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Abstract 
Background: Low vital capacity, one of the consequences of restricted 
lung growth, is a strong predictor of cardiovascular mortality. Vital 
capacity is lower in the developing world than the developed world, 
even after adjusting for height, weight and gender. This difference is 
typically dismissed as ethnic variation, adjusted for by redefining 
normal. Whether this is a consequence of stunted lung growth, rather 
than just genetically smaller lungs, has not been investigated in detail. 
Therefore, we sought to compare factors implicated in both stunting 
and lung development, particularly in the developing world. 
Methods: We conducted a manual screen of articles identified 
through Google Scholar and assessed risk of bias. No language 
restrictions were applied, so long as there was an associated English 
abstract. We queried VizHub (Global Burden of Disease Visualization 
Tool) and Google Dataset search engines for disease burden and 
genome wide association studies.  The scope of the article and the 
heterogeneity of the outcome measures reported required a narrative 
review of available evidence. To the extent possible, the review follows 
PRISMA reporting guidelines. 
Results: Early life influences operate in synergism with genetic, 
environmental and nutritional factors to influence lung growth and 
development in children.  Low lung function and stunting have 
common anthropometric, environmental and nutritional correlates 
originating during early development. Similar anthropometric 
correlates shared chronic inflammatory pathways, indicated that the 
two conditions were analogous. 
Conclusion: The analogy between poor lung function and stunting is 
conspicuous in the developing world, with malnutrition at the center 
of non -achievement of growth potential, susceptibility to infectious 
diseases and intrauterine programming for metabolic syndrome. This 
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counter the idea of redefining the normal for lung function 
measurements, since observed inter-ethnic variations are likely a mix 
of natural genetic differences as well as differences in nurture such 
that reduced lung function reflects early life adversities.
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Introduction
Forced Vital Capacity normalized to height was found to be an 
independent indicator of cardiovascular risk in the Framingham  
Heart Study Cohort. A series of landmark studies since then 
have cemented the role of spirometry as a prognostic tool for  
non-communicable disease outcomes in general and cardiovas-
cular disease outcomes in particular1–6. This has allowed lung 
function to transcend its status as an indicator of respiratory 
disease severity to a predictor of all-cause and cause specific 
mortality.

While the development of ethnic and geographical reference 
equations for lung volumes may incorporate differences in body 
habitus, the validity of these equations would rely heavily on  
assumptions regarding the reference population being ‘healthy’7. 
Adverse socio-economic and environmental factors prevalent 
in the developing world obscure the definition of a pheno-
typically ‘healthy’ population. Here, a non-invasive indicator 
such as lung function, influenced by perinatal growth condi-
tions, growth faltering, repeated infections and malnutrition 
resulting in a chronic inflammatory state, reliably reflects 
health across the life course.

Defined as height-for-age more than two standard deviations 
below the WHO Child Growth Standards Median8, stunting is 
an equally powerful proxy for similar exposures encountered 
early in the life course. As both lung function and early growth 
are strongly associated with and defined by linear growth, influ-
enced by similar perinatal factors, and culminate in an elevated  
risk of non-communicable diseases sharing chronic inflamma-
tory origins, the associations and intersections between poor lung 
function and stunting could reveal a roadmap for common inter-
ventions for both conditions. In this case, the idea of both stunt-
ing (as an outcome of growth faltering conditions) and poor lung 
function were examined as analogous processes, based on the 
hypothesis that both conditions appeared to be steeped in simi-
lar origins, had similar intermediate indicators and culminated  
in an elevated risk of similar outcomes.

The intersecting pathways culminating in growth faltering and 
poor lung function signal towards the pathological origins of 
poor lung function.  Assumptions regarding the reference popu-
lation being healthy are central to the generation of ‘normal’  
spirometry values for a given population. These assumptions 
are violated in populations experiencing adverse developmental 

conditions leading to growth faltering and undiagnosed asymp-
tomatic cardiometabolic disease. Therefore, this analogy merits 
detailed investigation.

Methods
We searched through Google Scholar and PubMed between 
June 2019-December 2019, with the last search performed on  
December 29th 2019. The search was conducted in two main 
phases. A primary search was conducted to identify the main risk  
factors implicated in stunting, growth faltering and reduced 
lung function, using keywords such as “stunting”, “lung func-
tion”, ”lung capacity”, ”forced expiratory volume”, ”forced vital  
capacity”, “lung development” and “growth faltering”. We also 
conducted a brief analysis of GBD 2017 data to describe the role of  
socioeconomic influences affecting both conditions.

We identified relevant articles using the search terms grouped 
according to risk factors, such as maternal nutrition and  
anthropometry, nutrition, anthropometry, environmental factors,  
sanitation, genetic and epigenetic factors.

Eligibility criteria for studies
Randomized controlled trials, cohort studies, case-control  
studies and cross-sectional studies in which participants were 
aged 0–25 years were included. In addition, the following  
inclusion criteria were used:
•   English abstract available

•   Human studies

•   Participants of studies are children aged 0–25

•   Published after 1990

•    Papers contained original data and were full-length 
peer-reviewed

Outcomes of interest
The following outcomes of interest were included and assessed:
•    Lung function as measured by spirometry (e.g. FEV1, FVC, PEF, 

FEF 25–75 and FEV1/FVC)

•    Airway resistance as measured by R5, X5, R20, X20 
and similar derivatives

•   Respiratory infections

•   Respiratory mortality

•   Chronic obstructive pulmonary disease (COPD)

•   Stunting

•   Related comorbidities

Synthesis of results
Studies meeting the inclusion criteria were grouped according  
to the risk factors identified during the primary search. Risk  
factors included intrauterine growth restriction, malnutrition,  
sanitation, air pollution, cigarette smoking, genetic and epigenetic  
factors. Subsequent searches were then performed to examine  
the relationship between each set of risk factors with both 
stunting and lung function.

          Amendments from Version 1
In this version the manuscript was revised according to 
reviewer’s comments on modification of the abstract to better 
reflect the manuscript, a more balanced review of literature, 
addition of missing references where necessary. Our choice of 
the words ‘analogous’ has been explained to some extent. We 
explained the interaction of ethnicity with socio-economic factors 
and its effect on lung function.
Any further responses from the reviewers can be found at 
the end of the article
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Evidence from community-based studies and mechanistic studies 
were then examined together to identify the interrelationships 
between stunting and lung function and organized into sec-
tions according to chief risk factors implicated in both condi-
tions. Consequently, the results were summarized in a narrative 
form. The heterogeneity in outcomes of the studies included 
in the review necessitated a narrative review, and to the extent  
possible, this review follows PRISMA guidelines.

Results
Higher burden of stunting and low lung function in the 
developing world indicates the role of socioeconomic 
influences
Evidence of reduced lung function in the developing world 
emerged from the Prospective Rural Urban Epidemiological 
Study (PURE), which investigated global variation in lung func-
tion in healthy populations by region. Compared with North 
American or Europe, FEV1 adjusted for age, height and sex, was 
31.3% lower in south Asia, 24.2% lower in Southeast Asia, 12.8% 
lower in East Asia, 20.9% lower in Sub-Saharan Africa, 5.7% 
lower in South America, and 11.2% lower in the Middle East. 
Similar and larger differences existed for FVC9.

While it is conceivable that low lung function in apparently 
healthy communities in developing nations represents a healthy 
but genetically smaller lung than western populations, this 
should not be assumed given the high rates of chronic respiratory 
and cardiovascular disease mortality.

The prevalence of reduced FVC was strongly associated with 
education level and biomass index in a study assessing the 
prevalence of reduced FVC and associated risk factors in the 
African population10. In the Burden of Lung Disease study, 
the prevalence of a restrictive spirometry varied widely by site 
and gender, affecting as few as 4.2% of males in Sydney to as 
many as 48.7% of females in Manila11.

Indeed, across Burden of Obstructive Lung Disease (BOLD) 
study sites, with NHANES III as the reference data, Restric-
tive Lung Function (RLF), defined as Forced Vital Capacity <80% 
of predicted, was extremely common in the developing world, 
but less so in affluent nations12,13. The use of reference equations 
that are generated primarily in order to account for genetic het-
erogeneity, for developing world populations experiencing large 
variations in developmental conditions, could obscure the true 
prevalence of reduced lung function. Epigenetic mechanisms 
that may persist for generations make it even more difficult to  
fully exclude environmental effects on development.

Stunting was estimated to affect 21% of children under 5 years 
of age globally, more than half of whom live in Asia and a 
third in Africa. It is distinguished from other nutritional dis-
orders that affect the life course, in that it is irreversible if not 
addressed within the first 1000 days. Even if catch-up growth 
does occur, it predisposes the individual to an elevated risk of 
metabolic dysfunction in later life14. The human capital loss 
resulting from stunting is likely to overwhelm health sys-
tems of developing nations, ill-equipped to rehabilitate the 
39.6 and 96.8 million affected children in low-income and  

low-middle-income countries, respectively. In comparison, 2.1 mil-
lion children are affected in high-income countries. This is because 
indicators of stunting such as low per capita income, household 
food insecurity, repeated infections due to substandard sani-
tation and unsafe water, and poor maternal health and birth  
outcomes, follow a socio economic dependent pattern15. Here  
stunting differs from restrictive lung growth in that except for 
its contribution to a long term chronic inflammatory state, it’s 
effects may be reversible to an extent if addressed during the  
first 1000 days of life, whereas the consequences of restrictive  
lung growth persist throughout the life course16.

An analysis of the GBD 2017 data, showed a relationship 
between Socio-Demographic Index (a development metric 
used by the Global Burden of Disease Study), and deaths due 
to respiratory tract infections, stunting, wasting, preterm birth, 
diarrhea, suggesting that both disease, and risk factors impli-
cated in both conditions followed a socio economic dependent 
pattern (see Extended data)15.

As a sequel to intrauterine growth restriction (IUGR), stunting 
appears to mirror the pathology of restrictive lung function. 
When accompanied by rapid weight gain during infancy and 
later childhood it is an intermediate predictor of risk of meta-
bolic dysfunction during adulthood. Early manifestations such as 
low birth weight, short stature and a high Cormic index (upper 
to lower body segment ratio) too are common to restrictive lung 
function and stunting. Once the foundation of altered meta-
bolic programming is laid during the perinatal period, contin-
ued exposure to adverse environmental conditions result in a 
heightened inflammatory state and predispose individuals to 
a high risk of chronic metabolic diseases17.

This exacerbation of disrupted metabolic programming during 
development has been a major mechanism influencing epide-
miological transitions in the developing world, where popula-
tions traditionally experiencing high rates of IUGR, malnutrition 
and stunting are now confronted with an increasing prevalence 
of chronic metabolic diseases. It is important to note that nations 
in different stages of epidemiological transition would exert 
opposing effects on the association between SDI and deaths 
due to chronic diseases.

This is observed in the moderately high, positive correlation 
between SDI and Ischemic Heart Disease (GBD 2017). This asso-
ciation would likely grow and stabilize in future, as most nations 
would tend to a lower epidemiological transition level (ETL). The 
interplay between socioeconomic status and variations in ETL 
across populations/communities needs to guide the design 
of interventions for both stunting and restrictive lung function.

Examining the mediators of stunting and low lung 
function: interplay of ethnicity, environment and access
In the arid regions of rural Tanzania, stunting mediated growth 
retardation was associated with cultivated land size, gender 
and age of the child, duration of breastfeeding, household size, 
use of iodized salt, the distance to a water source, literacy sta-
tus and BMI of the mother18. Stunting influenced deviations 
from predicted lung function values among 208 stunted and 365 
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non-stunted children in Tibet. These differences were compat-
ible with the effects of retarded growth and lung maturation 
characteristic among stunted children19.

Similarly, a Peruvian study with data from 553 asthmatic chil-
dren, reported an association between food insecurity and poorer 
Asthma control20. Asian children in low SES environments, with 
indications of stunting, such as short stature and low BMI, had 
the highest FEV

1
/FVC ratio on average. This is because expo-

sures implicated in stunting result in reduced lung growth and 
low FVC values, and due to their limited and indirect effect 
on FEV

1
, result in a high FEV

1
/FVC ratio. Therefore, stunting 

manifests with restrictive lung function, as low values of FVC 
with normal to high FEV

1
/FVC ratio21.

One point of discord in the analogy between growth falter-
ing and poor lung function is the varying extent to which both  
conditions could be governed by genetic factors. 

A study examining differences in lung function between Asian 
and White school-children ages 6-11 in Leicester22, found  
differences in ethnicity to be significantly associated with lung  
function, after adjusting for socio-economic factors (which  
additionally determine access to nutrition and exposure to air 
pollution). While ethnic differences were seen to exist, these  
differences ould not be attributed to clear anthropometric cor-
relates. This was also observed  in a study examining the differ-
ences in lung function in 112 young adults, where differences 
in anthropometric indicators did not explain ethnic differences 
in lung function23. In the CARDIA cohort too, race and sex dif-
ferences in lung function appeared to persist despite detailed  
adjustment for frame size24. The mechanistic influences of ethnic-
ity (‘nature’) are speculated to manifest through surrogate markers  
for height, such as  proportions of leg length to body height, sit-
ting height, or differences in inspiratory muscle strength or lung 
compliance22. It is also plausible to assume that the difficulty 
in untangling the effects of genetic and environmental influ-
ences could be attributable to the low-penetrance nature of 
genes which regulate lung development and function. The nature 
and extent of gene-environment interactions are intrinsic to  
the mode of action of many common, low-penetrance genes25. 

These in turn may work in tandem with developmental  
mediators such as the intra uterine growth environment and early 
life exposures. Part of the residual variability could be attributed 
to unmeasured determinants, which are likely to be both genetic 
and epigenetic. It must however be noted that ethnicity is a  
complex imperfect socio-political construct and can be a poor  
surrogate of genetics, as argued elegantly by Quanjer et al.26

In this context, while attained lung function may be consid-
ered a phenotypic expression of both genetic endowment and  
childhood environment, stunting primarily appears to be a conse-
quence of deprivation and inequality encountered during devel-
opment. Disruptions in environmental factors such as maternal 
nutritional status, feeding practices, hygiene and sanitation,  
frequency of infections and access to healthcare are the major  
determinants of the risk of stunting27. 

IUGR is an interesting intersection point for the purpose of 
this study that is environment driven, highly prevalent in 
developing nations, results in smaller organs and low birth 
weight infants with a higher susceptibility to diarrheal and  
lower respiratory tract infections. This sequence, which may 
even persist beyond a single generation since maternal size 
is in itself a limiting point for fetal growth, leads to repeated 
growth faltering and reinfections, which are implicated in  
stunting28–31. IUGR, as a consequence of maternal loss of 
growth potential, may be considered a point of convergence 
in the pathways for poor lung development and stunting, for  
which we have more data than either of the two alone.  

IUGR: The cornerstone for stunting and low lung 
function
The foundation for compromised (‘brain sparing’) organ growth 
and metabolic dysfunction is laid during the perinatal period. 
According to the fetal origins hypothesis the fetus adapts itself 
in response to variations in nutrient and oxygen supply and 
its development is closely regulated by complex interactions 
between maternal nutritional status, endocrine and metabolic 
signals and placental development32. ‘Size at birth’ and related 
derivatives such as small for gestational age (‘SGA’) reflect 
metabolic and anthropometric programming in the intrauterine 
environment (see Figure 1).

IUGR results in metabolic reprogramming during periods of 
rapid cell proliferation and differentiation. In later life, expo-
sure to IUGR works synergistically with ante-natal factors such 
as malnutrition and infections during early life, to result in a 
compounded risk of stunting. Maternal anthropometric indica-
tors of IUGR, such as short maternal stature, low body mass 
index and poor weight gain during pregnancy contribute to a 
higher risk of SGA and stunting in the child33–38.

It is well documented that that the timing of undernutrition deter-
mines the pattern of growth retardation. Babies with large heads 
are speculated to have grown more rapidly during early gesta-
tion such that their higher demand for nutrients during later ges-
tation remains unmet39. Early undernutrition results in small 
but normally proportioned animals, while later undernutrition 
results in selective organ damage. Babies who have experienced 
undernutrition in later gestation therefore have small lungs for 
their bodies40.

Besides other consequences of disparate nutrient supply,  
thymus growth impairment during late gestation disrupts the 
differentiation of specific thymus-derived helper lymphocytes 
(Th) from Th2 to Th1, leading to exaggerated IgE responses 
and hyper responsive airways in later life41,42. This explains the 
association linking larger head circumference and increased 
serum IgE concentrations to the development of asthma in 
later life, while low birth weight is known to be associated 
with reduced FEV and FVC39,43,44.

A study conducted by Todisco et al. compared the lung func-
tion of former pre-term and full-term children at 12.5 years 
of age and found higher rates of low lung function in the  
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Figure 1. Intrauterine growth restriction contributes to both low lung function and stunting.

pre-term birth category compared to matched siblings deliv-
ered at term, indicating that lung function deficit at birth persists 
into early adolescence45. This is because birth offsets one of the 
first and most profound gene environment interactions where the  
delivery of oxygen via the placenta is transferred to the lung, 
a process that is adversely affected by preterm birth. Evidence  
from expression profiling studies suggests that it is after the 
expression of developmental genes that genes involved in oxygen  
transport, genes coding for antioxidant species and genes  
involved in host defense are expressed, signaling a strong depend-
ence on a developmentally mature and functional lung, which 
in preterm births is usually compromised. Additionally, sup-
plemental oxygen therapy for preterm neonates not only causes  
inadvertent oxidative damage but also results in a highly simpli-
fied alveolar epithelium because of aberrant immune response. 
This aberrant response additionally suppresses angiogenic  
factors46 interfering with healthy lung development. Maternal 
hypertension and pre-eclampsia, often implicated in pre term 
birth and low birth weight infants can be indirectly implicated 
in contributing to low lung function during childhood47,48.

In addition to direct effects such as a higher risk of preterm birth, 
compromised organ growth and stunting IUGR also exacer-
bates the adverse consequences of preterm delivery and postnatal 
hyperoxia49. Preterm birth renders growth-restricted infants vul-
nerable to infections, leading to growth faltering, triggering a 
cycle of infection and undernutrition, hindering the attainment 
of maximum growth potential. IUGR directly results in brain 
sparing growth and restrictive lung growth but appears to set 
the foundation for stunting. The effects of IUGR and growth 
faltering in utero,when sustained through malnutrition and  
frequent infections leads to stunting as an outcome. This is 
an interesting point of convergence in the pathophysiology of  
both conditions.

Malnutrition and anthropometry: Manifestations of 
stunting and low lung function
Nutritional insults throughout the life course initiate and sus-
tain the pathophysiology of both stunting and restrictive lung 
growth. The Avon Longitudinal Study of Parents and Children 
reported positive associations between maternal intake of zinc 
and childhood FEV

1
 and FVC50. FVC was found to be higher 

in children who were breastfed for 6 months or longer as com-
pared to children breastfed between 2 to 4 months, among 4464 
children embedded in a population-based prospective cohort51.  
Postnatal vitamins A, E and D supplementation was observed 
to have the greatest effect on alveolar development and capil-
lary growth, which are critical determinants of FVC52. In growth 
restricted infants, as alveolar numbers continue to increase 
after birth, postnatal nutrition interventions may influence 
growth and affect the size of the adult lung53.

Like restrictive lung function, growth faltering in stunting is 
compounded by suboptimal breastfeeding in the first months 
of life, a poor and unbalanced diet and/or insufficient vitamin 
and/or micronutrient intake and frequent infections during early 
childhood. In the Maternal and Child Undernutrition Group 
(a review of cohort studies from five low- and middle-income 
countries – including Brazil, Guatemala, India, Philippines and 
South Africa54) SGA at birth and stunting were linked with short 
adult stature, reduced lean mass, which are also phenotypic 
correlates of low lung function.

Manifestations in body composition and altered 
metabolic programming
Indeed, similar phenotypic adaptations conspicuous in anthro-
pometry and body composition support the analogy between 
stunting and restricted lung growth (see Figure 2). For instance, 
stunted growth has disproportionate effects on FVC as 
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compared to FEV
1
. This is because exposures implicated in 

stunting result in reduced lung growth and low FVC values, and 
due to their limited and indirect effect on FEV

1
, result in a high 

FEV
1
/FVC ratio. Therefore, stunting manifests with low val-

ues of FVC- indicating smaller lungs, as opposed to a smaller  
FEV1/FVC ratio, characteristic of airway obstruction21. Anal-
ogous adaptations characterized by shorter limbs and sit-
ting height are observed in both stunting and restrictive lung  
function55. The positive association between age at peak adipos-
ity and higher FVC, FEV

1
 and FEF

25-75
 implies that IUGR, fol-

lowed by rapid weight gain during childhood results in poor lung 
function56. Besides being shorter, stunted children have shorter 
leg length, resulting in a longer sitting-height-to stature ratio, 
which is known to influence population level differences in 
lung function57.

With the exception of obese children exhibiting a reduction in 
static lung volume with degree of obesity, there exists a phase 
of transition from a positive to inverse association58–63. In the 
PIAMA birth cohort61 (n=1288, at 12 years), high BMI and 
waist circumference were found to be associated with higher 
FVC, particularly in females. Girls with higher waist circumfer-
ence and BMI at ages 8 and 12 had significantly higher FVC at 
age 12 than girls with normal BMI at both ages, suggesting that 
the inverse relationship between high BMI, waist circumference 
and FVC-FEV1 develops after age 1264.

The effect of stunted height on lung function growth is further 
compounded by maturational delays, particularly during the  
onset of adolescent growth spurt in stature. During puberty, dysy-
naptic growth appears to be more conspicuous in stunted chil-
dren as compared to normal children, as stunted children are  
not only shorter but also more likely to exhibit delayed incre-
ment in muscular strength and lung maturation19,65,66. However,  

while the phenotypic correlates of stunting recede due to 
rapid catch up growth during early childhood, indicators of  
restrictive lung function persist late into the life course.

Air quality and environmental toxicants
Inhalation of fine particles (particulate matter with diameter 
≤2.5 μm; PM

2.5
) can induce oxidative stress and inflamma-

tion, and may contribute to onset of preterm labor and other 
adverse perinatal outcomes. This triggers a chain of events lead-
ing to SGA infants with poorly developed lungs (see Figure 3). 
Exposure to environmental toxicants is another factor common 
to the origin of both low lung function and stunting. It impacts 
health through both inhalation and trans-placental transmission 
in utero67. Low birth weight is also an independent risk factor 
for stunting, particularly in developing nations with both high air 
pollution and malnutrition contributing to IUGR68.

Low birth weight was higher among women who delivered in 
facilities where PM

2.5
 concentrations were above the median 

(i.e., >12.0 μg/m3) compared with women delivering at facili-
ties with average PM

2.5
 levels <6.3 μg/m3. In China, the country 

with the largest range of PM
2.5

 exposure levels, both preterm birth 
and LBW were significantly higher among women with esti-
mated exposure to at least 36.5 μg/m3 of PM

2.5
 compared with 

women in the lowest quartile of exposure (<12.5 μg/m3)69. The 
ENVIRONAGE birth cohort too reported an association between 
in utero PM 2.5 exposure and placental mitochondrial DNA 
methylation in 381 mother-newborn pairs70.

In addition to mechanisms operating through pre-term birth, 
exposure to air pollution also directly affects lung func-
tion growth. In a Californian study in 232 asthmatic children, 
fetal exposure to PM

10
 during the first trimester of pregnancy 

was found to be associated with a lower peak expiratory flow  

Figure 2. Stunting and restrictive lung function (FVC <80% of predicted) - anthropometric correlates.
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volume between ages 6–11 years71. A 90 mL lower FEV
1
 at 5 

years was observed in the Krakow birth cohort, comprising 176 
exposed children of non-smoking mothers72, while a 60mL 
reduction in FEV

1
 was found in Swedish children exposed to 

higher concentrations of PM
10

 during the first year of life. These 
children were likely to have FEV

1
 and FVC less than the lower 

limit of normal at age 16. Children of the same cohort exhibited 
higher peripheral airway resistance from impulse oscillometry 
(R

5
–R

20
) at age 1673.

In non-cigarette smoking women with lifelong biomass expo-
sure, a direct link between childhood exposure to PM and an 
increased susceptibility to adult respiratory disease (including 
COPD) was observed74. In experimental studies conducted on 
mice with either pre or postnatal exposure to traffic-related PM, 
significant alteration of alveolar structure and changes in the 
elastic properties of the lung were observed75.

Newborns exposed to PM
10

 in utero exhibited a higher oxy-
gen demand, indicated by higher minute ventilations and tidal 
flows. These changes were similar to those in premature infants 
with broncho-pulmonary dysplasia, infants with smoking moth-
ers and in animal models of pre-natal nicotine exposure and 
were also indicative of increased airway resistance (smaller 
airways), decreased compliance (smaller/stiffer airways) and 
disruption of factors that directly influence control of breath-
ing. Air pollution induced oxidative stress and localized or  
systemic inflammation in the mother could affect permeability 
of the blood-air barrier, leading to an increase in fetal breath-
ing movements and reduced alveolarisation. Reduced alveolari-
sation could also be a result of systemic inflammation, which 
disrupts placental blood flow and affects the nutrient transfer 
to the fetus, influencing intrauterine growth and future lung  
function76,77.

Post birth, pre-term or small for gestational age children in  
developing nations traditionally experiencing the effects of inter-
generational malnutrition, are also more likely to be exposed to 
a higher level of ambient PM 2.5 both in utero and during early 
childhood, and exhibit higher risk for anthropometric failure, 
even after accounting for various confounding characteristics.

Maternal smoking and tobacco consumption
In utero exposure to nicotine remains the single, most impor-
tant and potentially preventable insult to the developing lung. 

It is a major cause of sudden infant death, LBW, preterm deliv-
ery and IUGR78. In 2015, out of 933 million daily smok-
ers, 5.4% were women, while 72.5% of pregnant women who 
smoke, were daily smokers throughout their pregnancies and 
around 2% of women smoking throughout their pregnancies 
resided in South East Asia and Africa79,80.

In addition to IUGR and low birth weight, maternal smoking 
was found to increase the risk of COPD in offspring by 1.7, and 
in terms of airflow limitation was equivalent to 10 years of per-
sonal smoking by the offspring81. The effect of smoking on lung 
function may transcend generations, as Grand-maternal smok-
ing not only increases the risk of maternal asthma, but also raises 
the risk of asthma in her offspring even if the mother herself 
does not smoke.

Gender is an effect modifier in the association between 
in utero/postnatal exposure to secondhand smoke, with a stronger 
association in males than in females. In utero/postnatal expo-
sure to second hand smoke results in a 64.6% odds of reduced 
FVC in males and a 21.6% odds of reduced FVC in 
females82.

The immediate effects of tobacco exposure are difficult detect 
because children exposed to tobacco smoke do not necessar-
ily manifest reduced lung function or increased propensity for 
respiratory morbidity possibly owing to differences in mater-
nal and fetal susceptibility83. It is also difficult to distinguish 
between the effects of pre and postnatal tobacco exposure because 
women who smoke during pregnancy continue to do so after 
childbirth.

However, it is clear that multiple inflammatory insults from 
tobacco exposure reduce airway caliber and disrupt fetal immune 
responses inducing prematurity and low birth weight, result-
ing in growth restricted infants84. As IUGR and size at birth  
predict risk of stunting and restrictive lung function, controlling 
maternal smoking may influence both outcomes substantially 
(see Figure 4).

The impoverished gut
Stunted children inhabit unhygienic settings and live in condi-
tions of acute deprivation where environmental enteric dys-
function (EED) is prevalent85. EED is a result of sustained and 
frequent low inoculum exposure to a wide range of pathogens, 

Figure 3. The role of air pollution in stunting and RLLF.
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mostly through contaminated food and water. The resulting low 
grade infection causes both systemic and gut inflammation lead-
ing to intestinal leakiness ,heightened permeability, nutrient 
malabsorption and disrupted immunomodulation86,87. Frequent 
infections, vaccine failures and chemotherapy lead to a disrup-
tion in the homeostasis of the gut microbiota, a phenomenon 
referred to as dysbiosis88.

The gut microbial community possesses enzymatic machin-
ery for assimilating a variety of dietary nutrients leading to 
the release of multi-functional metabolites in the host. EED 
compromises gut integrity and when coupled with imma-
turity and dysbiosis of the gut microbiome, hampers nutri-
ent assimilation89–91. This leads to a pattern of growth faltering 
and recurrent infections leading to a decline in length-for-age 
Z scores, particularly among children between 18–24 months 
of age.

Although the mature gastrointestinal tract and the respiratory 
tract (RT) have different environments and functions, they have 
the same embryonic origin and therefore share structural simi-
larities. Thus, similar mechanisms operating bi-directionally 
along the gut-lung axis allow GI microbiota to play a key role 
in immune adaptation and initiation at other distal mucosal sites 
such as the lung92.

This cross-talk along the gut lung axis happens during early 
development, possibly during the first two years of life, which are 

critical to the stabilization of an individual’s microbiome. This 
hypothesis is supported by the existence of a strong correlation 
between low microbial diversity in the gut during early infancy 
and an asthmatic phenotype in childhood and the simultane-
ous manifestation of both respiratory and GI disease symptoms 
during adulthood92–94. An asthmatic phenotype during child-
hood was seen to be associated with an elevated risk of  
COPD95 and lower values of FEV1,FVC during adulthood 
(when compared to control groups without asthma during  
childhood)96. These associations offer subtle insights into the 
role of gut microbiota in influencing long term adult lung  
function, via other indirect influences.

EED further amplifies the effects of growth faltering and poor 
lung development in the developing world by reducing the effi-
cacy of oral vaccines, possibly even leading to vaccine failure 
(see Figure 5). Among Bangladeshi infants, EED was linked 
to the reduced efficacy of oral polio and rotavirus vaccines97. 
Barriers to nutrient absorption and disrupted immunomodula-
tion thus affect both growth and lung development. Although 
the gut–lung axis is only beginning to be understood, emerg-
ing evidence indicates that there is potential for manipulation of 
the gut microbiota in the treatment of lung diseases.

The effect of gut microbiome on nutrient assimilation is  
relevant to the implementation of oral vaccination and nutri-
tion programs in the developing world where EED is  
rampant.

Figure 4. In utero nicotine exposure, RLLF and Stunting78,81–83,98.
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Figure 5. How the impoverished gut may mediate stunting and low lung function.

Genetic and molecular modulators of perinatal lung 
maturation
The genetic and epigenetic correlates of both conditions largely 
appear to encode physiological responses to early nutritional and 
environmental insults.

Around 50 genes for lung function and 13 genes influencing 
the indicators of stunting were identified, and seen to influence 
similar early developmental pathways and nutrient absorption 
Of these, three genes—FGF21 (cellular proliferation, survival, 
migration, and differentiation), FUT2 (cell-cell interaction, 
interaction with intestinal microbiota) and IGF1/IGF2 (growth 
promotion, 2DG transport and glycogen synthesis in osteob-
lasts)—were found to be common to both conditions (see Table 1). 
The individual effect sizes of these genetic and epigenetic 
modulators is small (known SNPs for FVC account for only 
14.3% of variation in heritability).

The genes common to both forced vital capacity and stunt-
ing were found to be largely associated with early development 
(IGF1,BMP6), morphogenesis(IGF1) and nutritional insults  
due to recurrent GI infections (BMP6,FUT2) . (See Table 1) 

While the small heritability of associated genes did not lend 
much support to the analogy, identification of unique SNPs with 
high heritability may be useful in paving the way for commu-
nity profiling and the mapping of appropriate interventions to  
communities.

Conclusion
While IUGR is central to the pathophysiology of both stunt-
ing and compromised lung growth, malnutrition, mediated 

by several complex factors, appears to be the true point of  
convergence (see Figure 6). Although malnutrition may mani-
fest in several ways, WHO maintains that the path to prevention 
remains identical across populations. Major preventive meas-
ures may include: adequate maternal nutrition ranging from 
the perinatal period to lactation, optimal breast feeding during 
the first two years of life, healthy childhood nutrition, sanita-
tion and safe physical activity99. In addition to multi sectoral 
collaborations, design of appropriate interventions, embedding 
NCD impact evaluation into maternal and child health programs 
is crucial to addressing rapid epidemiological transitions in 
the developing world.

Our inability to maintain stringent inclusion criteria of human 
randomized controlled trials in areas of nutrition, vaccination, 
tobacco cessation and environmental health across populations 
in developing nations is representative of the absence of neces-
sary research to guide interventions in this area. This necessi-
tated a narrative review design to present an updated perspective 
and not to directly guide clinical practice.

The correlation between Socio Demographic Index and indica-
tors of both chronic and infectious diseases reflects the need 
to understand heterogeneity in lung function and linear growth  
patterns in the context of socioeconomic variations that deter-
mine nutritional and environmental exposures, access to sanitary 
living conditions and inter-generational patterns of growth  
faltering. Identifying highly heritable genetic variants, which 
could potentially mediate response to interventions, might serve 
as genetic signatures unique to communities. These inputs could 
assist in tailoring interventions for communities by capturing 
meaningful environmental influences in addition to ethnic 
differences.
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Creation of proxy scores for communities incorporating epide-
miological transition levels, heritability of traits associated with 
disease, responses to existing programs and, metabolic health 
and growth trajectories could aid in mapping communities to 
appropriate health interventions. Further research is needed in 
utilizing existing data sources, assigning weights to individual 
components and generating comprehensive scores useful for 
community profiling.

Data availability
Underlying data
All data underlying the results are available as part of the article 
and no additional source data are required.

Figure 6. Intergenerational effects of malnutrition and inequality.

Extended data
Figshare: Review Data (GBD).csv. https://doi.org/10.6084/
m9.figshare.12278129110.

This file contains the collated data used examine the 
relationship between SDI, risk factors and diseases (in the  
section “ “Higher burden of stunting and low lung function 
in the developing world indicates the role of socioeconomic  
influences”). Data were originally obtained from the GBD visu-
alization tool, originally available at https://vizhub.healthdata. 
org/gbd-compare/15.

Extended data are available under the terms of the Creative 
Commons Attribution 4.0 International license (CC-BY 4.0).
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(PGIMER), Chandigarh, Punjab and Haryana, India 

General:
The manuscript attempts to visualize the differences in lung function across various ethnic 
groups from a different perspective, one that is slowly being recognized as perhaps being 
of some importance. However, the overall handling of the issue and its presentation leave 
much to be desired. In their zeal to increase the width of discussion (and trying to evaluate 
variables that may or may not be even remotely connected with the problem at hand), the 
authors compromise a lot on the depth of their discussion. The manuscript essentially tries 
to identify factors associated with perinatal and childhood stunting (and related conditions), 
on which extensive literature is available. The manuscript also explores literature (to a 
limited extent) to try and identify if some of these factors also correlate with diminished 
pulmonary function, and tries to build a viewpoint that the two appear analogous. I 
personally am not comfortable with this translation from ‘association’ to ‘analogy’. For 
instance, tobacco smoking is known to be associated with several developmental, 
inflammatory, infective, metabolic, degenerative and malignant disorders, but one cannot 
conclude that all these hundreds of health conditions are analogous to each other just 
because they share one risk factor, one among the several that is associated with each 
clinical scenario. In addition, the entire presentation attempts to build a concept of 
causality, and we all understand the perils of extrapolating associations to causality. 
 

○

The manuscript, although being close to a systematic review (as claimed by authors), 
presents only one side of the viewpoint, a viewpoint that authors have probably pre-
conceived to be correct. I cannot figure out how during their review of evidence they did not 
come across or discuss even a single study that is contrary to this viewpoint. Although I 
partly agree with this stated viewpoint, but even as a lay person I can raise several 
objections. For instance, women across the globe have poorer lung function than men. 
Does that imply that all women are ‘stunted’ (based on their lower height, weight, chest 
circumference, etc.) and hence exhibit a lower vital capacity? In India, north Indians are 
generally taller and less stocky than south Indians and show better lung function. Would it 
mean that south Indians are uniformly less privileged, and hence ‘more stunted’, than north 
Indians in this country? It seems too simplistic and naïve to conclude that poor lung 
function in certain populations is almost completely related to poor lung growth, which in 
turn is almost completely related to malnutrition, poor socio-economic status, etc. For 
instance, a study from the UK concluded that chest dimensions did not explain the 
substantial effect of ethnicity (whites vs. Asians) on pulmonary function in children aged 6-
11 years (Whittaker et al., 20051). Similarly, a study on college students aged 18-23 years in 
the UK recruited 112 subjects of two ethnicities with similar parental socio-economic 
environment and birth weight, yet their difference in FVC was 0.81 L after adjustment for 
gender, age, anthropometry and social variables (Saad et al., 20172). There are more such 
studies that seem to fulfil the authors’ eligibility criteria but are neither cited nor discussed. I 
don’t feel that it is so simple (as the authors’ make it out to be) to untangle the influences 
from deprivation and genetics on pulmonary function.

○

  
Abstract:

The abstract is a well-written summary but seems totally disconnected to the manuscript. 
The background here is quite different from what is presented as the Introduction in the 

○
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main text. The methods too are different with respect to databases and datasets queried for 
literature search. There is no mention of following PRISMA guidelines in the manuscript.

  
Introduction:

The authors state certain facts with certainty and draw conclusions right away. For instance, 
… "both lung function and early growth are strongly associated with and defined by linear 
growth, influenced by similar perinatal factors, and culminate in an elevated risk of non-
communicable diseases sharing chronic inflammatory origins" …, and … "analogous nature 
of restrictive lung function and stunting would imply" …, etc. I believe these are actually the 
research questions here that they are trying to explore. A proper justification and statement 
regarding need for this research would be welcome.

○

  
Methods:

A proper search strategy is lacking, and the keywords provided are too general. I am sure 
any bibliographic search would have returned tonnes of citations, and I am not sure how 
the authors sifted through for relevant publications. I am also not sure how the search 
terms stated in table 1 could have been used to identify relevant articles, since these appear 
too restrictive in the single phrases that they employ. Yet a large body of evidence is 
provided. For instance, the genetic studies listed in table 2 could not have been derived 
from the search string “stunting AND low lung function AND genetic NOT animal NOT cystic 
fibrosis”. Studies with unclear methodology were excluded, but there is no explanation how 
this was determined. Overall, the section is nowhere close to what PRISMA guidelines 
advocate.

○

  
Results:

A major drawback of the manuscript is that it tries to fit a narrative review in an original 
article format. This may have been possible if this were a systematic review, but clearly that 
is not the case. So the Results section is basically a summary of some articles considered 
important by the authors, expression of authors’ perceptions about the evidence, and 
conclusions on potential pathways even without sufficient evidence. There is no Discussion 
section. A lot of statements do not actually stem from published data reported by the 
authors, but are rather thoughts or hypotheses. Overall, this seems straight out of an 
informal literature review for a thesis/dissertation, rather than the Results section of an 
original research article. I would expect slightly better focus, and a better review of strength 
and weakness of data, before jumping to interpretation. 
 

○

Some studies are not referenced in the bibliography (Todisco et al on page 6, column 1). 
 

○

The section on impoverished gut seems totally out of context in this article as it does not 
provide any evidence correlating abnormalities in gut microbiota to poor lung function. 
Asthmatic phenotype cannot be equated with poor lung function. 
 

○

In the section on genetic modulators I am not clear how the conclusion, that genes 
common to both FVC and stunting were associated with early development, morphogenesis 
and malnutrition, was arrived at.
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Conclusions:

At this stage, the conclusions seem largely conjectural and not completely borne out by ○
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