermore, further advancement took place when
single-cell RNA-seq was carried out on clustered cell populations in the murine epidermis,
which resulted in the identification of 25 different types of cells from the tissue samples [17].
A study performed by Shalek and Benson showed that single-cell RNA-seq plays a key role
in understanding the molecular pathways associated with disease development during
personalized medications [18]. In 2017, the seq-well was introduced, which served as the
simplest, but affordable and portable, single-cell library preparation platform for analysis
of thousands of human macrophages exposed to Mycobacterium tuberculosis [19]. Another
technique named transcriptional landscape during cytomegalovirus latency was introduced
in 2018 by using the single-cell RNA-seq technique [20]. Furthermore, a technique named
single-cell optical phenotyping and expression sequencing (SCOPE-Seq) was introduced,
which was able to perform single-cell RNA seq with live-cell imaging [21]. The latest
research in this field shows the innovation of the RNA-Seq toolbox for human tissues which
have currently analyzed 216,490 cells along with their nuclei and have detected eight tumor
types in tissue samples [22]. Recently there are several droplet-based platforms such as
Chromium from 10x Genomics, InDrop from 1CellBio, ddSEQ from Bio-Rad Laboratories,
and µEncapsulator from Dolomite Bio/Blacktrace Holdings which provide reagents on
a commercial basis for doing the single-cell RNA-seq for wet labs. The uniqueness of
droplet-based instruments is that there are individual partitions in these instruments which
contain all the necessary reagents for cell lysis, reverse transcription, and molecular tagging.
Thus, cells can be encapsulated inside these partitions and there is no need for isolation
of cells through flow-cytometry or microdissection [15,23,24]. In this way, thousands of
cells can be analyzed by single-cell RNA-seq. However, there should be a specialized
hardware platform provided to the researchers for performing single-cell RNA seq with
droplet-based methods for the first time. This can be seen in a timeline of discovery and
innovations of single-cell RNA sequencing techniques as shown in Figure 1.
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Figure 1. Presents a timeline of the discovery of RNA sequencing techniques and their improvements
in efficiency and sensitivity with innovations in techniques [9].

3. Methods of Single-Cell RNA-Seq Techniques

There have been tremendous efforts carried out for the development of single-cell
RNA seq techniques in wet-lab, bio-informatic or computational tools in recent years,
resulting in the general methodology as presented in the methodological pipeline (Figure 2).
Among these techniques, the most important step is the isolation of single cells from tissue
samples. Isolated cells are lysed with specific reagents for the extraction of target RNA
molecules and processed after the purification process. We would like to mention here
that RNA molecules are polyadenylated with poly(T) primers to prevent the presence of
ribosomal RNA in a reaction as processing (analysis) of non-polyadenylated mRNA is
quite challenging and requires specific protocols [25,26]. Total RNA molecules isolated
from cells are used to synthesize cDNA molecules by reverse transcriptase reaction. In
addition, to reverse transcription primer sets, specific adopter sequences (unique molecular
identifiers) are added for the detection of RNA molecules by NGS platforms [27]. Syn-
thesized cDNA molecules are amplified using PCR or in vitro transcription followed by
another round of reverse transcription or amplification by nucleotide barcode-tagging [28].
Then, amplified and tagged cDNA from every cell is pooled and sequenced by NGS, using
library preparation techniques, sequencing platforms, and genomic-alignment tools similar
to those used for bulk samples [29]. The steps used for carrying out the RNA sequenc-
ing from single-cell levels obtained from cancer tissues are shown in Figure 2. To date,
there are several methods used for sequencing transcriptome of single-cell level, but the
most important techniques that have been commonly used in single-cell RNA-seq include
SCRB-seq, CEL-seq2, MARS-seq, Drop-seq, Smart-seq1, Smart-seq2, and 10× Genomics.
The Smart-seq2 could detect maximum transcripts in an individual cell while CEL-seq2,
MARS-seq, Drop-seq, and SCRB-seq can quantify mRNA with minor noise using unique
molecular identifiers (UMIs). However, the most cost-effective technique is the Drop-seq
for RNA profiling in cases where analysis involves a higher number of cells, but for fewer
cells, SCRB-seq, MARS-seq, and Smart-seq2 approaches are more useful and more effective
for profiling transcriptome.

3.1. Cell Expression by Linear Amplification and Sequencing (CEL-Seq)

Single-cell RNA-seq introduced by Tang and his colleagues involved the use of polyT
sequences for the analysis of mRNA from tissue samples [9]. Initially, it was found suitable
for the analysis of RNA as this technique can profile 75% more RNA analytes compared
with microarray techniques, but it required a higher concentration of input RNA for the
seq processing. To solve this issue, Hashimoshony et al. used a CEL-Seq method that
involved barcoding and the pooling of RNA from tissue samples [13]. The method involved
barcoding, 3′ end tagging, and analysis of transcripts. CEL-seq has some interesting features



Int. J. Mol. Sci. 2022, 23, 3042 5 of 22

which were missing in other methods. For instance, it has higher strand specificity (with
more than 98% of exonic reads coming from the sense strand) and high barcoding efficiency
(>96%) [13]. Moreover, because only the RNA fragments that are the closest to the poly(A)
tail are selected, the estimation of expression levels is much easier than with full-length
RNA-seq methods.

Figure 2. A schematic of various steps used for the analysis of biopsy tissue samples by RNA-seq
techniques such as isolation and sequencing of single cells, preparation of RNA library, and single-cell
level transcriptome analysis.

CEL-seq has higher 3′-bias and low sensitivity for lowly expressed transcripts. A
transcript that has 5 RNA copies per cell, CEL-seq has only a 50% chance of identifying these
transcripts [13]. While sequencing the 3′-terminal portion of each transcript is certainly
sufficient for determining cell identities in a heterogeneous population, it is not suitable for
obtaining detailed information of the rent splice isoforms and their relative abundances in
the cell.

The challenges described in the CEL-seq were overcome when Hashimoshony et al.
developed an improved version of CEL-seq named CEL-seq2 in 2016. This method has a
much higher sensitivity for the detection of RNA transcripts from tissue samples and needs
reduced costs and time for the analysis of tissue samples [30]. Figure 3 shows different
types of RNA-seq techniques used for the analysis of RNA from cancer tissues.
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Figure 3. Shows different types of RNA-seq techniques used for the analysis of RNA from cancer
tissues. (A) depicts cell expression by linear amplification and sequencing method; (B) displays
single-cell RNA barcoding and sequencing (SCRB-seq) approach; (C) displays steps involved in
switching mechanism at the end of the 5′-end of the RNA transcript sequencing (Smart-seq2), (D)
represents various steps used for the analysis of transcripts by Drop-sequencing (Drop-seq), and
(E) shows various steps involved in the Massively Parallel RNA Single-Cell Sequencing Framework
(MARS-seq).

3.2. Single-Cell RNA Barcoding and Sequencing (SCRB-Seq)

SCRB-seq was developed as it can perform analysis of RNA analytes from a low input
concentration. This method involves the use of barcoding and sequencing of single-cell
RNA by incorporating unique molecular identifiers (UMIs) in the reaction, which has
considerably reduced the amplification bias of target mRNA [31]. Later, an advanced
form of SCRB-seq was developed in the form of molecular crowding SCRB-seq (mcSCRB-
seq) that involved the isolation of single cells by FACS sorter in multi-well plates which
contained reaction mix. The reaction used in the mcSCRB-seq technique also used PEG 8000
(7.5%) for the reverse transcription process and for switching the template for molecular
crowding conditions [32]. Advantages of SCRB-seq included being high-throughput,
cost-efficient, and having single-cell transcriptome profiling capacity and higher gene-
detection capacity with improved sensitivity as compared with other well-known single-
cell RNA-seq techniques. The disadvantage of this method is that template-switching
reverse transcription is highly biased for full-length mRNA [33].
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3.3. Switching Mechanism at the End of the 5′-End of the RNA Transcript Sequencing (Smart-Seq)

One of the state-of-the-art next-generation sequencing methods is SMART-seq. Al-
though it is more suitable for sequencing small transcripts, it can also be used to read
full-length genes to show complex structural variation existing in the DNA samples, i.e.,
indicating where copy number variation has occurred based on the reference sequence [34].
In this context, the work of Ramskold et al. received pronounced attention for their aim to
improve the analysis of samples involving the number and size of transcripts. The tech-
nique permitted analysis of forty percent of transcripts from 10 pg of RNA samples, which
is equal to an amount of RNA present in a single cell. The technique used by Ramskold
et al. [34] involved the use of moloney murine leukemia virus for the preparation of cDNA
from RNA from a single cell level. This method produces transcripts intact at 5′ ends and,
therefore, there is no need for the second strand synthesis [35]. These techniques are power-
ful enough to resolve complex RNA splicing patterns from chromosomal DNA libraries, as
a single long read might consist of the entire transcript from one end to another. Smart-seq
is known to offer many advantages such as needing a very minute concentration of input
RNA (50 pg). It can perform analysis with better coverage across RNA transcripts as well
as show a high potential of mapping the transcripts. However, its demerits include lack
of early multiplexing capacity, lack of strand-specificity, absence of transcript length bias
when transcript length is over 4 Kb, and requiring higher input RNA for the amplification.
Moreover, the purification step might result in the loss of material due to strand-invasion
bias. Although Smart-seq dramatically improved the coverage of the transcriptome and
had much higher sensitivity compared with the Tang method, it bore some important
limitations. A lower read coverage toward the 5-end of the transcripts, especially long
several kilobases, was still quite pronounced. Moreover, in the final sequencing library, an
under-representation of transcripts with a high GC content was observed, presumably an
effect of the complex secondary structure of the RNA that the DNA polymerase could not
overcome during the PCR [36]. Most importantly, having to buy an expensive commercial
kit made library preparation prohibitive for research groups on a tight budget and plan-
ning to sequence hundreds or thousands of cells. To address all these issues and improve
the existing method a fairly large selection of buffers, additives, and enzymes, as well as
reaction conditions, were tested. Hundreds of experiments resulted in a dramatically better
protocol that, perhaps without too much creativity, was named Smart-seq [36–38]. From
experiments on different cell lines, the authors observed a substantial increase in the ability
to detect gene expression and a lower technical variation for low- and medium-abundance
transcripts compared with any other full-length single-cell method. The improved sensitiv-
ity led to the detection of a couple of thousand genes more than with Smart-seq, especially
those with a high GC content [36]. In addition, an advanced version of smart-seq named
as smart-seq2 was developed which was able to analyze the transcriptome of single-cell
for full-length chromosomal DNA and sequencing library by using standard reagents
commonly used in molecular biology labs [39,40].

3.4. Drop-Sequencing (Drop-Seq)

Drop-seq is a cost-friendly technique compared with other sequencing techniques
for the analysis of transcriptome at the single-cell level, and the method relies on the use
of encapsulation of single cells with DNA barcoded microbeads [23]. This also allows
maintaining the information on the origin of the transcript at the cellular level. The
molecular barcoding beads are used to distinguish the cell of origin of each mRNA.

Drop-seq is a cost-effective technique as USD 0.7 is needed for one cell analysis and
library preparation time is very short (10,000 per day). The identification of mRNA strands
is quite easy with unique molecular and cell barcodes used in this technique. This method
results in the creation of a high amount of cDNA using reverse transcription with template-
switching PCR. The merits of Drop-seq include evaluation of single-cell sequences of
similar patterns, identification of gene-specific mRNA strands via single molecular and cell
barcodes, high amount of reads from single cells, cost-effectiveness, and fast library prep
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(10,000 cells per day). However, it requires a specialized custom microfluidic device for the
separation of droplets, has low gene sensitivity per cell compared with other single-cell
RNA-seq techniques, and is restricted to only the mRNA transcripts.

3.5. Massively Parallel RNA Single-Cell Sequencing Framework (MARS-Seq)

MARS-seq (automated massively parallel RNA sequencing framework) was devel-
oped for sampling thousands of in vivo cells that used RNA sequencing multiplex by
sustaining the control over biases during amplification and labeling errors. For exploring
this new technique, RNA from over 4000 mouse spleen single cells was sequenced by
focusing on the heterogeneous cell population having a high level of expression of surface
marker CD11c to differentiate between the diversity of spleen cells and cells of ductal carci-
noma. A new framework was developed from single-cell transcriptional states of tissues to
break down the complex functions. MARS-seq can be applied easily to tissues/organs for
revealing detailed genome-wide transcriptional profiling in normal and diseased states,
thus proving this technique to play a vital role to study the biological functions of cells
in vivo [23]. MARS-seq involves the use of randomized molecular tags to initially label
poly-A tailed RNA molecules, followed by pooling labeled samples and performing two
rounds of amplification, generating sequencing-ready material.

Advantages of MARS-seq include in vivo sampling, high throughput transcriptional
profiling, and three barcode levels (cellular, molecular, and plate-level tags), which help in
vigorous multiplexing skills and are cost-effective. However, disadvantages are three biases
in the purification step and removal of strand-specific information during fragmentation.
Table 1 shows a precise comparison of different single-cell RNA-seq techniques for the
analysis of transcriptome of a cell.

3.6. 10x Genomics Single-Cell RNA-Seq

There have been considerable contributions from 10x Genomics in single-cell RNA seq
analysis which has led to the identification of various cell types (subpopulations) found in
heterogenous cancer tissues. For instance, the GemCode™ Technology from 10x Genomics,
which can analyze the transcriptome of a huge number of cell populations (thousands of cells)
by combining a microfluidic platform with molecular barcoding and then the analysis of cells
transcriptome at single-cell resolution using custom bioinformatics software [43]. There is
another useful technology developed by 10x Genomics, named Chromium™ Single Cell RNA
sequencing, for the analysis of the transcriptome of single-cell [42]. This technology performs
the analysis of single-cell RNA seq by encapsulating reaction reagents, single cells, and
barcoded oligonucleotides coated over a single Gel Bead into nanoliter-sized GEMs (Gel Bead
in the emulsion). After encapsulation of reagents needed for reaction inside the GEM, lysis of
a single cell take place and polyadenylated mRNA undergo barcoded reverse transcription.
This whole process creates high-quality next-generation sequencing libraries of the target
transcripts in a single bulk reaction. mRNA libraries are analyzed with the Chromium™
Software Suite to visualize the gene expression at a single-cell level. Chromium™ Single Cell
RNA sequencing has high-throughput and thus is used for measuring gene expression at
single-cell to profile individual cell types in tissues. This system is a complete solution for
the profiling of RNA expression in a single cell and offers the best solutions for identifying
subpopulations of rare cell types in heterogeneous tissues. It is more efficient compared with
droplet systems as it can process more than 80,000 cells in less than 10 min, so it offers a wide
dynamic range as compared with droplet systems.
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Table 1. Comparison of single-cell techniques in the form of the methodology used and advantages
gained for analysis of mRNA analytes.

Technique UMI mRNA
Priming

cDNA
Preamplifica-

tion
Library Generation Transcript

Coverage
Strand

Specificity
Positional

Bias Costs Reference

CEL-seq2 Yes Poly T In vitro
transcription

Transposon
tagmentation 3′-only No Weakley

3′ High [30]

SCRB-seq Yes Poly T PCR RNA fragmentation
and adapter ligation

Nearly full
length No Strongly

3′ High [9]

Smart-Seq No Poly T PCR Transposon
tagmentation Full length No Medium

3′ High [38]

Drop-seq Yes Poly T PCR Transposon
tagmentation 3′-only Yes 3′ only Low [41]

MARS-seq Yes Poly T In vitro
transcription

RNA fragmentation
and adapter ligation 3′-only Yes 3′ only Low [14]

10×Genomics Yes Poly T PCR
cDNA fragmentation,
adapter ligation, and

library amp
3′-only Yes 3′ only Low [42]

4. Spatial Transcriptomics

Spatial transcriptome analysis is one of the breakthroughs in the field of medical
biotechnology as this can map the analytes such as RNA information in their physical
location in tissue sections [44]. This term was first used by Doyle et al. in 2000, termed
spatial genomics [45]. This approach was adopted by Stahl et al. in 2016 and applied for
the analysis of mRNA analytes with improved resolution and higher sensitivity [7]. After
the work of Stahl et al. in spatial mapping of RNA, analytes are performed with different
approaches such as in situ sequencing, fluorescent in situ hybridization approaches, in situ
capture techniques, and in silico methods [5]. However, spatial transcriptomics of RNA
analytes is divided into two broad categories [46,47], (1) next-generation sequencing (NGS)—
comprising positional analysis of RNA transcripts before next-generation sequencing and
(2) imaging-based techniques including in situ sequencing-based methods, which involve
amplification of RNA and their sequencing in a tissue sample and in situ hybridization-
based approaches. The analysis of transcripts is carried out using imaging probes that
hybridized sequentially in the tissue [48–50].

4.1. Next-Generation Sequencing (NGS)-Based Approaches

Single-cell RNA-seq techniques have been the basis for performing the transcriptome
analysis by NGS-based approaches as these methods involve the incorporation of a spatial
barcode before library preparation [51]. The First NGS-based study was reported by Stahl
et al. in 2016 for spatial transcriptomics for tissue sections [7]. It is worth mentioning
here that 10x genomics has played a major contribution in the development of spatial
analysis of RNA entities taken from biological tissues using microarray approaches and
barcoding techniques. Spatial transcriptomics is capable of analyzing whole transcriptome
data across a tissue section and has the potential to visualize any number of genes within
a tissue section [5]. The technique of spatial transcriptomics involved the capturing of
RNA analytes on spatially barcoded microarray slides before proceeding to the reverse
transcription step. This ensured the mapping of each RNA molecule to its original position
in the tissue sample using the unique positional molecular barcode [51]. This technique
was tested on the tissue samples from mouse olfactory bulbs [7] and afterward employed
on several other tissue samples [52–54]. This technique was adopted by 10x Genomics and
the company has recently introduced a new technology called Visium which has improved
resolution and higher sensitivity.

Another form of NGS-based platform is Slide-Seq, which performs analysis of tran-
scripts by covering the glass slides with randomly barcoded beads to capture mRNA [55].
In this method, in situ indexing is used to get the position of each random barcode. This
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platform is much better than Visium as its resolution is up to 10 µm with improved sensitiv-
ity as it can analyze 500 transcripts per bead [56]. Another platform named high-definition
spatial transcriptomics (HDST) further improved the resolution power such as Slide-Seq by
using the beads instead of glass slides which were deposited in wells [57]. In addition, the
DBiT-Seq [58] platform has been innovated with microfluidics channels which are used to
apply polyT barcodes for capturing RNA in tissues. Stereo-seq is another useful platform
that involves the use of randomly barcoded DNA nanoballs that obtain RNA analysis
up to nanoscale resolution [59]. Seq-Scope performs spatial mapping of RNA transcripts
within the nucleus and cytoplasm using spatial barcoding at a subcellular resolution [60].
A polony-derived gel oligo array was used in Pixel-Seq to capture RNA analytes leading to
an improved resolution of ~200-fold as compared with the existing methods [61].

4.2. Imaging-Based Approaches

There are two main types of imaging-based approaches that are used for spatial
transcriptomics: in situ hybridization and in situ sequencing-based methods.

4.2.1. Multiplex Error Robust Fluorescent In Situ Hybridization (MERFISH)

MERFISH (multiplexed error-resistant fluorescence in situ hybridization) can test
thousands of RNA molecules in cancer tissue samples. MERFISH uses a two-step approach
for the analysis of RNA molecules from cells [62]. The method consists of hybridization of
specific encoding probes composed of complementary sequences and two flanking readout
sequences. The approach detects the analyte through several rounds of hybridization
within 15min compared with contemporary methods which required over 10 h for the
analysis of mRNA molecules. Despite several advantages, the technique faced two main
hurdles in its widescale applicability in the form of reduced sensitivity, and thus required an
increase in the round of hybridizations of probes for transcripts analysis [62]. However, this
deficiency was overcome by the development of a new modified method named Hamming
distance error correction code. This approach involved the removal of fluorophores with
a chemical reaction and the ability to image multicolor barcodes resulted in a decrease in
hybridization rounds that led to improving the sensitivity of MERFISH [63].

Single-molecule fluorescence in situ hybridization (smFISH) offers both quantitative
measurements of RNA expression and even RNA spatial localization by directly imaging in-
dividual RNA molecules in single cells [64,65]. The smFISH technique is considered useful
for understanding a vital biological phenomenon from cell division to body patterning in
the development process. Furthermore, recent progress in multiplexed smFISH [62,66,67]
and in situ sequencing [62,68] allows an increase in detection limit and sensitivity of RNA
entities within tissue cells showing a potential of profiling hundreds to thousands of RNAs
at a single-cell resolution [62,69,70]. By these methods, it has been possible now to visualize
the internal organization of transcriptome, thus enabling a better understanding of cell
diversity based on the RNA expression profiles [71]. Among these approaches, MERFISH
multiplexes with smFISH use specific barcodes (error-resistant barcodes) for each RNA
species, and thus each RNA molecule is labeled with an oligonucleotide having a unique
barcode. Imaging of these adjacent labeled RNA molecules with smFISH permits analysis
of transcriptome at a single-cell level [62].

It would be worth mentioning here that in the MERFISH transcriptome analysis
method, the analysis of RNA molecules is based on a fluorescent signal generated by
fluorescently labeled probes tagged to RNA molecules. The intensity of the signal is usually
high enough for the detection of RNA molecules, however, reduced signal intensity renders
low detection and may lead to misinterpretation of biological processes [63,72]. Low signal
intensity is recorded by the application of cameras with extended exposures from high-
power laser illuminations. Thus, signal brightness is improved by laser illuminations. The
length of the RNA molecule also matters for the binding of multiple probes; smaller RNA
molecules allow a limited number of probes binding and thus reduce signal emission,
leading to reduced RNA sensitivity with the MERIFISH technique [72,73].
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4.2.2. Fourth-Generation RNA-Seq

Advances in the Fourth-generation RNA-seq platforms, especially in situ sequencing
(ISS) and fluorescent ISS (FISSEQ), have greatly helped to achieve the objectives and aims
of RNA-seq techniques [69,74]. ISS technique is highly sensitive and involves the use of
padlock probes and rolling circle amplification (RCA) to generate targeted sequencing
libraries, which are later sequenced by the application of NGS techniques. The uniqueness
of the ISS approach is that it can sequence up to 256 RNA transcripts during a single round
of hybridization and thus possess the potential of detection of a combatively higher number
of transcripts during tissue analysis experiments. On the other hand, the fluorescent in situ
sequencing (FISSEQ) uses random hexamers and a sequencing primer tag for stating the
RT reaction [75]. Once the reaction is completed, products are sequenced by the application
of NGS sequencing techniques as used for ISS. The FISSEQ method is better than the ISS
methods as it can create random libraries, perform unbiased analysis, and detect low RNA
copy numbers during the analysis of RNA from single cells [76]. However, ISS sensitivity
is two times greater than FISSEQ methods [77]. Despite several unique features of ISS
and FISSEQ techniques in terms of their detection limits, both techniques are in their early
stage of development and need immense improvements in sample preparation, increasing
efficiency, improvement in computational techniques, and imaging scale.

4.2.3. Laser Capture Micro-Dissected RNA-Seq

Laser capture micro-dissected RNA-seq (LCM-RNAseq) is an advanced approach
to overcome the limitations faced by bulk RNA-seq techniques [78]. The LCM-RNAseq
approach involves the laser capture dissection of cells and then RNA-seq. Over the past
few years, advances in LCM-RNAseq methods have enabled researchers to quantify low-
input degraded RNA molecules extracted from FFPE tissues. For instance, Singh et al. [79]
studied tumor tissue heterogeneity by acquiring sequencing data from 10 LCM isolated
single cells. After this study, another LCM-Smart3seq technique was used which was
capable of performing analysis of a very low quantity of RNA analytes that were obtained
from cells processed by LCM [80]. Later, further advancement in LCM-RNAseq techniques
such as FFPEcap-seq helped the researchers to accurately detect/quantify RNA from FFPE
tissues. This method consisted of the capping of 5′ ends of RNA molecules extracted from
FFPE tissues [81]. The first study that involved the use of LCM-RNAseq on cancer tissues
was tested on lung cancer [82]. This work enabled the researchers to assess the genes
which were involved in the growth of lung cancer. Over the last few years, LCM-RNAseq
has revealed the spatial organization of various types of cells in cancer tissues [83]. The
analysis of tissue sections obtained from human glioblastoma (BGM) by the LCM-RNAseq
technique showed the presence of an array of interconnected channels with a specific micro-
environment that was responsible for the proliferation and migration of cancer cells through
the generation of specific signals [84,85]. Some of the advantages and disadvantages of
RNA-Seq techniques are presented in Table 2.
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Table 2. Advantages and limitations of RNA-Seq techniques for spatial mapping of biomarkers used
in clinical oncology.

Type Strength Weaknesses Suitable Applications

Bulk RNA-seq

Well-developed,
cost-effective, and
high throughput

technique

Unable to determine
spatial content; gene
expression profiling

is average

Whole transcriptome-based
biomarker discovery,

targeted RNA-seq panel for
gene fusion

MERFISH
High-throughput,
high-sensitivity,

high-multiplex power

Reduced specificity
and off-target binding

Spatial organization of the
transcriptome inside the
cells, 3D organization of

the chromatin and
chromosome, spatial

atlases of cells in
complex tissues

LCM-RNAseq
Performs cell-specific

gene expression
analysis

Low-quality data,
time-consuming,

unable to perform
spatial profiling

Applied for tumor
heterogeneity to the

specific population of cells

Single-cell
RNA-Seq

Capable to perform
>10,000 single-cell

gene expression
analysis

Applicable to a
limited number of
unique transcripts,

unable to reveal
spatial content,

high cost

Characterization and
discovery of cell type
tumor heterogeneity

Digital Spatial
Profiling

Useful for FFPE
materials, spatial

profiling

Unable to reveal
sequence information,
restricted to a small

number of gene
panels only

Biomarker discovery,
tumor microenvironments

Spatial
transcriptomics

Spatial profiling,
whole transcriptome

analysis, sequence
information

Time-consuming, the
early phase of
development

Tumor microenvironments,
tumor heterogeneity

Fourth-
generation
RNA-seq

Potential of in situ
sequencing

Not properly well
developed

Great future potential but
not demonstrated yet

5. Integration of Single-Cell RNA-Seq with Spatial Mapping Techniques

Single-cell RNA-seq techniques can generate the sequence information from slides
while preserving the histological context of the area of interest [86] and identifying thou-
sands of genes in the sampled tissues. Besides, single-cell RNA-seq techniques provide
the clinical tools which can contribute towards the early detection of cancer for the de-
velopment of suitable treatment strategies [87]. In addition, these techniques can also
help to identify the location of mutated/aggressive clones inside the tumor, distinguish
between its center and infiltrating edges, provide an evaluation of changes at the molecular
level in the stroma located inside and outside the tumor, and help with the detection of
epithelial-mesenchymal transition [88]. Over the last few years, it has been demonstrated
that single-cell RNA-seq techniques can sequence RNA within the tumor cell from both
fresh-frozen cells or fixed tissues without compromising their spatial context [89]. It can also
be used to incorporate the spatial features directly to specific genetic elements in organoid
specimens or native tissue using image analysis approaches. It can also characterize and
map the sequences obtained from the tumor tissue with the spatial distribution of the
novel microenvironment that includes the complex arrangement of different types of cells
which are regulated by the interplay of single cells [90]. Thus, the main purpose of spatial
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mapping techniques is to get the whole genome/transcriptome data of all cells on the full
slide and use it for further improvement using sequencing techniques [91].

Single-cell RNA-seq has been combined with other omics technologies for better
analysis and understanding of the RNA analytes in their spatial context. In situ visual-
ization of transcriptome by a single-cell RNA-seq gives multiplexed information for the
expression of genes, cell types, and disease progression patterns. On the other hand, the
in situ sequencing (ISS) technique, as mentioned earlier, by using padlock probes and
amplification by a rolling circle amplification, spatially displays expressions of RNA in a
range of tissue sections. The study reported by Gyllborg et al. used hybridization-based
ISS (HybISS) for understanding the spatial localization of RNA in human and mouse brain
tissue samples [92]. This probe’s design modifications in the HybISS platform lead to
improved combinatorial barcoding with an improved detection limit of transcripts, and
thus portrayed localization of RNA transcripts in a spatial context. In another study, Asp
et al. combined different platforms such as single-cell RNA-seq with spatial transcrip-
tomics and ISS platforms to reveal the cellular architecture of the human heart in different
developmental stages [93]. Integration of spatial transcriptomics and single-cell RNA-seq
allowed the mapping of various types in developing human hearts while ISS allowed the
understanding of subcellular details in their physical locations. Moncada et al. combined
single-cell RNA-seq with microarray-based spatial transcriptomics and found variations in
gene expression patterns in a spatial manner in pancreatic ductal adenocarcinomas. This
conformed with the spatial localization of various types of cells and subsets including can-
cer cells, macrophages, ductal cells, and dendritic cells in pancreatic tumors [53]. Another
study was carried out to visualize the spatial localization and cellular heterogeneity of
pancreatic ductal adenocarcinomas through geographical positional sequencing (Geo-seq)
that combined both laser capture micro-dissected (LCM) and single-cell RNA-seq tech-
niques [94]. This technique allowed to differentiate various types of subpopulations of
ductal macrophages, cells, dendritic cells, and cancer cells in a spatial manner. In another
study, the spatial distribution of RNA analytes from a tissue section was performed using
an array of transcription primers fixed on the glass slide [7]. The tissue sections were
mounted on a glass slide, which was followed by the permeabilization step and reverse
transcription on glass slides to synthesize cDNA. Thus, this technique involved the analysis
of RNA isolated from tissue sections fixed on an array of transcription primers with unique
positional barcodes over the glass slide and the construction of their spatial distribution in
a two-dimensional map. Single-cell RNA-seq techniques concerning spatial profiling have
been described precisely in a recently published review article, where authors have docu-
mented the further details in advances of the state of art in the context of the analysis of liver
histology [95]. In the context of the spatial profiling of transcriptome of cancer tissue, Ji et al.
used single-cell RNA-seq combined with spatial transcriptomics and multiplexed ion beam
imaging techniques to analyze the spatial localization of tumor-specific keratinocytes (TSK)
within breast carcinoma [54]. The technique enabled the team to visualize the existence of
a population of TSL, immune infiltrates displaying cellular heterogeneity along edges of
the tumor.

Single-cell RNA-seq studies identified two cancer cell populations for the pancreatic
ductal adenocarcinoma (PDAC-A) tumor that seemed to be quite different from each other
histologically [96]. There was enrichment of endothelial cells, monocytes, and fibroblasts in
the PDAC-A sub-region 1 but a substantial deficiency of cancer cells. Figure 4 shows some
of the recently used approaches integrated with spatial transcriptomics for the analysis of
cancer tissues.
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Figure 4. Single-cell RNA-seq (scRNA-seq) helps in dealing with solid and circulating tumor tissues
in cancer research. The figure shows an analysis of tissue samples taken from cancer patients by
mounting them on glass slides and then tissue permeabilization on glass slides. RNA is amplified
using UMIs and imaged without losing the spatial localization of RNA analytes. In the above figure,
the second route shows the isolation of cells from tissue samples up to single-cell level, then cell
sorting by microfluid device, and then clustering of cells according to RNA sequences performed
with NGS.

6. Clinical Applications of Single-Cell RNA-Seq Techniques

Single-cell RNA-seq is a well-known technique for clinicians and it is expected that
it will be ready soon for clinical applications. Up till now, the transcriptome of tissue
samples of various disease origins obtained from humans has been mapped with the help
of single-cell RNA-seq. The target of most single-cell RNA-seq studies has been to map
the transcriptome of tissues to explore the molecular mechanism of disease progression.
This is deemed very useful for differentiating cellular subpopulations stratifying various
types of disease categories as well as assessing different therapeutic responses. In cancers,
calculations of transcripts copy number, gene mutations, and modifications at a single-cell
resolution are used for determining tumor heterogeneity, clonal lineages, and metastatic
variations. For this application, target gene panels for single-cell RNA seq can perform
profiling of target RNA molecules with improved efficacy.

Tumor heterogeneity is one of the main features of cancers and plays a major role
in drug resistance. The infiltration of stroma and the presence of diverse types of cells
in tumor tissues largely compromise the results obtained by bulk RNA-seq. However,
single-cell RNA-seq techniques, by exploring the intratumoral transcriptomic heterogeneity
of cancers [69], play a significant contribution in evaluating therapeutic responses. In this
context, a group of researchers found that drug-resistant breast cancer cells contain RNA
variations in genes that are involved in microtubule organization, cell adhesion, and cell
surface signaling [97]. However, there were no drug-tolerant-specific RNA variants present
in stressed cells or untreated cells. It was concluded that the formation of RNA variants
is associated with tumor heterogeneity and thus drug resistance in cancer cells compared
with normal cells. Single-cell RNA-seq analysis offers a useful opportunity for tumor
treatment. It is seen that a targeted therapy eliminates a specific clone of cells while other
cell populations remain unharmed due to intratumoral heterogeneity. This challenge was
overcome by the development of therapeutic strategies, which were able to target multiple
tumor subpopulations. Kim et al. analyzed the drug target pathways which have a key
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role in drug resistance in metastatic renal-cell carcinoma using single-cell RNA-seq. Then,
they used combinatorial therapeutic strategies that display improved response in vitro and
in vivo as compared with the monotherapy strategy [98].

Single-cell RNA-seq is applied to identify specific gene signatures for a cell type and
the characterization of known and unknown cell types as well as subtypes within and
surrounding tumors [99–101]. This has resulted in the improvement in cancer treatment
outcomes by exploring unknown complex pathways involved in heterogeneous tumor
tissues. It is well known that T cell infiltration and its characteristics have important
relationships with prognostic outcomes [102] which were used for their clinical responses
in cancers. This was used by Zheng et al. [100], who found that infiltrating lymphocytes
in liver cancer has a distinctive functional composition of T cells in the hepatocellular
carcinoma (HCC). The team was able to identify 11 large subsets and also found specific
subpopulations at a single-cell level which offer useful targets for clinical applications [100].

7. Existing Challenges and Prospects

Single-cell RNA-seq technique and spatial transcriptomics are valuable platforms for the
identification of cancer cells in their physical locations, which can be used for exploring intra-
tumor heterogeneity and epigenetic modifications for individualized therapeutic approaches.
This can have huge effects in clinical applications, but their practical application is restricted
by different limitations. Firstly, there is comparatively high experimental time and costs
required for their use in common clinical labs and thus it is highly recommended that their
costs and processing time should be minimized. There is a dire need for the development
of platforms that can perform analysis of formalin-fixed paraffin-embedded tissues, as in
routine practice in the clinics most of the samples are preserved in formalin-fixed and are
paraffin-embedded [103,104]. These advances will be able to encourage the prognosis and
diagnosis of cancer tissues with single-cell RNA-seq and spatial transcriptomics which will
improve treatment interventions of cancers and eventually enhance cancer patients’ survival.

One of the main challenges in the single-cell RNA-seq technique is that it requires
the isolation of single cells by complex sorting techniques, which may compromise the
structure of cells resulting in unknown transcription changes during the analysis of cells.
This challenge is overcome using cell lines and organoids for single-cell RNA-seq analysis,
but these cannot be alternative to tissue samples as these lack intricate interactions that
exist between cancer cells and their microenvironment.

Most RNA-seq methods depend on poly(A) tail capture to enrich mRNA and deplete
abundant and uninformative rRNA. Thus, these methods are often restricted to sequencing
polyadenylated mRNA molecules. However, recent studies are now starting to appreciate
the importance of non-poly(A) RNA, such as long-noncoding RNA and microRNAs in
gene expression regulation. This has led to the development of a small-seq technique which
is a single-cell method that can capture small RNAs (<300 nucleotides) such as microRNAs,
fragments of tRNAs, and small nucleolar RNAs in mammalian cells [105]. This method
uses a combination of “oligonucleotide masks” (that inhibit the capture of highly abundant
5.8S rRNA molecules) and size selection to exclude large RNA species such as other highly
abundant rRNA molecules. To target larger non-poly(A) RNAs, such as long non-coding
mRNA, histone mRNA, circular RNA, and enhancer RNA, size selection is not applicable
for depleting the highly abundant ribosomal RNA molecules (18S and 28s rRNA) [106].
Single-cell RamDA-Seq is a method that achieves this by performing reverse transcription
with random priming (random displacement amplification) in the presence of “not so
random” (NSR) primers specifically designed to avoid priming on rRNA molecules [107].
While this method successfully captures full-length total RNA transcripts for sequencing
and detects a variety of non-poly(A) RNAs with high sensitivity, it has some limitations.
The NSR primers were carefully designed according to rRNA sequences in the specific
organism (mouse), and designing new primer sets for other species would take considerable
effort. Recently, a CRISPR-based method named scDASH (single-cell depletion of abundant



Int. J. Mol. Sci. 2022, 23, 3042 16 of 22

sequences by hybridization) demonstrated another approach to depleting rRNA sequences
from single-cell total RNA-seq libraries [108].

In the single-cell RNA-seq sequencing technique, the quality and quantity of RNA
isolated and amplified play an important role in the precise analysis of RNA transcripts.
The mapping of RNA molecules present in a cell is a random variable that depends upon
the number of RNA present in a cell. This is largely affected by reverse transcription
reaction, the extent of cDNA amplification, and the efficacy of RNA capture from the
cells. This can lead to an obscure relationship between an actual number of reads and
counted genes. This challenge is overcome by the use of unique molecular identifiers
(UMIs) which help to prevent differences in amplified cDNA molecules and thus provide a
useful way for estimating the accuracy of reaction by estimating the number of captured
and reverse-transcribed mRNA molecules [109,110].

LCM-RNAseq is a useful technique for the analysis of transcriptome from fresh and
FFPE tissue samples, but RNA extracted from FFPE tissue samples results in the extraction
of low quantity and quality of mRNA. The analysis of this low-quality RNA with LCM-
RNAseq methods affects the integrity of RNA. It is, therefore, imperative to improve LCM-
RNAseq analysis techniques to increase the quality and stability of RNA biomolecules.
This is achieved by using an LCM instrument with a suitable IR laser and the use of an
appropriate RNA-seq library preparation kit which prevents RNA degradation [78]. In this
context, the use of SMARTer Stranded Total RNA-Seq Kit v2 is considered beneficial for
extraction of very low concentrations (i.e., 250 pg-10 ng) of RNA from FFPE tissue samples.
Furthermore, additional rounds of PCR cycles are performed to increase the output of
cDNA from low-quality RNA transcripts. There is another challenge that is encountered
for the analysis of RNA by the LCM-RNAseq technique as this method is time-consuming
and the technique is limited to analyzing RNA from 10 to 100 cells only. It is observed that
bulk RNA-seq can sequence RNA from >1 × 106 cells. The limitation of LCM-RNAseq has
been addressed now using alternative techniques or improved technological platforms.
For instance, He et al. developed a new algorithm named (ADVOCATE) which is capable
of analyzing the data derived by LCM-RNAseq to obtain expression profiles of different
genes in the tissue sections of pancreatic ductal adenocarcinoma (PDA) [104].

Mapping of RNA across tissue sections was originally limited for snap-frozen mam-
malian tissues and fresh plant tissues [111]. However, with the advent of novel spatial
transcriptomics techniques, now a few studies have been performed on paraffin-embedded
and formalin-fixed samples with modification in analytical platforms to locate expres-
sion of RNA in the spatial context in biological tissues [112]. Among a few initial stud-
ies, the spatial transcriptome analysis was carried out on locating mRNA expression in
prostate cancer [113] and melanoma. After the analysis of 6750 regions in the prostate and
2200 sites in melanoma, it was concluded that there exists an extreme heterogeneity in dis-
tinct gene expression signatures and coexistence of unique expression profiles of different
sets of genes in tissue biopsies [52]. Yoosuf et al. designed a study to investigate the differ-
ence between invasive ductal carcinoma (IDC) and ductal carcinoma in situ (DCIS) using
spatial transcriptomics datasets of breast cancer with a machine learning technique [114].
The team was able to find a prediction accuracy of 91% for IDC and 95% for DCIS from
the application of spatial transcriptomics signatures and training the machine learning
methods. One of the main advantages of spatial gene localization by transcriptomics
technique is that it did not need pre-knowledge of gene sequences or specific equipment
and its outcome is much higher compared with other allied tissue analysis methods.

One of the main challenges faced in profiling RNA transcripts in their spatial context
was that molecular techniques were unable to analyze mRNA expression up to the single-
cell level due to limitations of microarray spot size and spacing. The advances made
by Stahl’s group in 2019 were able to visualize gene expression with improved spatial
resolution up to 1400×. This can also detect spatial gene expression patterns at the single-
cell level [7]. This led to an improved understanding of cancer biology, especially tumor
heterogeneity and therapeutic outcomes. However, techniques invented by Stahl et al.



Int. J. Mol. Sci. 2022, 23, 3042 17 of 22

have limited resolution compared with the captured mRNA data. The improvement
brought about in the 10x genomics chromium platform has enabled the profiling of up to
10,000 cells in a single experiment, however, it is only possible to analyze only a few
thousand mRNA molecules from a single cell. This issue can be addressed up to a certain
degree by deeper sequencing, however, even this attempt will be far less for the analysis
of the full transcriptome of a single cell. In the case of bulk RNA-seq, LCM-RNAseq, and
single-cell RNA-seq, there is one common challenge, which is the loss of spatial information
of RNA due to cell dissociation or the micro-dissection step involved at an early stage of
the protocol, resulting in a reduced understanding of cell function and thus pathological
changes [7].

The pathological nature of cancer tissues is decided based on the single-cell transcrip-
tomic profile differences of healthy and cancer patients. However, we lack standard data
regarding disease subtypes, duration, severities, and drug response outcomes for clinical
considerations. One of the major hurdles of single-cell RNA-seq is that we still lack a
definition of this platform for clinical application and monitoring responses to drugs at
the single-cell level. Recent progress in the integration of single-cell RNA-seq with spatial
transcriptomics will immensely help in exploring undiscovered biomarkers and agents
involved in tumor development and will pave a path for better therapeutic outcomes.

8. Conclusions

Single-cell RNA-seq techniques have been very useful for performing transcriptome
analysis of single cells within and across cancerous tissues. The techniques applied in recent
years are mostly focused on the isolation of cancer cells from cancer tissues, extraction
of RNA, and their analysis by NGS techniques. Few studies have attempted to visualize
RNA expression in their native tissue context in combination with other techniques over
the last few years, but the interest in profiling transcriptome at a single-cell level in its
spatial context is growing every day as evident from the number of published works.
Nevertheless, recent developments in single-cell RNA-seq techniques with other allied
approaches have a huge impact on exploring the tumor heterogeneity that will have a
profound influence on finding the personalized medicine to prevent cancer relapse, which
is a major issue in oncology. Moreover, in the field of translational research, single-cell
RNA-seq possesses a huge potential in determining single-nucleotide variation (SNV),
methylation patterns, copy number variation (CNV), microsatellite instability, and gene
rearrangements/translocations for understanding tumor heterogeneity of cancer tissues
for use in clinical settings.
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