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Purpose: Atopic dermatitis (AD) is a common chronic inflammatory skin disorder asso-
ciated with immune dysregulation and barrier dysfunction. In this study, we investigated 
immunological biomarkers for AD diagnosis and treatment using CIBERSORT to identify 
immune cell infiltration characteristics.
Patients and Methods: Common differentially expressed genes (DEGs) of lesioned (LS) 
vs non-lesioned (NL) groups were obtained from public datasets (GSE140684 and 
GSE99802). We performed functional enrichment analysis and selected hub genes from 
the protein–protein interaction (PPI) network. The hub genes were then subjected to tran-
scription factor (TF), microRNA (miRNA), long non-coding RNA (lncRNA), drug interac-
tion, and protein subcellular localization analyses. We also performed correlation analysis on 
differentially expressed immune cells, TFs, and hub genes. Receiver operating characteristic 
(ROC) curve analysis and binomial least absolute shrinkage and selection operator (LASSO) 
regression analysis were employed to assess the expression of hub genes in the GSE99802, 
GSE140684, GSE58558, GSE120721, and GSE36842 datasets.
Results: We identified 238 common DEGs and 25 hub genes. Additionally, we predicted 
TFs, miRNAs, lncRNA, drugs, and protein subcellular localizations. The proportions of 
activated dendritic cells (DCs) and CD4+ memory T cells were relatively high in the LS 
skin. Expression levels of the TF FOXC1 were negatively correlated with target genes and 
the abundance of two immune cell types. The LASSO model showed that GZMB, CXCL1, 
and CD274 are candidate diagnostic biomarkers.
Conclusion: Our study suggests that downregulated expression of FOXC1 expression may 
enhance the levels of chemokines, chemokine receptors, T cell receptor signaling molecules, 
activating CD4+ memory T cells and DCs in AD.
Keywords: atopic dermatitis, CIBERSORT, immune infiltration, transcription factors, 
biomarkers

Introduction
Atopic dermatitis (AD) is a common chronic inflammatory skin disease, character-
ized by recurrent eczematous lesions and intense itching. AD is ranked as the 
leading cause of the global burden from skin inflammatory disease,1 affecting 
approximately 10–30% of children and 2–10% of adults worldwide.2 AD patients 
were divided into infantile AD, childhood AD and adult AD. Adult AD patients 
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contain three forms, the persistent form of childhood-onset 
of AD, the relapsing form of childhood-onset of AD, and 
the adult-onset AD. Nummular eczema-like phenotype and 
prurigo nodularis-like pattern appeared to be more related 
to adult-onset AD, while lichenified/exudative flexural 
dermatitis was more common in childhood-onset AD.3 

However, the mode of inheritance and genes involved 
in AD remain unclear. Currently, diagnosis relies exclu-
sively on clinical features due to the lack of specific 
laboratory or histological findings.

In addition, conventional therapies were unsatisfactory 
for AD patients, due to the long-term side effects of 
glucocorticoid and immunosuppressant drugs. Recently, 
numerous monoclonal antibodies such as nemolizumab, 
blocking IL-31 receptor, dupilumab, blocking IL-4 recep-
tor, lebrikizumab targeting IL-13 receptor have been 
widely used and proven effective in the treatment of AD. 
And new topical molecules such as JAK inhibitor, tofaci-
tinib, phosphodiesterase 4 inhibitors, crisaborole and apre-
milast, and selective JAK1 and JAK2 inhibitor, baricitinib 
can also improve the clinical outcome of AD patients.4 

Therefore, exploring specific targeting drugs opened 
a promising new era for AD treatment.

Immune cells, particularly dendritic cells (DCs) and 
CD4+ memory T cells, play key roles in AD progression. 
Because the immune response in AD involves functionally 
distinct cell types, it is necessary to assess and determine 
immune-infiltration changes specific to the condition to 
develop novel immunotherapeutic drugs that target various 
immune cells. As an analytical tool, CIBERSORT can be 
used to estimate the proportion of different immune cell 
types based on RNA-sequencing data.5 CIBERSORT con-
tains 22 cell types, including B cells, T cells, monocytes, 
eosinophils, macrophages, natural killer cells, neutrophils, 
plasma cells, dendritic cells (DCs), and mast cells.6 The 
tool has been widely used to assess immune cell infiltra-
tions in malignant tumors such as colorectal cancer and 
renal cell carcinoma.7,8 In the AD skin tissue, DCs require 
cytokines, cytokine receptors, and T cell receptor (TCR) 
signals to recognize and present antigens to naïve T cells. 
These processes induce adaptive immunity to cause skin 
inflammation and barrier dysfunction. Furthermore, the 
impaired skin barrier facilitates infiltration of foreign anti-
gens (eg, food allergens) as well as activation of pattern 
recognition and innate immune receptors. Consequently, 
IgE- and FCεRI-bearing dermal DCs are activated and 
migrate to the regional lymph nodes, inducing Th2 differ-
entiation and B-cell IgE skewing. Specific T-cell subsets 

are recruited to the lesioned skin tissue, producing cyto-
kines and chemokines. Both Th2 and Th22 (IL-22) cyto-
kines inhibit epidermal differentiation and lipid synthesis, 
facilitating Staphylococcus aureus colonization and accel-
erating the so-called “AD march”9 Although characterized 
by Th2 immune responses, AD is now considered 
a heterogeneous disease, with additional activation of 
Th22, Th17/IL23, and Th1 cytokine pathways.10 

However, the immune landscape of AD has not been 
entirely revealed. Therefore, we used CIBERSORT to 
explore effective immunological biomarkers for the diag-
nosis and treatment of AD.

In particular, we explored the immune landscapes of 
lesioned (LS) tissue and non-lesioned (NL) tissue from 
patients with AD and used CIBERSORT to determine 
their differences. Common differentially expressed genes 
(DEGs), hub proteins and their transcription factors (TFs), 
microRNAs (miRNAs), and long non-coding RNAs 
(lncRNAs) were analyzed using the GSE140684 and 
GSE99802 microarray datasets. Based on comprehensive 
bioinformatics analysis, we further aimed to investigate 
the molecular mechanisms underlying AD development 
and identify potential AD biomarkers (Supplementary 
Figure 1).

Materials and Methods
Microarray Data Processing and 
Identification of DEGs
From the GEO database, we obtained five expression 
profile datasets of AD, GSE140684, GSE99802, 
GSE58558, GSE120721and GSE36842. 50 samples of 
GSE140684,11 including 29 from LS tissue and 21 from 
NL tissue, 112 samples GSE99802,12 including 59 from 
LS tissue and 53 from NL tissue, 35 samples GSE58558,13 

including 18 from LS tissue and 17 from NL tissue, 30 
samples GSE120721,14 including 15 from LS tissue and 
15 from NL tissue, 16 samples GSE36842,15 including 8 
from LS tissue and 8 from NL tissue were selected in this 
study.

The original expression matrix was processed and ana-
lyzed by R software. DEGs were screened out by using the 
function lmFit and eBayes in the Limma package.16 Genes 
with adjusted P < 0.05 and log2FC > 1, were considered as 
DEGs of GSE140684, while genes with adjusted P < 0.05 
and log2FC > 0.5 were considered as DEGs of GSE99802. 
TB tools was used to present Heatmap and perform Venn 
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analysis to identify common DEGs from GSE99802 and 
GSE140684.17

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) is a widely used 
computational method for genome-wide expression 
matrix.18 In the present study, genetic information of 
GSE99802 and GSE140684 were uploaded to GSEA soft-
ware (version 4.0.3). GSEA was performed to identify 
biological process (BP) Gene Ontology (GO) terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways connected with AD. GSEA analysis was con-
ducted according to default parameters. P < 0.05 was 
considered significant.

The enrichment analysis of DEGs was performed by 
using the clusterProfile package of R software and visua-
lized by Hiplot (https://hiplot.com.cn/).19 KEGG pathways 
and GO terms with P<0.05 were selected.

Protein-Protein Interaction (PPI) Analysis
In order to provide insights into the mechanisms of AD, 
DEGs were uploaded to STRING (http://string-db.org) to 
construct PPI network.20 Cytoscape (version 3.8.0), an 
open-source bioinformatics software platform was used 
to visualize molecular interaction networks and select 
key nodes.21 CytoHubba, a Cytoscape plugin, ranked the 
top 25 genes as hub genes, according to Maximal Clique 
Centrality (MCC).22

TFs-mRNA Interaction Analysis
JASPAR database was used to identify regulatory TFs that 
influence the hub genes at a transcriptional level.23 Hub gene- 
TF regulatory network was constructed and visualized by the 
Cytoscape software. The correlation between these TFs and 
hub genes was evaluated by Pearson correlation coefficient.

miRNA-mRNA and miRNAs-lncRNAs 
Interaction Analysis
The miRNA-mRNA regulatory network was constructed via 
miRTarBase v8.0,24 including experimentally supported 
miRNA-gene interactions, and was further processed with 
Cytoscape. Then, miRNAs targeting more than 3 genes were 
selected. Based on StarBase 2.0,25 the upstream molecules 
lncRNAs of the selected miRNAs were predicted with 
CLIP-Data ≥7, and were further analyzed by Cytoscape.

Cross-Validation of Candidate 
Biomolecules
DisGeNET is one of the largest publicly available plat-
forms of genes and variants associated with human 
disease.26 ImmPort is an open human immunology data-
base for translational and clinical research.27 In order to 
identify key genes and validate our workflow, we cross- 
checked the identified hub genes and TFs with DisGeNET 
and ImmPort. Then, we cross-checked the identified 
miRNAs by HMDD [22].

Drug-Hub Gene Interaction Analysis
To explore potential drugs for the treatment of AD, DrugBank 
database28 was used to identify drug-hub gene interaction via 
NetworkAnalyst.29 The identified target network was visua-
lized by Cytoscape.

Prediction of Protein Subcellular 
Localization
We applied Cell-PLoc-2 to predict the subcellular 
localization of the proteins encoded by hub genes.30 

Cell-PLoc-2 is an improved online tool for predicting 
subcellular localization of proteins based on amino acid 
sequence.

Evaluation of Immune Cell Infiltration and 
Correlation Analysis of Immune Cell 
Infiltration Types and Hub Genes
To evaluate the abundance of infiltrating immune cells 
in LS skin and NL skin of AD, we used CIBERSORT 
gene signature file LM22, including neutrophils, den-
dritic cells (DCs), natural killer cells, macrophages, 
B cells, T cells, and subdivided resting and activated 
immune cell subtypes.6 CIBERSORT is based on linear 
support vector regression. Gene expression datasets 
GSE14064 and GSE99802 were processed and 
uploaded to CIBERSORT webservice portal (http:// 
cibersort.stanford.edu/). P-value <0.05 was set as cut- 
off criteria. Differentially expressed immune cells 
between the LS group and NL group were obtained. 
Pearson correlation coefficient analysis was conducted 
and visualized by Hiplot in order to explore the rela-
tionship between these different subpopulations of 
immune cells and hub genes.
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Figure 1 Identification of DEGs in microarray datasets GSE140684 and GSE99802. (A) Heat map of top 20 down-regulated and up-regulated DEGs of GSE140684 (B) Heat 
map of top 20 down-regulated and up-regulated DEGs of GSE99802. (C) Volcano plot of the distributions of all DEGs of LS and NL samples of GSE140684 (adj. P < 0.05, 
logFC >1). (D) Volcano plot of the distributions of all DEGs of LS and NL samples of GSE99802 (adj. P < 0.05, logFC >0.5). Blue dots represent significantly down-regulated 
genes and red dots represent significantly up-regulated genes in LS samples. (E) Venn plot of common DEGs identified between two data sets. 
Abbreviations: FC, fold-change; DEGs, differentially expressed genes; NL, non-lesioned; LS, lesioned.
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Construction of Least Absolute Shrinkage 
and Selection Operator (LASSO) Model 
and Receiver Operating Characteristic 
(ROC) Analysis
To select the best features for high-dimensional data, we 
applied LASSO with strong predictive value and low 
correlation. The expression profile of GES99802 hub 
genes were extracted to construct LASSO model by 
glmnet (https://CRAN.R-project.org/package=glmnet), so 
as to distinguish LS skin from NL skin of AD. A model 
index was established using the regression coefficients 

from the LASSO analysis to weight the expression value 
of the hub genes. Then, Hiplot was used to conduct and 
perform ROC curve analysis in GSE140684, GSE99802, 
GSE58558, GSE120721, and GSE36842.31

Results
Identification of DEGs
Based on the sample information and data matrix, 551 and 
445 genes were differentially expressed in LS and NL 
samples of GSE140684 (adj.P< 0.05, logFC>1) and 
GSE99802 (adj.P<0.05, logFC>0.5), respectively. The 20 

Figure 2 GSEA-based KEGG analysis. (A) GSEA-based KEGG analysis of GSE140684. (B) GSEA-based KEGG analysis of GSE99802. 
Abbreviations: GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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most up- and down-regulated gene heatmaps were visua-
lized in volcano plots (Figure 1A–D). 238 DEGs common 
to both GSE140684 and GSE99802 were found 
(Figure 1E).

DEGs from LS Samples Were Mainly 
Enriched in the Cytokine-Cytokine 
Receptor Interaction Pathway and 
Immune Response
According to GSEA-based KEGG analysis, gene sets asso-
ciated with the cytokine-cytokine receptor interaction and 
chemokine signaling significantly enriched in LS samples 
of the GSE140684 and GSE99802 datasets (Figure 2). In 
addition, GSEA-based GO biological analysis revealed 
that the most strongly enriched terms were regulation of 
immune responses, DCs, and CD4+ T cells (Table 1).

KEGG analysis of the 238 DEGs revealed numerous 
genes enriched in immune-related pathways (cytokine- 
cytokine receptors interaction, viral protein interaction 
with cytokine and cytokine receptor, cell adhesion mole-
cules, chemokine signaling, IL-17 signaling, T cell recep-
tor signaling, and NF-kappa signaling) (Figure 3A). 
Among these, the cytokine-cytokine receptor pathway 
was the most significantly enriched pathway with 28 asso-
ciated genes, including TNFSF8, CCR5, CCR7, CSF2RA, 
FLT3, CXCL1, CXCL2, IL2RG, IL4R, IL7R, CXCL8, 
IL13RA2, LTB, PRLR, CCL8, CCL17, CCL19, CCL20, 
CCL22, CXCL1, IL18RAP, IL27RA, CXCR6, IL24, IL37, 
IL21R, IL26, and IL36G. BP analysis revealed that the 
DEGs were mainly related to T cell activation, positive 
regulation of cell-cell adhesion, leukocyte cell-cell adhe-
sion, positive regulation of leukocyte cell-cell adhesion, 
neutrophil migration, positive regulation of T cell activa-
tion, and neutrophil chemotaxis (Figure 3B).

Proteomic Signatures in AD
To identify the core genes among the DEGs identified 
between LS and NL samples, we constructed the PPI net-
work and obtained 198 nodes plus 762 edges (Figure 4A). 
A high MCC indicates that a given protein is clustered in 
the center of the network and plays an essential role. We 
identified 25 hub genes in the PPI, including SELL and 
SLAMF1; we then used the MCC to select genes for 
further analysis (Figure 4B). The hub genes were mainly 
related to the immune system, including cytokines, cyto-
kine receptors, TCR signaling molecules, selectins, and 
integrins (Table 2).

Competing Endogenous RNA (ceRNA) 
Signatures
We constructed the miRNA-mRNA regulatory network 
(Figure 5A) and selected seven miRNAs (gene counts ≥3) 
to predict interacting lncRNAs (Figure 5B). Among these 
miRNAs, we further investigated the roles of hsa-mir-124- 
3p, hsa-mir-21-5p, and hsa-mir-155-5p in AD (Table 3).

Correlation Between TFs and Hub Genes
The TF-hub gene regulatory networks (Figure 6A) identified 
potential roles of STAT3, JUN, PPARG, and RELA in AD 
(Table 4). The TF that targeted the highest number of hub 
genes was FOXC1, which showed significantly downregu-
lated expression in both datasets. We then analyzed correla-
tions between FOXC1and its targeted hub genes (CCL20, 
CXCL1, IL2RG, CCR7, CTLA4, CD2, SLAMF1, LCK, 
LCP2, and ICOS) in the GSE90882 and GSE140684 data-
sets. The FOXC1 expression level was negatively correlated 
with the production of chemokines (CCL20, CXCL1), cyto-
kine receptors (IL2RG, CCR7), and TCR signaling mole-
cules (CTLA4, CD2, SLAMF1, LCK, LCP2, ICOS) 
(Figure 6B). These significant correlations in two 

Table 1 Significantly Enriched GSEA-Based GO Terms of Biological Process Related to Immune Cells and Responses with P-value <0.05 
Were Screened Out

GO Terms Biological Process ES140684 P140684 ES99802 P99802

Positive regulation of type 2 immune response 0.8292 0.0079 0.8890 0.0000

Regulation of Th 1 immune response 0.8161 0.0176 0.8871 0.0000
Regulation of Th 17 immune response 0.8651 0.0077 0.8535 0.0122

Positive regulation of CD4 αβT cell differentiation 0.8534 0.0038 0.8691 0.0000

Positive regulation of CD4 αβT cell activation 0.8511 0.0038 0.8658 0.0000
Dendritic cell chemotaxis 0.8288 0.0020 0.8812 0.0044

Dendritic cell migration 0.8009 0.0059 0.8392 0.0088

Dendritic cell activation 0.7739 0.0333 0.8291 0.0260
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independent datasets further indicated that these hub genes 
and FOXC1 play an indispensable role in AD development.

Drug Analysis
Seven hub genes (CCR5, CXCL8, MMP9, LCK, ITGAL, 
ITK, IL2RG) had interactions with 42 drugs for possible 
treatment (Figure 7A).

Employing Cell-PLoc-2, we identified the subcellular 
localization of proteins encoded by the 25 hub genes 
of AD. The proportions of hub proteins in different 
subcellular locations are displayed in Figure 7B. 
Notably, the hub nodes LCP2 and ITK displayed cyto-
plasm localization; CD2, ITGAX, and IKZF1 were loca-
lized in the nucleus; SELL, CTLA4, CD28, SLAMF1, 

Figure 3 Enrichment analysis of the common DEGs identified from GSE140684 and GSE99802. (A) Top seven enriched KEGG terms. (B) Top seven enriched GO biological 
process terms. 
Abbreviations: DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 4 Identification of hub genes. (A) PPI network of the DEGs in Atopic dermatitis. The nodes indicate the DEGs and the edges indicate the interactions between two 
proteins. Medium confidence score was used for the construction of PPI networks. (B) Top 25 hub genes with MCC by CytoHubba plugin. 
Abbreviations: PPI, protein-protein interaction; MCC, maximum correlation criterion.
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CD3E, CD5, IL2RG, CCR5, and CD274 were localized 
in plasma membrane; and IL7R, ITGAL, CXCL8, 
CCL19, ICOS, CCL20, and CXCL1 were localized in 
the extracellular space.

Correlation Analysis Between Hub Gene 
Expression and Immune Cell Infiltration
Based on the CIBERSORT output results, we analyzed 42 
(84%) samples from GSE99802, while excluding 

Table 2 Summary of Hub Proteins Identified from Protein-Protein Interactions Analysis of Encoded Differentially Expressed Genes in 
Atopic Dermatitis

Symbol Name Feature Rank Description

SELL Selectin L Candidate marker 1 Selectin family

CTLA4 Cytotoxic T-Lymphocyte Afflicted with AD 2 TCR signaling Pathway

Associated Protein 4

IL7R Interleukin 7 Receptor Candidate marker 3 Antimicrobials/Cytokine Receptors/Interleukins Receptor

CD28 T-Cell-Specific Surface Afflicted with AD 4 Antimicrobials/TCR signaling Pathway

Glycoprotein CD28

CD2 CD2 Molecule Candidate marker 5 TCR signaling Pathway

SLAMF1 Signaling Lymphocytic Candidate marker 6 NK Cell Cytotoxicity/TCR signaling Pathway

Activation Molecule Family Member 1

LCK Lymphocyte Cell-Specific Candidate marker 7 NK Cell Cytotoxicity/TCR signaling Pathway

Protein-Tyrosine Kinase

CD3E CD3e Molecule Candidate marker 8 TCR signaling Pathway

CD5 CD5 Molecule Candidate marker 9 TCR signaling Pathway

GZMB Granzyme B Candidate marker 10 NK Cell Cytotoxicity

ITGAL Integrin Subunit Alpha L Candidate marker 11 NK Cell Cytotoxicity

CCR7 C-C Motif Chemokine Receptor 7 Candidate marker 12 Antimicrobials/Chemokine Receptors/Cytokine Receptors

IL2RG Interleukin 2 Receptor Subunit Gamma Candidate marker 13 Cytokine Receptors /Interleukins Receptor

ITGAX Integrin Subunit Alpha X Candidate marker 14 Integrin family

LCP2 Lymphocyte Cytosolic Protein 2 Candidate marker 15 NK Cell Cytotoxicity /TCR signaling Pathway

CCR5 C-C Motif Chemokine Receptor 5 Afflicted with AD 16 Antimicrobials/Chemokine Receptors/Cytokine Receptors

IKZF1 IKAROS Family Zinc Finger 1 Candidate marker 17 Transcription factor

CD274 CD274 Molecule Candidate marker 18 TCR signaling Pathway

CXCL8 C-X-C Motif Chemokine Ligand 8 Afflicted with AD 19 Antimicrobials/Chemokines/Cytokines/Interleukins

CCL19 C-C Motif Chemokine Ligand 19 Candidate marker 20 Antimicrobials/Chemokines/Cytokines

ICOS Inducible T Cell Costimulator Afflicted with AD 21 TCR signaling Pathway

CCL20 C-C Motif Chemokine Ligand 20 Afflicted with AD 22 Antimicrobials/Chemokines/Cytokines

CXCL1 C-X-C Motif Chemokine Ligand 1 Afflicted with AD 23 Antimicrobials/Chemokines

ITK IL2 Inducible T Cell Kinase Afflicted with AD 24 TCR signaling Pathway

MMP9 Matrix Metallopeptidase 9 Afflicted with AD 25 Antimicrobials
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GSE140684 entirely because it contained 21 (42%) non- 
significant (p > 0.05) samples, which prevented perform-
ing an accurate analysis. The different populations of 
infiltrating immune cells in the LS and NL groups are 
presented using a violin plot in Figure 8A. Three types 
of immune cells (resting CD4+ memory T cells, activated 
CD4+ memory T cells, and DCs) were significantly differ-
entially expressed in both datasets, and were specifically 
upregulated in the LS tissue.

To further explore the relationship between hub gene 
expression and immune cell infiltration, we analyzed 
whether the expressions of hub genes were correlated 
with the levels of resting and activated CD4+ memory 
T cells as well as activated DCs. The levels of activated 
and resting CD4+ memory T cells were moderately corre-
lated with the expressions of chemokine-encoding genes 
(eg, CXCL8, CXCL1, CCL20) and cytokine receptor- 
encoding genes (eg, IL7R, IL2R, CCR5). CCL19 and 

Figure 5 Construction of ceRNA regulatory networks. (A) miRNA-mRNA regulatory network. Medium confidence score was used for the construction of regulatory 
networks. Genes are colored in blue, and node size is adjusted according to number of targeted miRNAs; miRNAs are colored in purple; miRNAs targeting more than two 
genes simultaneously are colored in red. (B) miRNA-LncRNA regulatory network. MiRNA with genes count ≥ 3 were screened to predict LncRNA with CLIP-Data ≥7. 
Abbreviations: ceRNA, competing endogenous RNA; miRNA, micro-RNA; LncRNA, long non-coding RNA.
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CCR7 expression levels were positively correlated with 
the levels of activated and resting CD4+ memory T cells, 
respectively. Additionally, expression levels of TCR sig-
naling molecules (CTLA4, CD3E, SLAMF1, LCK, LCP2, 
ICOS, and ITK, but not CD274) were significantly corre-
lated with the levels of activated and resting CD4+ mem-
ory T cells (Figure 8B). We also found a positive 
correlation between the levels of activated DCs and the 
expressions of all hub genes, except for CCL20.

Exploring Candidate Biomarkers by ROC 
Curves and LASSO Regression
The LASSO regression model was firstly constructed for the 
GSE99802 dataset (with the largest number of samples) to 
search for an optimal linear combination of hub genes that 
can be used to diagnose AD (Figure 9A). Six genes were 
selected with non-zero regression coefficients and lambda. 
min = 0.0383513. The LASSO regression model was estab-
lished as follows: index = SELL*0.343074243 
+IL7R*0.004220025+CXCL1*0.165991590+CCR7*0.416 
155475+CCR5*0.007626045+CCL19*0.050059214. Each 
hub gene and the LASSO model was evaluated according 
to the ROC curve in five cohorts (GSE99802, GSE140684, 
GSE58558, GSE120721, and GSE36842) (Figure 9B). The 
AUC of the LASSO model was in the range of 0.75–1.00. 
CD274, GZMB, and CXCL1 showed particularly high per-
formance, with AUC values above 0.9 in GSE36842, 
GSE120721, and GSE120721, respectively, indicating their 
potential as biomarkers of AD.

Discussion
The multifactorial background of AD occasionally 
causes therapeutic failure, necessitating individualized 
treatment and new solutions. One recommendation is to 
find a method that can distinguish patients with AD 

according to various characteristics such as disease 
severity, biomarkers, and immunological polarization 
(ie, phenotypes, immunotypes).10 This strategy would 
allow for specific treatments to different forms of AD. 
Toward this end, in this study, we employed 
CIBERSORT to identify novel biomarkers and immu-
notypes that can be used to distinguish patients 
with AD. Enrichment analysis revealed AD-associated 
genes were mainly related to the immune response and 
cytokine interactions. Moreover, our results suggest 
that inhibition of the TF FOXC1 might upregulate 
hub genes, including those encoding cytokines, cyto-
kine receptors, and TCR signaling molecules, to pro-
mote antigen presentation and activation of DCs. 
Surface receptors and TCR signaling molecules of 
CD4+ T cells can recognize antigens presented by 
DCs and initiate their differentiation into Th2 cells, 
causing local inflammation, epidermal dysfunction, 
and tissue remodeling and fibrosis, thus contributing 
to AD pathogenesis. In addition, the LASSO regression 
model of hub genes can be used to identify diagnostic 
biomarkers.

Our exploration of AD-related biological processes 
and pathways began with GSEA-based GO and KEGG 
pathway analyses. We found that AD-affected tissues 
were enriched in immune cells (CD4+ T cells and 
DCs), cytokine-cytokine receptors, as well as chemo-
kine and TCR signaling pathways. It is well recognized 
that AD is a Th2/Th22-dominant disease, regulated by 
DC-induced T-cell polarization and recruitment of spe-
cific T-cell subsets by chemokines.32 Th17 and Th1 
skewing also plays a role in causing AD.33 Th2 cells 
release cytokines such as IL-4, IL-5, and IL-13, leading 
to elevated IgE production that increases skin inflam-
mation and aggravates the skin barrier defect in AD.34 

Table 3 Summary of miRNAs (Genes Count ≥3) of Regulatory Biomolecules of the Hub Genes in Atopic Dermatitis Identified from 
Hub Genes-miRNA s Interactions

Symbol Feature Genes Count Mechanism

hsa-mir-26b-5p Candidate marker 5 Unclear

hsa-mir-335-5p Candidate marker 5 Unclear

hsa-mir-204-5p Candidate marker 5 Unclear
hsa-mir-211-5p Candidate marker 5 Unclear

hsa-mir-155-5p Afflicted with AD 5 Promotion of Th17 differentiation, Inhibition of tight junction formation

hsa-mir-124-3p Afflicted with AD 3 Inhibition of inflammatory responses
hsa-mir-21-5p Afflicted with AD 3 Activation of Th2 inflammation
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Figure 6 Construction of TF regulatory networks and correlation analysis. (A) TF-mRNA regulatory networks. Medium confidence score was used for the construction of 
regulatory networks. (B) Correlation analysis between TF FOXC1 and targeted genes. 
Abbreviation: TF, transcription factor.
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These results were consistent with previous research 
and emphasized the important role of Th17 and Th1 
polarization, apart from Th2/Th22 axis.

MicroRNAs are small endogenous non-coding RNAs 
that bind to the 3′ untranslated region of genes and 
regulate gene expression through degrading or inhibiting 
the translation of target genes.35 Our results identified 
several hub genes, miRNAs, confirmed by previous 
research. AD is characterized by impaired skin barrier 
and chronic inflammation.36 MMP-9, as broad-spectrum 
protease, can break down a range of matrix and other 

proteins, causing substantial tissue damage and barrier 
dysfunction of AD pathology.37 Elevated level of CCR5 
in AD induced chronic inflammation, impairing the skin 
of AD.38 Additionally, by targeting the TF PU.1, 
microRNA-155 regulates DC-associated Th2 responses 
and controls allergic inflammation in mice.39 Our study 
indicated these molecules were worthy of further 
exploration and might act as promising therapeutic 
targets.

Then, we used CIBERSORT to estimate the composition 
of immune cells and further correlate these cells with hub 

Table 4 Summary of TFs (Genes Count ≥5) of Regulatory Biomolecules of the Hub Genes in Atopic Dermatitis Identified from Hub 
Genes-TFs Interactions

Symbol Name Feature Genes Count

FOXC1 Forkhead box C1 Candidate marker 16

GATA2 GATA binding protein 2 Candidate marker 15

YY1 YY1 transcription factor Candidate marker 11
FOXL1 Forkhead box L1 Candidate marker 9

POU2F2 POU class 2 homeobox 2 Afflicted with AD 8

NFIC Nuclear factor I C, Candidate marker 7
HINFP Histone H4 transcription factor Candidate marker 6

RUNX2 RUNX family transcription factor 2 Afflicted with AD 6
MEF2A Myocyte enhancer factor 2A Candidate marker 5

STAT3 Signal transducer and activator of transcription 3 Candidate marker 5

JUN Jun proto-oncogene Candidate marker 5
PPARG Peroxisome proliferator activated receptor gamma Afflicted with AD 5

RELA RELA proto-oncogene, NF-KB subunit Afflicted with AD 5

Figure 7 Construction of protein-drug interaction network and subcellular localization. (A) Protein-drug interaction network of hub genes. (B) The distribution and 
percentages of the subcellular localization of the proteins encoded by hub genes.
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genes. Among the hub genes, cytokine-, cytokine-receptor‒, 
and TCR-encoding genes were positively associated with 
infiltration of CD4+ memory T cells and activated DCs. 
Activated DCs can migrate to the regional lymph nodes, 
where they induce Th2 production and subsequent B-cell 
IgE switching. We found that activated DCs were positively 
correlated with the hub genes CCR5, CXCL1, and CXCL8. It 
was reported that CCL19 binds to CCR7 of DCs in the AD 
LS skin, leading to DC activation and Th2 polarization.40 

Additionally, DCs can promote cancer progression via 
CXCL1 and aggravate CXCL8 in chronic obstructive pul-
monary disease.41,42 Together with these findings, our results 
might suggest that activated DCs could release CXCL1 and 

CXCL8 to recruit neutrophils and cause skin inflammation 
in AD. Besides, activated DCs are positively correlated with 
TCR signaling molecules, suggesting that DCs upregulate 
these molecules and promote T cell differentiation, thereby 
impairing epidermal integrity and causing cutaneous 
inflammation.

Following antigen stimulation, T cells persist as 
effector memory T cells and central memory T cells in 
the lymph nodes and peripheral tissues.43 Antigen recog-
nition by TCR and interaction of inflammatory cytokines 
such as IL-2 with cytokine receptors are required for the 
generation and maintenance of tissue resident memory 
(TRM) T cells. IL7R and IL2RG can bind to IL-2, 

Figure 8 Violin plot of immune cell composition between LS and NL tissue and correlation analysis between immune cells and hub genes. (A) The violin plot indicates the 
composition of 22 immune cells between LS and NL tissue in GSE140684 with CIBERSORT p < 0.05 for all eligible samples. The blue violin plot indicates NL tissue, and the 
red violin plot represents LS tissue. (B) Correlation analysis between differentially expressed immune cells and hub genes. 
Abbreviations: NL, non-lesioned; LS, lesioned.
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promoting the generation of CD4+ memory T cells.44 

Additionally, CCR5+ TRM cells can differentiate into 
Th17 and Th1 cells.45 CCL19 promotes the differentia-
tion of CCR7+ CD4+ memory T cells into Th2 subsets,46 

whereas CCL20 induces CD4+ memory T cell 

differentiation into Th17 cells, leading to increased 
CXCL1 and CXCL8 production.47 In addition, CD4+ 
memory T cell numbers are significantly related to 
TCR molecules (except for CD274); antigen recognition 
of TCRs is essential for CD4+ T cell differentiation into 

Figure 9 Construction of LASSO regression model and ROC curves of hub genes in five cohorts. (A) The left plot indicates binomial deviance of different numbers of 
variables revealed by the LASSO regression model for GSE99802. The red dots represent the value of binomial deviance; the grey lines represent the SE; the vertical dotted 
lines represent optimal values by the minimum criteria and 1-SE criteria. “Lambda” is the tuning parameter. (B) The ROC curves of LASSO regression model (SELL 
*0.343074243+IL7R*0.004220025+CXCL1*0.165991590+CCR7* 0.416155475 +CCR5*0.007626045+ CCL19*0.050059214) and top 5 genes in 5 cohorts (GSE99802, 
GSE140684, GSE58558, GSE120721, GSE36842). 
Abbreviations: AUC, area under the curve; ROC, receiver operating characteristic; SE, Standard error.
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memory subsets.48 Our findings firstly suggest that CD4 
+ memory T cells might cause epidermal barrier dys-
function and contribute to AD by impairing intercellular 
cohesion and integrity, and disturbing keratinocyte 
differentiation.

Correlation analysis between differentially expressed 
TF FOXC1 and immune cell-related hub genes revealed 
important TFs that regulate hub gene expression, thus 
enhancing our understanding of AD pathogenesis. 
FOXC1, a member of the forkhead box TF family, is 
necessary for human keratinocyte terminal 
differentiation.49 Previous research showed that CCL20 
might induce the differentiation of CD4+ memory 
T cells into Th17 cells, attracting neutrophils, DCs, 
and more T lymphocytes to perpetuate skin inflamma-
tion. CCL19 might activate DCs and CD4+ memory 
T cells, leading to Th2 polarization in AD lesions. Our 
results suggest that FOXC1 might play a role in AD by 
upregulating the production of cytokines, cytokine 
receptors, and TCR signals. However, these conclusions 
require further investigation and confirmation.

We applied ROC analysis to evaluate single hub genes 
or LASSO linear models. The model consists of SELL, 
IL7R, CXCL1, CCR7, CCR5, and CCL19; however, three 
single genes (GZMB, CD274, and CXCL1) showed great 
diagnostic value in skin tissue.

Our study possesses several strengths, but also 
some limitations. We applied several novel analytic 
bioinformatic approaches on micro-array data of differ-
ent datasets. The results were cross validated by 
DisGeNet and HMDD. A LASSO model was con-
structed based on one dataset and validated by four 
external datasets. However, we did not carry out 
experiments to validate the results. In order to better 
illustrate the key link between LS and NLl skin of AD 
patients, we did not include healthy controls in this 
study and ignore the basal genetic difference between 
individual. Therefore, a larger cohort, including healthy 
controls and more functional experiments are required 
to confirm the data.

Conclusion
In summary, our study employed next generation sequencing 
method to explore the differentially expressed genes of AD. 
Cibersort and LASSO model were applied to evaluate 
immune landscapes and diagnostic values of these genes 
in AD, respectively. A series of novel potential biomarkers, 
including immunological hub genes, TFs, miRNAs, and 

lncRNAs, were identified as candidate biomarkers and pro-
mising therapeutic targets in the prediction and diagnosis 
of AD. And the specific molecular function of these mole-
cules needs to be further investigated.
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