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RNA-binding motif protein 8A (RBM8A) is abnormally overexpressed in hepatocellular
carcinoma (HCC) and involved in the epithelial-mesenchymal transition (EMT). The EMT
plays an important role in the development of drug resistance, suggesting that RBM8A
may be involved in the regulation of oxaliplatin (OXA) resistance in HCC. Here we
examined the potential involvement of RBM8A and its downstream pathways in OXA
resistance using in vitro and in vivo models. RBM8A overexpression induced the EMT in
OXA-resistant HCC cells, altering cell proliferation, apoptosis, migration, and invasion.
Moreover, whole-genome microarrays combined with bioinformatics analysis revealed
that RBM8A has a wide range of transcriptional regulatory capabilities in OXA-resistant
HCC, including the ability to regulate several important tumor-related signaling pathways.
In particular, histone deacetylase 9 (HDAC9) emerged as an important mediator of
RBM8A activity related to OXA resistance. These data suggest that RBM8A and its
related regulatory pathways represent potential markers of OXA resistance and
therapeutic targets in HCC.

Keywords: RNA-binding motif protein 8A, hepatocellular carcinoma, oxaliplatin, drug resistance, histone
deacetylase 9, molecular network
INTRODUCTION

Hepatocellular carcinoma (HCC) is a highly lethal cancer: it is the fifth most common malignant
tumor globally, and its mortality rate ranks third among all cancers (1). The advent of the targeted
drug sorafenib opened the door to advanced HCC drug therapies, but first-line therapies are
associated with relatively low rates of objective response and progression-free survival (2). Their
inefficacy and elevated cost limit their clinical usefulness (3). The complexity of HCC means that it
needs to be treated through multiple approaches, including systemic chemotherapy. Oxaliplatin
(OXA)-based systemic chemotherapy is a widely used treatment for advanced HCC in Asia, where
good efficacy has been achieved (4–6). Nevertheless, chemotherapy resistance has become a
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tremendous obstacle to the further survival benefit of HCC
patients. Identifying the molecules and pathways that give rise
to such resistance is critical.

RNA-binding proteins (RBPs) regulate the maturation,
translocation, and translation of RNA, making them important
in cell development, differentiation, and metabolism (7). We
previously showed that the RBP RNA-binding motif protein 8A
(RBM8A) is expressed in HCC tumor tissues at higher levels than
in normal liver tissues (8, 9). Overexpression of RBM8A is
associated with poor overall and progression-free survival in
HCC. RBM8A promotes proliferation, migration, and invasion
in HCC by activating the epithelial-mesenchymal transition
(EMT) (8). Previous studies have shown that EMT is closely
related to the promotion of tumor cell metastasis and induction
of chemotherapy resistance (10). However, the function of
RBM8A in the regulation of chemotherapy resistance remains
obscure. More specifically, it has not yet been characterized
whether RBM8A is involved in the regulation of OXA
resistance via initiating EMT in HCC.

The present study explored this hypothesis using a combination
of in vitro and invivo experimentsaswell asbioinformatics analyses.
Our results identify RBM8A as a potential key factor in OXA
resistance in HCC and provide numerous predictions to guide
further studies into drug resistance mechanisms.
MATERIALS AND METHODS

Cell Lines and Cell Cultures
Human HCC cell lines (Bel7404, QGY-7703, SMMC-7721,
MHCC97L, MHCC97H, HepG2, and SK-HEP-1) and a
normal liver cell line (HL7702) were purchased from the Stem
Cell Bank of the Chinese Academy of Sciences (Shanghai, China)
and were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum (FBS; Invitrogen,
Carlsbad, CA, USA) in a humidified atmosphere of 5% carbon
dioxide at 37°C.

Establishment of OXA-Resistant
HCC Cells
Bel7404 cells were suspended at a density of 1×105 cells/mL,
cultured for 24 h, then exposed to an induction dose of OXA (8
mM). After cell growth had stabilized, the drug concentration was
increased to 8, 12, 18, 34, 46, 60, 76, 94, 114, and 136 mM. Each
dose was maintained for 15 days. Similarly, MHCC97H cells
were suspended at a density of 1 × 105 cells/mL, cultured for 24 h,
then exposed to an induction dose of OXA (6 mM). After cell
growth had stabilized, the drug concentration was increased to 6,
9, 13.5, 20.3, 30.4, 40.5, 55, 70, 86, and 102 mM.

Establishment of Stable Cell Lines in
Which RBM8A Was Overexpressed (OE)
or Knocked Down (KD)
Our previous research showed that the short hairpin RNA
(shRNA) with the sequence 5’-AGAGCATTCACAAACTGAA-
3’ can reduce endogenous levels of RBM8A by more than 80%
Frontiers in Oncology | www.frontiersin.org 2
(8). Using this shRNA, we established two stable KD HCC cell
lines, one sensitive to OXA (Bel7404-RBM8A-KD) and one
resistant to OXA (Bel7404/OXA-RBM8A-KD). As described in
our previous work (8), we obtained two stable OE HCC cell lines,
one sensitive to OXA (MHCC97H-RBM8A-OE) and one
resistant to OXA (MHCC97H/OXA-RBM8A-OE).

Total RNA Isolation and Quantitative
Real-Time PCR (qRT-PCR)
Total RNA was isolated from parental cell lines (PCLs) and drug
resistant (DR)-HCC cells using TRIzol reagent (Invitrogen,
USA), then cDNA was reverse-transcribed from 1 mg of total
RNA using PrimeScript RT Reagent (TaKaRa, Dalian, China)
following the manufacturer’s instructions. Quantitative real-time
polymerase chain reaction (qRT-PCR) was performed using
SYBR Premix Ex Taq (Takara). PCR primers are described in
the Supplementary Materials and Methods.

Protein Extraction and Western
Blot Analysis
Western blotting was performed as previously described (8)
using antibodies against human RBM8A (catalog no. sc-32312,
Santa Cruz Biotechnology, Santa Cruz, CA, USA), human actin
(HRP-60008, Proteintech, Rosemont, IL, USA), and rabbit IgG
(7074, Cell Signaling Technology, Danvers, MA, USA).
Additional reagents are described in the Supplementary
Materials and Methods.

Cell Counting Kit-8 Assay
Cell proliferation and half maximal inhibitory concentration
(IC50) were assessed using the Cell Counting Kit-8 (CCK-8) kit
(Dojindo, Japan) according to the manufacturer’s protocol. To
measure IC50, OXA was added to cultures at concentrations of
40, 80, 320, 640, and 1280 µM, and 48 h later, 10 µL of CCK8 per
100 µL medium was added to the wells. The cells were then
incubated at 37°C for another 2 h. Finally, the absorbance was
measured at 450 nm using a microplate reader (5082Grodig,
Tecan, Austria).

Flow Cytometry
Cells were collected and stained with an apoptosis detection kit
based on phycoerythrin-conjugated annexin V (FXP018-100, 4A
Biotech, Beijing, China) according to the manufacturer’s
instructions. Apoptosis was analyzed by flow cytometry (FACS
Calibur, BD Biosciences, San Jose, CA, USA).

Wound-Healing Assay, Cell Migration,
and Invasion Assays
Detailed methods are described in Supplementary Materials
and Methods.

Xenograft Tumorigenesis in Nude Mice
Mouse studies were conducted according to the Guide for the
Care and Use of Laboratory Animals and were approved by the
Animal Care and Use Committee of the Affiliated Tumor
Hospital of Guangxi Medical University, China. BALB/C nude
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mice (5–6 weeks old, 18–22 g) were randomly divided into two
groups of eight mice each. Bel7404/OXA-RBM8A-KD and
Bel7404/OXA-NC cells (2 × 106 cells in 100 mL of serum-free
DMEM) were injected subcutaneously into nude mice. OXA at
10 mg/kg was injected around the tumor at 1, 2, 4, and 6 weeks
after tumor cell injection. The tumor diameter was measured
weekly with calipers, and the tumor volume was recorded. After
six weeks, the mice were euthanized, and the tumor was
removed, weighed, and photographed.

Immunohistochemical Staining
Hematoxylin & eosin (H&E) staining was performed to assess
histopathology of tumors in nude mice, and slides were
subsequently stained with a horseradish peroxidase kit (UltraTek,
Scytek, Utah, USA) for immunohistochemistry. Immunostaining
was performed as described (8) using primary antibodies against
RBM8A (same as for western blots), E-cadherin, N-cadherin, Snail,
ABCG2, ABCB1, ABCC1, or Ki-67 (9027, Cell Signaling
Technology) and reagents from Fuzhou Maixin (Fuzhou, China).

Whole-Genome Microarrays
Total RNA was isolated from Bel7404/OXA-RBM8A-KD,
Bel7404/OXA-RBM8A-NC, MHCC97H/OXA-RBM8A-OE,
and MHCC97H/OXA-RBM8A-NC cells using an RNeasy
Micro kit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions. RNA integrity was assessed using
a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). Microarray
analysis was performed using Affymetrix GeneChip Mouse
Genome 430 2.0 Arrays. The arrays were hybridized, washed,
and scanned according to the standard Affymetrix protocol. Raw
data were normalized using the MAS 5.0 algorithm in
GeneSpring 11.0 (Agilent).

Bioinformatics Analysis
Gene expression was profiled using the limma package in R (11–
13). Weighted gene coexpression network analysis (WGCNA)
(14) was used to analyze the differential expression profile matrix
in cell samples, and gene modules showing coexpression were
clustered. Among these module genes, the Clusterprofiler
package in R (15) was used to analyze Gene Ontology (GO)
functions (p value cutoff = 0.01, q value cutoff = 0.01) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways (p value
cutoff = 0.05, q value cutoff = 0.2).

Pivot regulators were defined asmodulators exerting significant
regulationovermodules involved inRBM8A-induced resistance. In
the pivot analysis, the background set was based on the interaction
of transcription factors (TFs)with other proteins in theTRRUSTv2
database (16). A network of interactions of long non-coding RNA
(lncRNA) and microRNA (miRNA) with protein partners was
constructed based on data in the RAID v2.0 database (17). Data on
regulationofmodule genes andpivotTFs byRBM8Awereobtained
by searching databases with STRING v10.5 (18). The results about
pivot regulators andKEGGpathways in the genemodulewere used
to generate a comprehensivemap of RBM8A regulation underlying
OXA resistance in HCC.

Since qRT-PCR and Western blotting showed histone
deacetylase 9 (HDAC9) to be the pivotal TF most closely
Frontiers in Oncology | www.frontiersin.org 3
related to RBM8A-regulated OXA resistance in HCC, the
HDAC9-module gene-KEGG signaling pathway was extracted.
Finally, a potential mechanism by which the RBM8A-HDAC9
axis regulates drug resistance in HCC was identified.

Statistical Analyses
Data were analyzed using SPSS 17.0 (IBM, Chicago, IL, USA). All
experiments in this study were repeated in triplicate unless
otherwise specified. All results were expressed as mean ±
standard deviation (SD). Student’s t test was used to analyze
the statistical significance of differences between groups.
Differences associated with p < 0.05 were considered significant.
RESULTS

Establishment of OXA-Resistant HCC Cell
Lines and Analysis of RBM8A Expression
According to the qRT-PCR and Western blotting results, RBM8A
showed the lowest expression in the normal human liver cell line
HL7702 and was highly expressed in various human HCC cell
lines. Among the HCC cell lines, Bel7404 cells showed the highest
expression of RBM8A while MHCC97H cells showed the lowest
(Figure 1A). To discover the potential relationship between
RBM8A and oxaliplatin resistance in HCC, we first constructed
OXA-resistant HCC cell lines. The schematic representation of the
protocol used to obtain OXA-resistant HCC cells from the PCL
(Figure 1B). The mesenchymal phenotype of DR-HCC cells is
shown in Figure 1C. Expression of RBM8A was significantly
higher in Bel7404/OXA and MHCC97H/OXA cells than in
Bel7404 and MHCC97H PCLs, based on qRT-PCR and
Western blotting (Figure 1D). These results indicates that the
expression level of RBM8A may be related to OXA resistance
in HCC.

High RBM8A Expression Promotes Tumor
Progression and OXA Resistance of HCC
Cells In Vitro
To study the specific role of RBM8A in regulating OXA
resistance in HCC cells, we conducted phenotypic studies
related to drug resistance. Knocking down RBM8A in Bel7404
cells, which normally express the protein at high levels,
significantly reduced proliferation of PCLs and DR-HCC cells.
Ectopic expression of RBM8A in MHCC97H cells, which
normally express the protein at low levels, significantly
enhanced proliferation of PCLs and DR-HCC cells (Figure
2A). The IC50 of OXA was significantly higher in DR-HCC
cell lines than in PCLs. IC50 was highest in MHCC97H/OXA-
RBM8A-OE cells. Knockdown of RBM8A in Bel7404/OXA cells
significantly reduced IC50, consistent with the proliferation
results (Figure 2B). Flow cytometry showed that, regardless of
the cell type, the apoptosis level was significantly lower in DR-
HCC cell lines than in PCLs (Figures 2C, D). In Bel7404 cells
with RBM8A knockdown, apoptosis levels were significantly
higher in PCLs and DR-HCC cells than in control cells.
Conversely, overexpressing RBM8A in MHCC97H cells led to
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significantly lower apoptosis levels in PCLs and DR-HCC cells
than in control cells.

In Bel7404 and MHCC97H cells, migration and invasion of
the DR-HCC cell lines were significantly greater than those in the
corresponding PCLs (Figures 3A–C). Drug-resistant Bel7404/
OXA-RBM8A-KD cells showed significantly less migration and
invasion than drug-resistant Bel7404/OXA-NC cells at 24 and
72 h. Conversely, MHCC97H/OXA-RBM8A-OE cells showed
significantly greater migration and invasion than MHCC97H/
OXA-NC cells at the same time points.

Overexpression of the ATP-binding cassette (ABC) membrane
transport pump is one of the most important contributors to
multidrug resistance (19). Thus, we explored the relationship
between the expression of RBM8A and that of ABC subfamily
G member 2 (ABCG2), ABC subfamily B member 1 (ABCB1) and
ABC subfamily Cmember 1 (ABCC1) in PCLs and DR-HCC cells.
Western blotting showed that ABCG2, ABCB1, and ABCC1 levels
were significantly higher in Bel7404 and MHCC97H DR-HCC
Frontiers in Oncology | www.frontiersin.org 4
cells than in the corresponding PCLs (Figures 3D, E). These three
proteins were expressed at significantly lower levels in Bel7404/
OXA-RBM8A-KD cells than in Bel7404/OXA-NC cells.
Conversely, they were expressed at significantly higher levels in
MHCC97H/OXA-RBM8A-OE cells than in MHCC97H/OXA-
NC cells. Overall, our data indicate that RBM8A promotes
proliferation, migration and invasion of HCC cells, while
inhibiting OXA-induced apoptosis.

High RBM8A Expression Regulates OXA-
Resistance via EMT in HCC In Vitro
Previous reports demonstrate that EMT processes contribute to
tumor progression, cancer cell invasion, and therapy resistance
(20). Using rhodamine-labeled fluoropeptide to track changes in
the cytoskeleton, we found that OXA-resistant Bel7404 and
MHCC97H cells were spindle-shaped and exhibited less cell-
cell contact than the corresponding PCLs (Figure 4A). The
ectopic expression of RBM8A in MHCC97H/OXA HCC cells
A

B

D

C

FIGURE 1 | Selection of OXA-resistant hepatocellular carcinoma (HCC) cells and establishment of cell lines in which RBM8A was overexpressed or knocked
down. (A) Real time (RT)-PCR and western blot analysis of RBM8A expression in HCC cell lines. Western blot results were quantitated. (B) Schematic
representation of the protocol used to obtain OXA-resistant HCC cells from the parental cell line (PCL). During concentration-elevation and intermittent induction
treatment with OXA, each dose was maintained for 15 days. OXA-resistant cell lines were obtained by the end of 6 months. (C) Representative phase contrast
images of Bel7404 PCLs and drug-resistant cells (DR-HCC cells, left panels) or MHCC97H PCLs and DR-HCC cells (right panels). Magnification, 20×. Scale bar,
20 mm. (D) Knockdown (KD) and overexpression (OE) efficiency of RBM8A in PCLs and DR-HCC cells based on RT-PCR and western blot analysis, compared
with the negative control (NC). Western blot data were quantitated (right panels). Data were expressed as mean ± SD of three independent experiments, or were
representative of three independent observations.
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induced loose cell contact and spindle-shaped morphology
reminiscent of EMT, whereas RBM8A knockdown in Bel7404/
OXA cells resulted in a dramatic shift in the cell morphology
from loose cell growth to a tighter cell-cell adherence
characteristic of epithelial cells. Furthermore, we sought to
determine whether RBM8A levels were associated with
epithelial and mesenchymal markers. OXA-resistant Bel7404
or MHCC97H cells showed lower expression of the epithelial
protein E-cadherin than the corresponding PCLs, but higher
expression of the mesenchymal proteins N-cadherin and Snail
Frontiers in Oncology | www.frontiersin.org 5
(Figures 4B–D). Western blotting indicated that MHCC97H/
OXA-RBM8A-OE cells, regardless of whether they had been
treated with OXA, showed significantly lower levels of epithelial
protein E-cadherin but higher levels of mesenchymal proteins N-
cadherin and Snail than MHCC97H/OXA-NC cells. Conversely,
Bel7404/OXA-RBM8A-KD showed significantly higher levels of
E-cadherin and lower levels of N-cadherin and Snail than
Bel7404/OXA-NC cells (Figures 4E, F). Further suppression of
the EMT pathway using the EMT inhibitor C19 significantly
reversed the proliferation, invasion and migration of RBM8A-
A B

D

C

FIGURE 2 | Modulation of RBM8A expression affects proliferation, apoptosis and cell cycle progression in parental cell lines (PCLs) and drug-resistant (DR)-
hepatocellular carcinoma (HCC) cells. (A) Cell proliferation measured using the Cell Counting Kit-8. *P<0.001. (B) Half maximal inhibitory concentration (IC50) of
oxaliplatin (OXA) when cells were treated for 48 h. (C) Apoptosis determined by flow cytometry. Representative quadrant figures were presented on the left, and
rates of apoptotic PCLs and DR-HCC cells were shown on the right. (D) Apoptosis in PCLs and DR-HCC cells at 48 h after OXA treatment.
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enhanced PCLs and DR-HCC cells (Figures 5A–D). Taken
together, these results and our previous studies indicate that
the EMT pathway is one of the important mechanisms by which
RBM8A regulates the malignant phenotype and OXA resistance
of HCC.

RBM8A Regulates OXA Resistance in HCC
Xenograft Models via the EMT
To evaluate in vivo the ability of RBM8A to promote OXA
resistance in HCC through the EMT, nude mouse xenograft
models were established using Bel7404/OXA-NC and Bel7404/
OXA-RBM8A-KD cells. Tumor size, tumor formation rate, and
body weight were lower in Bel7404/OXA-RBM8A-KD animals
than in control mice (Figures 6A, B). Compared to Bel7404/
OXA-RBM8A-NC tumors, Bel7404/OXA-RBM8A-KD tumors
expressed lower levels of Ki-67, ABCG2, ABCB1, ABCC1, and
the mesenchymal proteins N-cadherin and Snail, but higher
levels of the epithelial protein E-cadherin (Figures 6C, D).
Frontiers in Oncology | www.frontiersin.org 6
These data suggest that the reduction of RBM8A expression
inhibits HCC growth and EMT processes, sensitizing HCC to
OXA in vitro.

RBM8A Regulates the Transcription of
Genes in OXA Resistance in HCC via a
Network Involving Tumor-Associated TFs,
ncRNAs, and Signaling Pathways
Expression of Dysregulated Molecules Associated
With RBM8A in OXA-Resistant HCC
The flow chart of the bioinformatics analysis is shown in
Supplementary Figure 1A. Wayne mapping identified 8365
genes differentially expressed between Bel7404/OXA-NC and
Bel7404/OXA-RBM8A-KD cells, as well as between MHCC97H/
OXA-NCvs.MHCC97H/OXA-RBM8A-OEcells (Supplementary
Figure 1B). These genes may be associated with RBM8A-mediated
OXA resistance in HCC (Supplementary Table S1). WGCNA of
these differentially expressed genes revealed patterns of
A B

D E

C

FIGURE 3 | Modulation of RBM8A expression affects the migratory and invasive potential of parental cell lines (PCLs) and drug-resistant (DR)-hepatocellular
carcinoma (HCC) cells, as well as the expression of proteins related to drug resistance. (A) Wound-healing assay. The scraped areas were photographed at 0, 24,
and 72 h after scraping. Migration efficiency was quantitated at 24 and 72 h after scraping (right panel). Magnification, 10×. Scale bar, 200 mm. (B) Transwell assay.
Representative examples of each experimental group are shown. Migration efficiency was quantitated at 24 and 72 h (right panel). Magnification, 40×. Scale bar,
50 mm. (C) Matrigel-Transwell assay. Representative photographs and quantitation were shown. Data were either representative of three similar observations, or
were shown as the mean ± SD of three experiments. Magnification, 40×. Scale bar, 50 mm. (D) Western blot analysis of PCL-Bel7404-NC, PCL-Bel7404-RBM8A-
KD, DR-Bel7404-NC and DR-Bel7404-RBM8A-KD. Cells were analyzed without OXA treatment (second row) or with OXA treatment (third row). Data were
representative of three similar observations or were shown as the mean ± SD of three experiments. (E) Western blot analysis of PCL-MHCC97H-NC, PCL-
MHCC97H-RBM8A-OE, DR-MHCC97H-NC and DR-MHCC97H- RBM8A-OE cells as in (D).
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coexpression that we were able to organize into five modules of
OXA resistance-related genes in HCC (Supplementary Figures
1C–E).Basedon the associationbetweengenemodulesandcells,we
found that the fourthmodulepositively correlated themost strongly
with the Bel7404/OXA-RBM8A-KD phenotype, while the third
module positively correlated strongly with the MHCC97H/OXA-
RBM8A-OE phenotype (Supplementary Figures 1F, G).

Identification of the Biological Molecular Network of
RBM8A in OXA-Resistant HCC
Exploring the functions and pathways involved in the relevant
modules helps to establish molecular bridges between gene
modules and disease pathology and pharmacology, potentially
deepening understanding of the molecular mechanism.
Therefore, we analyzed the enrichment of GO biological
processes and KEGG pathways in the five modules. From these
Frontiers in Oncology | www.frontiersin.org 7
results, we found that the potential functions of genes in
the five modules were mainly related to mRNA splicing,
ribonucleoprotein complex biogenesis, and ncRNA processing
(Supplementary Table S2). RBM8A-related genes were involved
mainly in the following KEGG pathways: PI3K-Akt signaling,
MAPK signaling, viral carcinogenesis, mRNA surveillance, and
cell cycle (Supplementary Table S3).

We used TF- and ncRNA-targeting regulatory genes as a
background set for hypergeometric prediction analysis. The
results identified 1663 ncRNAs and 38 TFs with regulatory
influence over module genes, which we considered candidate
pivotal regulators (Supplementary Tables S4 and S5). Among
them, MALAT1, MYCN, HDAC9, FENDRR, and other key
regulatory nodes showed significant regulatory influence over
more than one module and thus were identified as core pivot
regulators. These core pivot regulators may be driven by RBM8A
A B

D

E F

C

FIGURE 4 | Modulation of RBM8A expression affects the epithelial–mesenchymal transition (EMT) in parental cell lines (PCL) and drug-resistant (DR)-hepatocellular
carcinoma (HCC) cells. (A–D) Immunofluorescence staining of the (A) cytoskeleton, (B) E-cadherin, (C) N-cadherin, and (D) Snail (all red). All confocal microscopy
images show the merging with DAPI (blue) in PCLs and DR-HCC cells upon RBM8A knockdown or overexpression. Scale bar, 20 mm. (E) Western blot analysis of
E-cadherin, N-cadherin, and Snail in PCL-Bel7404 and DR-Bel7404 cells with or without RBM8A knockdown. Cells were analyzed without OXA treatment (second
row) or with OXA treatment (third row). Data were expressed as the mean ± SD of three independent experiments or were representative of three independent
observations. (F) Western blot analysis of E-cadherin, N-cadherin, and Snail protein expression in PCL-MHCC97H and DR-MHCC97H cells with or without RBM8A
overexpression as in (E).
January 2021 | Volume 10 | Article 585452

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liang et al. RBM8A-Mediated Oxaliplatin Resistance in HCC
and may regulate genes and pathways related to OXA resistance
in HCC. Based on the genes within the modules and the KEGG
signaling pathways, we obtained a comprehensive map of
RBM8A regulation of OXA resistance in HCC (Figure 7A).

Combining the WGCNA and hypergeometric predictions, we
selected the following pivotal regulators with significant effects on
the module genes: the lncRNAs MALAT1 and FENDRR, and the
TFs MYC, STAT3, P53, E2F1, YY1, HDAC1, and HDAC9. qRT-
PCR and Western blotting were used to verify the correlation
between RBM8A and core pivotal regulator expression in HCC
cell lines in vitro (Figure 7B and Supplementary Figure 2).
HDAC9 expression was significantly higher in DR-HCC cells
than in PCLs, and in both cell types, it was up- or down-regulated
after RBM8A was overexpressed or knocked down, respectively.
Thus, HDAC9 is closely related to RBM8A-regulated OXA
resistance in HCC cells.

Based on the proposed downstream signaling network
involving RBM8A and HDAC9 (Figure 7C), NFKB1 and TP53
are predicted to be direct target genes of HDAC9. In addition to
Frontiers in Oncology | www.frontiersin.org 8
the NRAS oncogene, several cyclin-dependent kinase and MAPK
family genes may also be involved. Enrichment analysis suggests
that the module genes regulated by the RBM8A-HDAC9 axis
participate mainly in the PI3K-Akt and MAPK pathways, which
help control cell proliferation, inflammation, apoptosis, and the
cell cycle.
DISCUSSION

RBM8A (also known as Y14) was identified only within the last
decade and has since been shown to play roles in the formation,
degradation, translation, and quality control of mRNA as a core
component in the exon junction complex (21, 22). Abnormal
expression of RBM8A may play an important role in activating
signal transduction pathways that drive oncogenesis (9, 23). We
found that RBM8A overexpression promoted proliferation,
reduced apoptosis and increased the chemotherapeutic
resistance of HCC cells to OXA, while RBM8A knockdown
A

B

D

C

FIGURE 5 | Involvement of the epithelial–mesenchymal transition (EMT) in RBM8A-mediated proliferation, invasion and drug resistance of hepatocellular carcinoma
(HCC) cells. (A) Cell proliferation was analyzed in PCL-MHCC97H-NC, PCL-MHCC97H-RBM8A-OE, DR-MHCC97H-NC and DR-MHCC97H- RBM8A-OE cells in the
presence or absence of the EMT inhibitor C19 using the CCK8 assay. (B) Wound-healing assay with or without EMT inhibitor C19. The scraped areas were
photographed at 0 and 48 h after scraping. Migration efficiency was quantitated at 48 h after scraping (right). (C) Transwell analysis with or without EMT inhibitor
C19. (D) Matrigel-Transwell analysis with or without EMT inhibitor C19. Magnification, 40×. Scale bar, 50 mm.
January 2021 | Volume 10 | Article 585452

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liang et al. RBM8A-Mediated Oxaliplatin Resistance in HCC
reversed these effects, consistent with reports that the deletion of
the RBM8A gene down-regulates Bcl-Xs, Bim, and Mcl-1, as well
as several proapoptotic genes, including members of the Bcl-2
family, thereby inducing apoptosis (24).

Malignant tumors are often resistant to antitumor drugs, they
show unlimited proliferative ability, and they eventually progress
to local infiltration and distant metastasis (25). In our study,
RBM8A overexpression further increased the migration and
invasion of HCC cells, and this involved the promotion of the
EMT, which is the first step in invasion and metastasis (20, 26).
Consistently with our work, a previous study (27) reported that
Frontiers in Oncology | www.frontiersin.org 9
OXA-resistant HCC cell lines showed higher incidence of a
mesenchymal phenotype.

How HCC cells become resistant to OXA is complex. Several
mechanisms have been proposed, including apoptosis escape,
autophagy activation, drug excretion, and enhanced epigenetic
transformation (28–32). Inactivation of multiple signaling
pathways is thought to alter expression of genes involved in
apoptosis and proliferation to confer resistance, and several
cytokines also control one another through regulatory
networks. The EMT process is also central to most models of
drug resistance (25, 33–35). In order to take into account these
A

B

D

C

FIGURE 6 | Effects of RBM8A on drug-resistant (DR)-hepatocellular carcinoma (HCC) tumorigenesis in vivo. (A) Bel7404/OXA-RBM8A-KD and control cells were
injected orthotopically into mammary fat pads of nude mice, which were then injected with OXA at 10 mg/kg around the tumor at 1, 2, 4, and 6 weeks. The growth
of tumors was followed during a six-week period. Photographs of primary tumors are shown on the right. (B) Comparison of tumor volume in Bel7404/OXA-RBM8A-
KD and Bel7404/OXA-RBM8A-NC animals. Mice injected with Bel7404/OXA-RBM8A-KD cells formed smaller (p < 0.0001) and lighter (p = 0.0004) tumors than mice
injected with control cells (NC). ***<0.001 (C, D) Immunohistochemical staining and western blotting of Bel7404/OXA-RBM8A-KD and Bel7404/OXA-RBM8A-NC
tumors. Data were expressed as the mean ± SD of three independent experiments or were representative of three independent observations. Magnification, 20×.
Scale bar, 100 mm.
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multi-dimensional interactions, a comprehensive analysis
combining experimental and bioinformatics approaches is
needed. Using such an approach, we identified several TFs and
ncRNAs as well as their corresponding metabolic pathways that
may help RBM8A regulate OXA resistance in HCC (Figure 6
and Supplementary Tables S4 and S5).

Several of these TFs and ncRNAs have already been implicated
in HCC growth and drug resistance, validating our approach. In
MHCC97H/OXA cells, expression of most genes involved in cell
death or apoptosis (including Ras,MAPK, and p53 pathway genes)
is altered relative to OXA-sensitive cells (36), and genes encoding
TFs and kinases are the most up-regulated. The ncRNAs miR-125
(35),miR-31 (37),H19 (38), andNR2F1(39)havebeen linked to the
development and progression of HCC and drug resistance. NF-kB,
PI3K/Akt, GSK3b/b-catenin, and HIF-1a signaling pathways have
also been implicated in HCC chemoresistance (40–43).

We identified and validatedHDAC9as a keyTF that likely helps
RBM8A regulate OXA resistance in HCC. Abnormally high
HDAC9 expression is closely related to proliferation, invasion,
and metastasis of various tumor types (44–48), and it may up-
regulate genes that participate in the oncogenic Ras, VEGF,MAPK,
and EGFR signaling pathways (49). HDAC9 is known to regulate
the transcription of tumor suppressor gene p53 (47), deacetylated
FoxO1 (50), SOX9 (51), and transcriptional coactivator with PDZ-
binding motif (TAZ) (52). Changes in HDAC inhibitors show
promise as anticancer treatments (53, 54). Our study is one of the
few to analyze HDAC9 in the context of HCC. Given that previous
work has shown that HDAC9 can down-regulate miR-376a and
Frontiers in Oncology | www.frontiersin.org 10
thereby promote cancer (55), future studies should identify genes,
miRNAs and ncRNAs targeted by HDAC9 in drug-resistant HCC.
CONCLUSIONS

Our study shows that RBM8A can induce EMT in HCC cells,
thereby affecting proliferation, apoptosis, migration, and
invasion, as well as promoting OXA resistance. Gene array
combined with bioinformatics analysis revealed that RBM8A
has a wide range of transcriptional regulatory capabilities in
drug-resistant HCC, including the ability to regulate several
important tumor-related signaling pathways. In particular,
HDAC9 was identified as an important mediator of RBM8A-
induced OXA resistance. These data suggest that RBM8A and its
related regulatory pathways represent potential markers of OXA
resistance and potential therapeutic targets in HCC.
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genes and their downstream signaling pathways to confer drug resistance on HCC cells. (B) Western blot analysis of the expression of transcription factors MYC,
STAT3, P53, E2F1, YY1, HDAC1, and HDAC9 in HCC cell lines. Western blotting revealed that, after overexpression or knockdown of RBM8A in parental cell lines
(PCLs) and drug-resistant (DR)-HCC cells, HDAC9 expression regulated by RBM8A was associated with OXA resistance in HCC cells. (C) Bioinformatics analysis
combined with quantitative real time PCR (qRT-PCR) and western blotting revealed that HDAC9 is the pivotal transcription factor most closely related to the RBM8A-
mediated regulation of OXA resistance in HCC. The HDAC9-module gene-KEGG signaling pathway was extracted, and the potential mechanism by which the
RBM8A-HDAC9 axis regulates drug resistance in HCC was identified.
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