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Abstract: The nonlinear post-flutter instabilities were experimentally investigated through
two-degree-of-freedom sectional model tests on a typical flat closed-box bridge deck (width-to-depth
ratio 9.14). Laser displacement sensors and piezoelectric force balances were used in the synchronous
measurement of dynamic displacement and aerodynamic force. Beyond linear flutter boundary,
the sectional model exhibited heave-torsion coupled limit cycle oscillation (LCOs) with an unrestricted
increase of stable amplitudes with reduced velocity. The post-critical LCOs vibrated in a complex mode
with amplitude-dependent mode modulus and phase angle. Obvious heaving static deformation was
found to be coupled with the large-amplitude post-critical LCOs, for which classical quasi-steady
theory was not applicable. The aerodynamic torsional moment and lift during post-critical LCOs were
measured through a novel wind-tunnel technique by 4 piezoelectric force balances. The measured force
signals were found to contain significantly higher-order components. The energy evolution mechanism
during post-critical LCOs was revealed via the hysteresis loops of the measured force signals.

Keywords: nonlinear aeroelasticity; post flutter; limit cycle oscillation; closed box bridge section;
wind tunnel

1. Introduction

Flutter is the most dangerous aeroelastic instability for modern long-span bridges. Flutter instability
is conventionally treated as a linear eigenvalue problem by classical linear flutter theory [1]. According to
the linear theory, flutter instability occurs when the real part of a complex eigenvalue becomes negative
and the vibration manifests as an exponential increase of vibration amplitude with time. Classical linear
theory is based on a small-amplitude assumption and ignores any possible aerodynamic nonlinearity
under large amplitude; therefore, the predicted flutter is an exponential-divergent type instability,
which is also called ‘hard’ flutter, since the vibration amplitude suddenly increases to infinity beyond
linear flutter boundary [2,3].

Experimental and numerical evidences suggest that the aerodynamic nonlinearity under large
amplitude will introduce a secondary stabilizing effect and the flutter performance manifests as
a soft-type nonlinear flutter instability [2–14]. When wind velocity exceeds beyond linear flutter
boundary, there is a possible existence of nonlinear post-critical limit cycle oscillation (LCOs) due to
the aerodynamic nonlinearity. Although the occurrence of flutter instability is strictly prohibited by the
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current wind-resistant standards, it is worthwhile to investigate the nonlinear post-flutter behaviors
of common bridge decks when we try to reduce the potential of progressive collapse of long-span
bridges under super-strong wind conditions, which correspond to extraordinarily high return periods
in the lifetime. Moreover, modeling aerodynamic nonlinearity is beneficial to improve the accuracy of
analytical precision of wind-induced vibration and as a result guarantees the structural safety and
robustness of long-span bridges.

The aerodynamic nonlinearities in post-critical states have attracted wide attention in recent
years [2–14]. The reported post-flutter phenomena vary with different deck shapes. Matsumoto et al. [3]
tested the torsional flutter behaviors of H-shaped cylinders and found that the torsional flutter of
relatively bluff H-shaped sections (width-to-depth ratio <3.4) exhibits non-divergent-type instability
in a restricted velocity range, which seems to be influenced by vortex-induced vibration. When the
width-to-depth ratio is further increased above 3.4, divergent-type instabilities were observed.
Daito et al. [4] investigated the flutter instability of two-edge girders, where the geometrical shapes
of edge girders were I-type, box-type and circular-type, respectively. The torsional flutter was found
to be a non-divergent type with a gradual increase of torsional amplitude with velocity beyond
flutter onset velocity for three different geometrical shapes of edge girders. Recently, the nonlinear
post-flutter behaviors of two-edge girders were also extensively studied by Zheng et al. [5] and
Tang et al. [6]. Zheng et al. [5] investigated the aerodynamic mitigation measures of the soft-type flutter
of a Π-shaped bridge deck. They found that the post-flutter vibration amplitude was sensitive to the
wind fairings and auxiliary facilities. Tang et al. [6] studied the post-critical response of a shallow Π
shaped-section and found that the stable LCO amplitudes were sensitive to wind attack angle and
structural damping. Gao et al. [7] studied the post-flutter behavior of a twin-side-girder bridge deck
and found the sectional model exhibits significant post-critical LCOs with very slight heave-torsion
coupling effects. A nonlinear 1-degree-of-freedom (DOF) empirical model was then proposed based
on the measured self-excited torsional moment.

The above-mentioned sections generally have a bluff aerodynamic configuration. Therefore,
their nonlinear post-flutter behaviors mainly manifest as a torsional LCO with a relatively slight
coupling of heaving DOF. However, for a quasi-streamlined section, the coupling of heaving DOF
were found to be significant. Amandolese et al. [8] and Pigolotti et al. [9] investigated the post-critical
behaviors of a thin plate and found significant heave-torsion coupled LCOs beyond linear flutter
boundary. Amandolese et al. [8] also discussed the nonlinear hysteresis behavior around linear flutter
boundary where the stable amplitudes depend on initial perturbations. Náprstek et al. [10] measured
the nonlinear aeroelastic responses of several bluff bridge sections around linear flutter boundary
by using a new mechanical device, and large-amplitude post-critical LCOs were observed in the
torsional mode. Their mechanical device allows to mechanically decouple the heaving and torsional
DOFs under excessively large amplitudes, and the structural damping can be mechanically adjusted.
The nonlinear post-flutter behaviors of a closed-box section were found to exhibit a heave-torsion ‘soft’
flutter by Ying et al. [11] and Gao et al. [12]; the stable amplitudes of post-critical LCOs were found to
be independent of initial perturbations, which is different from a thin plate. Wu et al. [13] tested the
nonlinear flutter phenomenon of a truss bridge deck of Yang-Sigang Bridge. They found that a truss
bridge deck could also exhibit a nonlinear soft flutter with a significant heave-torsion coupling effect.
The coupling of heaving DOF provides negative damping, which will reduce the flutter onset wind
speed and increase vibration amplitudes.

However, the experimental and numerical results are still very rare for common bridge decks,
in particular, a flat-closed box bridge deck, which is a basic deck shape for many long-span bridges,
such as Sutong Bridge, Taizhou Bridge, Lingdingyang Bridge, etc. As a typical engineering case,
the design scheme of the Lingdingyang Bridge located in a typhoon-prone area adopts a flat closed-box
bridge deck (width-to-depth ratio as 12.4) with a cantilever horizontal plate at the wind fairing which
will act as a maintenance passage. The flutter instability was found to be very sensitive to wind attack
angle. Its flutter boundary was governed by the nonlinear soft flutter starting from a relatively low wind
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speed 74 m/s (mean velocity) under attack angle 1◦, which is well below the flutter checking velocity
83.5 m/s. Whilst, other attack angles between −3◦–3◦ exhibited a divergent-type flutter instability and
their flutter onset speeds were larger than the flutter checking velocity. Questions still remain as to
whether the observed post-flutter LCOs are acceptable or not. Undoubtedly, a nonlinear self-excited
force model is needed based on detailed experimental evidence to further address such questions.

There are still many unsolved problems related with the nonlinear post-flutter behaviors of a
flat-closed box section. Up to now, it is still unclear how the coupling of the heave-torsion DOFs evolves
with wind velocity and whether the concept of linear mode applies in post-flutter state. In addition,
the numerical study by Zhang et al. [14] suggests a possible coupling of static deformation during
large-amplitude vibration. However, little attention has been paid to this coupling phenomenon.

In the present study, the nonlinear post-flutter behaviors of a typical flat-closed box bridge deck
were extensively investigated through a series of wind-tunnel sectional model tests. Special attentions
were paid to the nonlinear vibration mode and the coupling behavior of aerostatic deformation in
post-critical states. A novel wind-tunnel technique was employed to measure the nonlinear self-excited
force in sync with the recording of dynamic displacement. Based on the measured force signals,
the underlying aerodynamic nonlinearities and energy evolving mechanism during post-flutter states
were discussed.

2. Wind Tunnel Tests

2.1. Experimental Setup

Sectional model tests were performed in TJ-1 Wind Tunnel, which is a sucking-type open-circuit
wind tunnel located in Tongji University. The test section is 1.8 m (width) × 1.8 m (height). As shown
in Figure 1, the sectional model was placed horizontally in the test section with its longitudinal axis
perpendicular to the oncoming flow. Two end plates (600 mm × 300 mm) were attached to both ends
to suppress axial flow through the holes of wind tunnel walls. The model was supported by 8 helical
springs through 2 suspending arms. A pair of long-tensioned steel wires was used to constrain the
horizontal motion of the sectional model as illustrated in Figure 2. Steel-wire-rope dampers were
installed together with helical springs to adjust structural damping; one can refer to Reference [15] for
more details of the damper. All helical springs, suspending arms, dampers and displacement sensors
were placed outside of wind tunnel walls to avoid any interference on the flow field.

The heaving motion h(t) and torsional motion α(t) were measured by 4 laser displacement sensors
(Panasonic HL-G112-S-J shown in Figure 18a) with a linear measurement range of ±60 mm. A total of
4 piezoelectric force balances were installed inside the model to measure the transient aerodynamic
force as shown in Figure 2 and Figure 18b,c, which will be introduced in the next section. The mean
wind velocity was measured by a pitot-static tube placed in the upstream. The dynamic displacement
sensors and force balances were connected to a 24 bits resolution acquisition system. The sampling
frequency was chosen as 200 Hz.
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Figure 1. View of the spring-suspended sectional model in TJ-1 wind tunnel.
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Figure 2. Schematic view and notations of the aeroelastic setup (end plates in Figure 1 not shown).

All tests were carried out in a nominal smooth flow field with a background turbulence intensity
Iu < 1%. The tested mean velocity U was in the range of 1 m/s–16.5 m/s, and the corresponding
Reynolds number Re = ρUB/µ was 3.29 × 104–5.42 × 105 being B the width of the sectional model.
The configuration of the cross section is presented in Figure 3, which is the original design scheme
of Xiangshan Harbor Bridge in China. The model was manufactured elaborately in the light of the
geometric similarity principle and the length scale was chosen as 1:65; as a result, the width B and
depth D of the sectional model were 0.4923 m and 0.0538 m, respectively. The model length L is
1.760 m. The side ratio B/D and aspect ratio L/B of the sectional model were 9.14 and 3.57, respectively.
The blockage ratio D0/Hwt was about 3% and 3.8%, respectively, for static attack angle 0◦ and 3◦,
being D0 the effective windward height of the model and Hwt the height of the wind-tunnel test section.

All test configurations are listed in Table 1, among which particular attention was paid to study
the influence of attack angle and structural damping. The static attack angle α0 was adjusted by an
angle control device connected to the 8 helical springs. The structural damping and frequency were
measured by the logarithmic decrement method from the free decay responses in still air.
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Table 1. Main dynamic parameters of aeroelastic tests. α0 is wind attack angle in still air; f t0 and f h0

are linear torsional and heaving frequency in still air, respectively. ξα0 and ξh0 are linear mechanical
damping ratios of the torsional and heaving modes. Jm and m are the effective moment of inertia and
mass per unit length, respectively, in the elastically supported vibration system.

#.
α0 ξα0 ξh0 f t0 f h0 Jm m
(◦) (%) (%) (Hz) (Hz) (kg·m2/m) (kg/m)

A1 3 0.117 0.325 4.834 1.773 0.136 5.774
A2 3 0.178 0.490 4.827 1.789 0.139 5.774
B1 0 0.101 0.343 4.836 1.773 0.136 5.774
B2 0 0.209 0.521 4.822 1.788 0.138 5.774
C1 −3 0.0930 0.566 4.820 1.774 0.136 5.774
C2 −3 0.197 0.818 4.825 1.789 0.139 5.774

2.2. Linear Aeroelastic Property

The oscillating sectional model immersed in a smooth flow field is subjected to self-excited loads.
The governing equations can be established around the static equilibrium positions as

m
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where Lse and Mse are self-excited lift and torsional moment per unit length, respectively. Both Lse and
Mse are dependent on the heave-torsion vibration responses.

Self-excited loads have aerodynamic stiffness and damping effects, which lead to reduced-velocity
dependence of the vibration frequency and damping ratio. To quantify the aerodynamic stiffness
and damping effect, free decay tests were performed for various velocities by applying a coupled
heave-torsion perturbation to the sectional model. The modal frequencies and damping ratios were
then identified from the free decay responses by the logarithmic decrement method. For unstable
conditions, the model was manually stabilized at first around its zero position and then let free to
vibrate. The build-up vibration response in small amplitude regime was employed in identifying
modal frequencies and damping ratios.

The identified linear modal frequencies and damping ratios are plotted in Figure 4. One can
find that the model vibrated in heaving and torsional modes. In Figure 4a, the heaving frequency
slightly increases with velocity, and the torsional frequency smoothly decreases. Figure 4b shows that
all heaving modes for different attack angles are stable with monotonously increasing damping ratio
with reduced velocity. The torsional mode under attack angle −3◦ is also stable, whereas those of
attack angle 0◦ and 3◦ become unstable in large reduced velocity. Because the torsional damping ratios
decrease and cross zero axis at around a critical velocity U∗cr = 3.01 and 5.38, respectively, for attack
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angle 0◦ and 3◦. The critical velocity U∗cr represents a boundary where the torsional mode changes its
stability; therefore, it is also called as flutter onset wind speed or linear flutter boundary. Moreover,
note that the torsional damping of attack angle −3◦ would also become negative when wind velocity is
sufficiently high, whereas the lower flutter boundary is the main concern in engineering application.
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The aeroelastic loads are conventionally approached by a linearized theory proposed by Scanlan
and Tomko [1], which simplifies the complex wind-structure interaction by the following linear
self-excited force model

Lse =
1
2
ρU2(2B)

KH∗1(K)

.
h
U

+ KH∗2(K)
B

.
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U
+ K2H∗3(K)α+ K2H∗4(K)

h
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 (2a)
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1
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(
2B2
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.
h
U

+ KA∗2(K)
B

.
α

U
+ K2A∗3(K)α+ K2A∗4(K)

h
B

 (2b)

where ρ is air density. K = ωB/U is reduced frequency. H∗1,H∗2,H∗3,H∗4,A∗1,A∗2,A∗3 and A∗4 are flutter
derivatives, which are dependent on reduced frequency K to consider unsteady effect.

The flutter derivatives of the sectional model were identified by the revised MLS method proposed
by Ding et al. [16]. The identified results are plotted in Figure 5, and the theoretical values of a thin
airfoil calculated by Theodorsen’s theory are also presented for comparison [1,17].

One can notice from Figure 5 that the flutter derivatives vary significantly with initial attack
angles indicating that the aeroelastic behavior is sensitive to wind attack angle. The slope of damping
coefficient A∗2 becomes positive at large reduced velocity for attack angle 0◦ and 3◦, which destabilizes
the torsional mode and leads to the negative torsional damping in Figure 4b together with the coupling
term A∗1H∗3.
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2.3. Bifurcation beyond Linear Flutter Boundary

Figure 6 shows the typical vibration phenomena of the sectional model. Blow linear flutter
boundary U∗cr, the model vibration was stable around its static equilibrium position. Any initial
perturbation will decay to a random small-amplitude vibration as shown in Figure 6a,b. The heaving
components decay more rapidly for higher reduced velocity since the heaving damping increases
as in Figure 4b. There always exist two peaks in the amplitude spectrum of heaving vibration,
which correspond to the heaving mode and torsional mode.

When reduced velocity increased beyond linear flutter boundary, the model lost its stability around
static equilibrium position. The amplitudes of heaving and torsional vibration both increased with time
exhibiting an obvious heave-torsion coupling effect. The aerodynamic nonlinearity has a stabilizing
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effect, which reduces the increase rate of amplitude. The post-critical instability thus manifested as
heave-torsion LCOs as in Figure 6c,d. One can find from the amplitude spectra in Figure 6c,d that only
the torsional mode increased during post-critical LCOs whilst the component of heaving mode did not
change when compared with Figure 6a,b. Therefore, the post-critical LCO occurred in the torsional
mode. Moreover, note that both the heaving and torsional displacement responses are not strictly
harmonic, since their amplitude spectra contain slightly higher-order harmonic components due to
aerodynamic nonlinearity.

Another noticeable phenomenon is that the post-critical LCOs were coupled with a significant
drift of static equilibrium position. As can be seen in Figure 6c,d, the heaving static equilibrium position
gradually moves upward along with the increase of vibration amplitude. There is no obvious change
in the torsional static equilibrium position. Positive attack angle 3◦ corresponded to more significant
drift of heaving static equilibrium position than attack angle 0◦. This phenomenon was also reported
by Zhang et al. [14] in a numerical study on a flat box bridge deck (side ratio B/D = 12.3) but not
mentioned by Amandolese et al. [8] in studying the post-critical behavior of a thin plate. The heaving
static deformation is probably because of the aerodynamic asymmetry induced by large-amplitude
oscillations of instantaneous attack angle. This phenomenon will be discussed in Section 2.6.
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Figure 7 shows the stable amplitudes of post-critical LCOs. One can find that the stable amplitudes
of torsional and heaving LCOs both increased unrestrictedly with reduced velocity. Note that the
recorded maximum amplitude is about 5.4◦, which is limited by the linear range of displacement
sensors. Increasing structural damping will reduce the stable amplitudes. Both the torsional and
heaving amplitudes increase smoothly from zero positions with no obvious ‘sudden jump’ as reported
in the tests of thin plates by Amandolese et al. [8] and Pigolotti et al. [9]. Therefore, the observed
post-critical instability is a kind of nonlinear ‘soft flutter’. The stable amplitudes were also found
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to be independent of initial excitations, such as increasing or decreasing wind speed, perturbation
amplitudes, etc.
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To facilitate further modeling of post-critical LCOs, the coupling of post-critical LCO and static
deformation can be separated. The static deformation can be represented by the average value of
upper and lower envelopes. The decoupling process is expressed as

hse(t) = h(t) − h0(t) (3a)

h0 =
hmax + hmin

2
(3b)

where h(t) is recorded heaving displacement. hse(t) is the pure post-critical LCO, and h0 represents the
heaving static deformation. hmax and hmin are the upper and lower envelopes, respectively. Figure 8
demonstrates the separated heaving LCO in Figure 6d.
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As discussed earlier, the observed post-critical LCOs were featured by obvious heave-torsion
coupling effect. The degree of heave-torsion coupling can be quantitatively represented by a coupling
ratio [2]
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γ =
hrms

αrmsb
(4)

where hrms andαrms are respectively the root-mean-square values of heaving and torsional displacement
in a steady-amplitude stage. b = B/2 is the half width of a bridge deck.

Figure 9 presents the coupling ratios of attack angle 0◦ and 3◦. One can find that the heave-torsion
coupling ratio increases approximately in a linear manner with reduced velocity, which is consistent
with the test results on a larger side-ratio B/D = 10.7 [12]. The influence of structural damping on
heave-torsion coupling is very slight and can be neglected. Static attack angle does not change the
evolving trend of coupling ratio with reduced velocity; therefore, the relatively weak coupling in
Figures 6 and 7 for attack angle 3◦, when compared with attack angle 0◦, is mainly due to that its
post-critical response lies in a relatively low range of reduced velocity.
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2.4. Vibration Mode during Post-Critical LCO

To investigate the vibration pattern during post-flutter instability, the applicability of linear mode
is checked in the following. Firstly, the quasi-harmonic torsional and heaving displacement in the
torsional mode during a post-critical LCO can be expressed as

α(t) = aα cos(ωtt + βα) (5a)

h(t) = ah cos(ωtt + βh) (5b)

where aα and ah are respectively the instantaneous torsional and heaving amplitude. βα and βh are
respectively the torsional and heaving phase. ωt is the circular frequency of torsional mode.

According to classical linear flutter theory [1,16], the torsional and heaving vibration can be
expressed by a linear torsional mode as[

h(t)
α(t)

]
= a0ϕte(−ξtωt+iωt)t + a∗0ϕ

∗

te
(−ξtωt−iωt)t (6)

where the values with superscript * represent the corresponding complex conjugate. a0 is a constant
value related with the initial condition. ξt is the torsional damping ratio. ϕt is the vector of
torsional mode

ϕt(t) =
[

Uh2 + iVh2

Uα2 + iVα2

]
normalization

→

[
U#

h2 + iV#
h2

1

]
(7)

where i is the imaginary unit. Uh2, Vh2, Uα2 and Vα2 are parameters of the complex mode vector.
U#

h2 and V#
h2 are parameters of normalized mode vector.
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Substitute Equation (7) into Equation (6), yields[
h(t)
α(t)

]
=

aα0eiβα

2

[
U#

h2 + iV#
h2

1

]
e(−ξtωt+iωt)t +

aα0e−iβα

2

[
U#

h2 + iV#
h2

1

]
e(−ξtωt−iωt)t (8)

where aα0 is the initial torsional amplitude.
From Equation (8), we have

α(t) = 2Real
[

aα0eiβα

2
e(−ξtωt+iωt)t

]
= aα0e−ξtωtt cos(ωtt + βα) (9a)

h(t) = 2Real
[

aα0eiβα

2

(
U#

h2 + iV#
h2

)
e(−ξtωt+iωt)t

]
= aα0e−ξtωtt

√
U#2

h2 + V#2
h2 cos(ωtt + βα + ∆β) (9b)

∆β = arctan
V#

h2

U#
h2

(9c)

where the function Real() means getting the real part of a complex value. ∆β is the phase difference
between the heaving and torsional displacement.

Compare Equation (9) with Equation (5); we obtain

∆β = βh − βα (10a)

ah

aα
=

√
U#2

h2 + V#2
h2 (10b)

Equations (9c)–(10b) indicates that the torsional mode modulus
√

U#2
h2 + V#2

h2 is identical to the
heave-torsion amplitude ratio ah/aα, and the mode phase angle equals the phase difference ∆β between
heaving and torsional DOFs. Therefore, we can check the evolution of heave-torsion amplitude ratio
ah/aα and phase difference ∆β during post-critical LCOs to check the applicability of classical linear
mode in describing large-amplitude post-flutter instability.

Figure 10 shows the evolution of heave-torsion amplitude ratio ah/aα and phase difference ∆β
with torsional amplitude aα during the whole post-critical LCOs under several reduced velocities.
One can find that both the amplitude ratio ah/aα and phase difference ∆β increase with reduced
wind velocity and slowly decrease with torsional amplitude. Therefore, the parameters of torsional
mode (U#

h2 and V#
h2) are also be amplitude-dependent. A larger side ratio corresponds to a more

significant amplitude-dependent effect of torsional mode, when compared with the previous study on
a larger side-ratio B/D = 10.7 [12]. Also note that the calculated amplitude ratio and phase difference
contain some high-frequency fluctuations; Figure 10 only plots the slow-varying trend by filter out the
high-frequency components.

To verify the applicability of amplitude-dependent torsional mode in describing post-critical LCOs,
the identified heave-torsion amplitude ratio ah/aα and phase difference ∆β plotted in Figure 10 was
employed to calculated the amplitude-dependent mode parameters U#

h2,V#
h2 according to Equations

(9c) and (10b). The obtained U#
h2 and V#

h2 were substituted into Equation (9b) to reconstitute heaving
displacement h(t) from the recorded α(t). The comparison of the reconstituted heaving displacement
and experimental result is shown in Figure 11. One can find that the reconstituted response is in good
agreement with experimental result.
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2.5. Amplitude-Dependent Damping and Frequency

Typical post-critical LCO under different initial perturbations is presented in Figure 12a. One can
find that the vibration will decay to a stable amplitude (DTS) from a large initial perturbation and will
grow to a stable amplitude (GTS) from the zero position. Figure 12b shows the corresponding phase
diagram. The decay and building-up process both converge to a closed trajectory, which corresponds to
the stable LCO amplitude. The closed trajectory is very close to an ellipse indicating weak nonlinearity.

The previous section has discussed the amplitude-dependence of torsional mode. Similarly,
the damping ratio and frequency are also amplitude-dependent due to the existence of aerodynamic
nonlinearity. The amplitude-dependence of torsional damping can be clearly inferred from Figure 12,
because the amplitude change rate evolves for different vibration amplitude.

To identify the amplitude-dependent aerodynamic damping, the total damping ratio is expressed as

ξt = ξs + ξse (11)

where ξt is the total damping ratio of the torsional mode for any specific wind velocity. ξs is structural
damping ratio, which can be identified from the free-decay torsional response in still air. ξse is the
aerodynamic damping ratio induced by self-excited force.

The total damping ratio can be identified from the time-varying torsional envelope by Equation (9a),
which is

aα(t) = aα0e−ξtωtt (12)
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Calculating the logarithm on the both sides of Equation (12), yields

ln aα = ln aα0 − ξtωtt (13)

Differentiating Equation (13) with respect to time, we have the amplitude-dependent damping
ratio as

ξt =
d(− ln aα + ln aα0)

ωtdt
= −

daα
ωtaαdt

(14)

The amplitude-dependent frequency can be identified from the zero-crossing time points as follows

ft,i =
1

2(ti − ti−1)
, α(ti) = 0 (15)

where ti is the time point where the torsional displacement α(t) crosses zero axis.
The amplitude-dependent aerodynamic damping ratio ξse can then be obtained by subtracting the

structural damping ξs from the total damping ratio calculated by Equation (14). Figure 13 shows the
calculated time-varying damping ratios and frequency during the DTS and GTS processes in Figure 12.
One can find from Figure 13a that the aerodynamic damping ξse is positive and rapidly decays to a
negative value to balance the positive structural damping ξs during the DTS process; during the GTS
process, the aerodynamic damping ξse is negative in the initial stage and gradually decrease during
the amplitude-growing stage when t < 146 s, but with the increase of amplitude, the aerodynamic
damping ξse increases resulting in lower increasing rate of vibration amplitude in Figure 12a. Finally,
ξse reaches a stable negative value balancing the structural damping ξs. Therefore, the post-critical
LCOs are closely related with the amplitude-dependent effect of aerodynamic damping ξse.

Figure 13b shows the identified time-varying vibration frequency during post-critical LCOs.
Significant fluctuation can be observed in the identified result, which may be possibly due to the fact
that the torsional vibration is not strictly symmetric about zero axis during the amplitude slow-varying
process. We can further get the long-term trend of frequency series. One can then find that the evolution
of the long-term trend is very slight along with the change of vibration amplitude in Figure 12a.Sensors 2020, 20, x FOR PEER REVIEW 14 of 27 
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history; (b) phase diagram.
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2.6. Coupling of Aerostatic Deformation and Large-Amplitude Vibration

To investigate the coupling phenomenon of post-critical LCO and aerostatic deformation in
Figure 6c,d, the aerostatic coefficients of the sectional model were firstly measured. The measurement
of aerostatic coefficients was similar to the above-mentioned aeroelastic setup except that the
elastically supported system was replaced by a rigidly fixture connected to the wind tunnel walls,
and five-component strain-gauge balance was employed. The measured results are shown in Figure 14,
where the coefficients are defined as

CD =
FD

1/2ρU2D
(16a)

CL =
FL

1/2ρU2B
(16b)

CM =
M

1/2ρU2B2 (16c)

where FD, FL, M represent respectively the aerodynamic drag force, lift force and torsional
moment per unit length. CD, CL and CM are aerostatic drag coefficient, lift coefficient and moment
coefficient, respectively.
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Aerostatic force will lead to static deformation in flowing air conditions. As a result, the torsional
and heaving equilibrium positions will vary with wind speed. The resultant static attack angle and
heaving deformation can be expressed as

α∗0 = α0 + ∆α0,S (17a)

∆h0 = ∆h0,S + ∆h0,L (17b)

where ∆α0,S is the drift of static attack angle relative to still air position α0 because of aerostatic moment.
α∗0 is the resultant static attack angle under flowing air conditions. ∆h0 is the total drift of the heaving
zero position. ∆h0,S is the drift of the heaving zero position relative to still air in small amplitude stage.
∆h0,L is the additional drift of the heaving zero position as shown in Figure 8 along with the increase of
vibration amplitude. Moreover, note that the additional drift of the torsional attack angle under large
amplitude is negligible as indicated from Figure 6c,d.

According to Equation (16), the static deformation ∆α0,S and ∆h0,S can be calculated as

1
2
ρU2B2LCM(α0 + ∆α0,S) = kα∆α0,S (18a)

1
2
ρU2BLCL(α0 + ∆α0,S) = kh∆h0,S (18b)

where kh and kα are respectively the elastic heaving and torsional stiffness of the spring-suspended
system, which are expressed as

kh = mω2
hL (19a)

kα =
khe2

4
(19b)

where e = 0.824 m is the distance between the fixed points of helical springs on each suspending arm in
Figure 2.

Figure 15 shows the calculated static deformation ∆α0,S and ∆h0,S along with the tested wind
speed. One can find that the calculated results agree well with experiments, which indicates that the
static drift of torsional and heaving equilibrium positions under small amplitude can be predicted by
aerostatic coefficients with a satisfactory accuracy.
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Figure 15. Static (a) torsional deformation and (b) heaving deformation of the sectional model versus
wind speed.



Sensors 2020, 20, 568 16 of 26

For the additional drift ∆h0,L under large vibration amplitude, quasi-steady theory is firstly
employed according to the Equation (18), which is

kh(∆h0,S + ∆h0,L) =
1
2
ρU2BLCL(α0 + ∆α0,S + ∆α) (20)

where ∆α is the attack angle induced by the post-critical vibration, which can be expressed as

∆α = α(t) +

.
h(t)
U

= aα cosϕ−
ahωt

U
sin(ϕ+ ∆β) (21)

where ϕ = ωtt + βα is the torsional phase angle.
Substituting Equation (18b) into Equation (20) yields

kh∆h0,L = 1
2ρU2BLCL(α0 + ∆α0,S + ∆α) − 1

2ρU2BLCL(α0 + ∆α0,S)

= 1
2ρU2BL

(
dCL
dα0

∣∣∣∣
α=α∗0

∆α+ d2CL
dα2

∣∣∣∣
α=α∗0

∆α2

2! + d3CL
dα3

∣∣∣∣
α=α∗0

∆α3

3! + · · ·

)
(22)

Take the average value of Equation (22) and combine Equation (21), we have

1
T

∫ T

0
kh∆h0,Ldτ =

ρU2BL
2T

∫ T

0

{
CL

[
α∗0 + aα cosϕ−

ahωt

U
sin(ϕ+ ∆β)

]
−CL

(
α∗0

)}
dτ (23)

kh∆h0,L = 1
2ρU2BL

[
C(2)

L (α∗0)
2!

(
a2
α +

a2
hω

2
t

U2

)
+

C(4)
L (α∗0)

4!
3
8

(
a4
α +

a4
hω

4
t

U4 +
2a2
αa2

hω
2
t

U2

)
+ · · ·

]
≈

1
2ρU2BL

[
C(2)

L (α∗0)
2! a2

α +
C(4)

L (α∗0)
4!

3
8 a4
α +

C(6)
L (α∗0)

6!
5

16 a6
α

] (24)

where T = 2π/ωt is the torsional vibration period. C(n)
L represents the nth-order derivative of aerostatic

lift coefficient CL(α) with respect to attack angle α. Note that in the approximation of Equation (24),
the contribution of heaving velocity on the instantaneous attack angle is neglected, because the relative
amplitude ratio of the two terms in Equation (21) during post-critical LCOs is

ahωt

aαU
=

πah

baαU∗
=
πγ

U∗
(25)

Considering the value of heave-torsion coupling ratio γ in Figure 9, we can find that the relative
amplitude-ratio in Equation (24) lies in the range of 0.0393–0.157. Therefore, neglecting the second
term of Equation (21) leads to an error less than 2.5% in the quadratic term in Equation (24) and even
smaller errors in higher terms.

Figure 16 shows the calculated heaving drift ∆h0,L during a large-amplitude post-critical LCO.
One can find from the comparison of the calculated and test results that the quasi-steady theory fails to
predict the experimental result. An unsteady theory needs to be built in the future study.

Figure 17 presents the evolution of additional heaving drift ∆h0,L with torsional amplitude. It can be
found that the additional heaving drift ∆h0,L all increases with torsional amplitude in an approximately
linear manner. The evolution pattern with reduced velocity is very sensitive to initial attack angle.
For positive attack angle 3◦, higher reduced velocity corresponds to a more significant coupling of
additional heaving drift, whereas for attack angle 0◦, the coupling of heaving drift becomes slighter in
higher reduced velocity. Note that the measured ∆h0,L also includes high-frequency fluctuation as
indicated in Figure 16; however, from an engineering point of view, the slow-varying component is the
major concern and thus plotted in Figure 17 by smoothing out the high-frequency fluctuation.
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3. Measurement of Nonlinear Aerodynamic Force

3.1. A Novel Measurement Technique

A novel wind-tunnel technique was adopted in this study to measure the aerodynamic lift and
torsional moment during post-critical LCOs with high precision [7,12]. As sketched in Figure 2, the outer
‘coat’ of the middle segment was isolated from the other parts and connected to internal rigid frame of
the sectional model through 4 force balances (Figure 18). Hence, only the dynamic force acting on the
middle ‘coat’ was measured. The ‘coat’ was made of thin wooden plates and stiffened by thin-walled
duralumin to reduce its mass as possible. Therefore, the inertia force component was significantly
reduced. The mass ms and moment of inertia Js of the middle ‘coat’ segment were 1.824 kg/m and
0.038 kg·m2/m, respectively, which only account for about 32% and 28% of the total effect values of the
spring-suspended system.

The force balances were elaborately manufactured with high sensitivity. It is a kind of
piezoelectric-type three-component force balance (Figure 18b); it is small in size, i.e., 0.035× 0.05× 0.05 m
to be installed inside sectional model. The mass of each balance is about 0.128 kg. The linear measuring
range is 12 N (shear force) and 0.9 N·m (torque) with a basic error <4.57% F.S. The 4 force balances were
installed inside the sectional model (Figure 18c), and together with the 4 laser displacement sensors
(Figure 18a) were connected to a 24 bits resolution acquisition system, which enables a synchronous
measurement of aerodynamic force and displacement.
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The self-excited lift and torsional moment can then be extracted from the measured force signals.
Figure 19 shows the dynamic equilibrium condition of middle ‘coat’ segment. The oscillating model
immersed in flowing air is acted by four types of dynamic force, i.e., self-excited force, inertial force,
non-wind-induced force and the dynamic actions by the 4 balances as plotted in Figure 19. Note that the
static forces, which include self-weight, aerostatic force and static actions by force balances, are balanced
with each other around the zero-vibrating position. Therefore, the static forces are not shown in
Figure 19, and the following equations can be established around the zero position, which are

Mse(t) = Mms(t) −M0
se(t) −MI(t) (26a)

Lse(t) = Lms(t) − L0
se(t) − LI(t) (26b)

where MI(t) = −Js ·
..
α(t) is the inertial moment per unit length being

..
α the angular acceleration.

LI(t) = −ms ·
..
h(t) is the heaving inertial lift per unit length being

..
h the heaving acceleration. Mms and

Lms are respectively the resultant torsional moment and lift by the force sensors

Mms(t) =
[
(Mm1 + Mm2 −Mm3 −Mm4) +

(
Fmy1 − Fmy2 + Fmy3 − Fmy4

)
× bm/2

]
/lm (27a)

Lms(t) =
(
Fmy1 + Fmy2 + Fmy3 + Fmy4

)
× cosα∗0 + (−Fmx1 − Fmx2 + Fmx3 + Fmx4) × sinα∗0 (27b)

where Mmi,Fmyi,Fmxi(i = 1,2,3,4) represent the measured force signals by each force balance as illustrated
in Figure 19. lm = 0.5 m is the length of middle ‘coat’ segment. bm = 0.197 m is the transverse distance
of force sensors.

M0
se and L0

se are non-wind-induced force due to the mutual action of vibrating model and its
surrounding air. Non-wind-induced force has the effect of added damping and added mass on the
vibration system, which is also called as “virtual mass effect” by Wilkinson [19]. The non-wind-induced
forces have been extensively discussed in previous studies [7,20]. M0

se and L0
se are expressed as

M0
se(t) = −J0 ·

..
α(t) − cα0 ·

.
α(t) (28a)

L0
se(t) = −m0 ·

..
h(t) − ch0 ·

.
h(t) (28b)

where J0 and cα0 are respectively added mass moment of inertia and added torsional damping coefficient.
m0 and ch0 are respectively added mass and added heaving damping coefficient. The identification of
J0, m0, cα0 and ch0 are performed from the free decay responses in still air and one can refer to Gao and
Zhu [7,20] for more details.
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3.2. Aerodynamic Nonlinearity

Figure 20 shows the time histories of the measured self-excited torsional moment Mse and lift Lse

during a post-critical LCO for Case B1 when U* = 7.785. The vibration curves are also self-limiting
similar to displacement responses in Figure 6c, whereas, their curve shapes during the steady-amplitude
stage are obviously distorted from a pure sinusoidal wave, especially for self-excited lift Lse, indicating
that there exists significant aerodynamic nonlinearity.

Figure 21 further displays the amplitude spectra of the measured Mse and Lse. One can find the
existence of significant higher-order harmonic components in both spectra in the steady-amplitude
stage, whereas during small amplitude stage before the post-critical LCO build up, the spectra only
contain the fundamental frequency, which means that the aerodynamic nonlinearity increases with
vibration amplitude. Besides, in the lift spectrum, one can observe a slight component of heaving
frequency, which does not increase during the post-critical LCO process, which again confirms that the
observed post-critical LCOs only occur in the torsional mode and the heaving mode is always stable.
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Figure 21. Amplitude spectra of the measured aerodynamic (a) torsional moment and (b) aerodynamic
lift during a post-critical LCO (Case B1, U* = 6.623).

To check the accuracy of the measured self-excited force Mse and Lse, the time histories of the
measured force signals were directly applied on the vibration system of sectional model to predict
the post-flutter responses. The calculated responses were then compared with experimental ones.
The calculation of post-flutter responses was based on the governing dynamic equations around zero
static positions, which can be expressed as

..
α+ 2ξα0ωt0

.
α+ω2

t0α = Mse(t)/(I + J0) (29a)

..
h + 2ξh0ωh0

.
h +ω2

h0h = Lse(t)/(m + m0) (29b)

The solving of Equation (29) was performed by an explicit Newmark-β method through an
iteration procedure. During the calculation, the amplitude-dependent effect of structural damping
ratios (ξα0,ξh0) and frequencies (ωt0,ωh0) were also considered, for which one can refer to the previous
studies by Gao and Zhu [6].

Figure 22 shows the calculated post-critical LCOs for Case B1 when U* = 7.785. It is found that
the calculated results are in good agreement with experimental ones, where the discrepancies are
about −4.8% and −6.8%, respectively. Thus, the measured self-excited force signals are validated to be
reliable and can further be used for analyzing the energy mechanism during post-critical LCOs.
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As discussed by Diana et al. [21] and Zhang et al. [14], a hysteresis loop is defined as the curve of
aerodynamic force versus the corresponding displacement. The area enclosed by a hysteresis loop
equals the accumulative work done by the aerodynamic force in each vibrating period. A clockwise
loop indicates positive aerodynamic work and thus the vibrating model absorbing energy from the
flowing air, and an anticlockwise loop indicates negative work and thus the vibrating model dissipating
energy. The accumulative aerodynamic work is defined as the integration of the transient aerodynamic
power with respect to time, which is

WMse =

∫ t

t0

Mse(τ)
.
αdτ (30a)

WLse =

∫ t

t0

Lse(τ)
.
hdτ (30b)

where t0 represents the time point when post-critical LCO starts. WMse is the accumulative work done
by the measured self-excited moment on the torsional heaving DOF. WLse is the accumulative work
done by the measured self-excited lift on the heaving DOF.

Figures 23c and 24c present the typical hysteresis loops during a LCO build-up process.
One can find that the loops are both clockwise in small amplitude stages indicating absorbing
energy. The enclosed area increases with the building up of vibration amplitude. The corresponding
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accumulated works are plotted in Figures 23d and 24d. It can be found that the accumulative
aerodynamic work in torsional/heaving DOF both increases with the enlarging area of clockwise loops.
Note that the positive aerodynamic works in the steady amplitude stage compensate the amount of
energy dissipated by the mechanical damping in torsional/heaving DOF.

It is also noticed that the shapes of hysteresis loops are increasingly distorted from a pure ellipse
during the build-up process of a post-flutter LCO. Because a pure ellipse loop corresponds to a
linear case, whereas with the increase of vibration amplitude, the aerodynamic nonlinearity becomes
more significant as indicated in Section 3.2. As a result of the higher-order harmonic components,
the hysteresis loop evolves into a distorted cycle for the torsional DOF and an 8-shape cycle for the
heaving DOF. The 8-shape hysteresis loop indicates that the work by self-excited lift changes from
negative to positive in a vibrating period. However, Zhang et al. [14] recently pointed out through
a CFD calculation that the distortion by higher-order harmonic components does not influence the
resultant accumulative aerodynamic work.

4. Discussion of the Results

The classical linear flutter theory is not applicable to predict post-flutter instabilities. Because the
observed post-flutter responses are characterized by a nonlinear self-limiting LCO with time-varying
damping ratio as indicated by Figure 13a, whereas the linear flutter theory is based on a small-amplitude
assumption and only considers the constant aerodynamic damping and stiffness [1]. Thus, the predicted
linear flutter instability is a ‘hard’ flutter with the vibration amplitude increasing exponentially with
time. The aerodynamic nonlinearity under large amplitude has a stabilizing effect, and the self-limiting
behavior is beneficial to the safety of long-span bridges.

Figures 13a, 23 and 24 clearly demonstrate that the aerodynamic nonlinearities instead
of mechanical nonlinearities are responsible for the observed nonlinear post-flutter instabilities.
Because according to the previous studies [15] on the mechanical nonlinearities of spring-suspended
sectional model systems, the mechanical damping ratio increases with amplitude resulting in a more
significant energy-dissipating effect. The mechanical stiffness generally exhibits a slight behavior of
soft spring, which only slightly changes the instantaneous phase of vibration response.

The coupling of heaving static deformation and post-critical LCO discussed in Section 2.6 suggests
that large-amplitude torsional vibration may possibly induce static divergence for long-span bridges,
because the heaving static deformation plays an important role in the occurrence of aerostatic divergence
for cable-supported bridges, especially suspension bridges [22]; the additional upward deformation
during large-amplitude vibration will change the tension state of main cables and will inevitably
reduce the structural torsional stiffness provided by the cable system. It is also indicated from Figure 16
that classical quasi-steady theory is not applicable. Little attention has been paid to this phenomenon;
however, it deserves more investigation in the future study.

A nonlinear theory is necessary to predict the nonlinear post-flutter responses. It is the future
work of this study to establish a new coupled self-excited force model to fully consider the aerodynamic
nonlinearities based on the measured force signals. The nonlinear self-excited force model should be
able to simulate the amplitude-dependent behaviors of torsional mode (heave-torsion coupling effect),
the aerodynamic damping and the coupling of heaving aerostatic deformation.

5. Conclusions

The nonlinear behaviors of flutter instabilities on a typical box-type bridge deck were investigated
through a series of wind-tunnel sectional model tests. The dynamic displacement responses together
with nonlinear aerodynamic forces were synchronously measured by using laser displacement sensors
and piezoelectric force balances. Major concluding remarks are drawn as follows:

(1) Beyond linear flutter boundary, the investigated flat closed-box bridge deck (side ratio 9.14)
lost its torsional stability around zero position and exhibited nonlinear post-critical LCOs in post-flutter
states under attack angle 3◦ and 0◦. The post-critical LCOs were heave-torsion coupled vibration in the



Sensors 2020, 20, 568 24 of 26

torsional mode, which is a ‘soft’ type flutter with a gradual increase of stable amplitudes with reduced
velocities. The degree of heave-torsion coupling increased with reduced velocity.

(2) The heave-torsion coupled LCO vibrated in a complex torsional mode. The mode modulus
and phase angle both evolved with amplitude. The damping ratios exhibited a significant
amplitude-dependent effect. Whilst the vibration frequency contained fast-fluctuating components,
and its long-term trend slightly evolved with amplitude.

(3) An obvious coupling of post-critical LCOs and heaving static deformation was observed.
The coupling effect was significant under attack angle 3◦ but relatively slight for attack angle 0◦.
The evolution of coupling behavior with reduced velocity was sensitive to attack angle. Classical
quasi-steady theory, which is applicable for predicting the static deformation under small amplitude,
was found to be unsuitable, and a new theory is needed.

(4) The measured signals of aerodynamic torsional moment and lift were found to contain
significant higher-order harmonic components. The post-critical LCOs were well predicted by the
measured force signals. The energy mechanisms were closely related with the evolving shapes of
hysteresis loops of the measured aerodynamic force versus dynamic displacement.
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Notation

a0 a constant related with initial condition Re Reynolds number
aα, ah torsional, heaving amplitude t time
A∗i ,H

∗

i flutter derivatives t0 starting time point
b half width of a cross section T torsional period,2π/ωt

bm distance of force sensors U wind velocity
B, D width/depth of a cross section U∗cr non-dimensional linear flutter boundary
cα0, ch0 added damping coefficients U∗ reduced wind velocity, U/ f B
CD, CL, CM drag, lift and moment coefficients Uh2,Vh2 heaving mode parameters

C(n)
L

nth-order derivative of lift coefficient Uα2,Vα2 torsional mode parameters
D0 effective windward height U#

h2,V#
h2 normalized mode parameter

e distance of spring fixed points WMse work by self-excited moment
ft0, fh0 frequencies in still air WLse work by self-excited lift

ft, fh torsional and heaving frequency α,
.
α,

..
α

torsional angle, angular velocity
and acceleration

FD,FL,M
aerodynamic drag force, lift force and
torsional moment per unit length

α0 initial wind angle of attack

h,
.
h,

..
h

heaving displacement,
velocity and acceleration

α∗0
static attack angle under flowing
air conditions

hse,h0
pure heaving displacement,
heaving static deformation

βα,βh torsional and heaving phase angle

hmax,hmin upper, lower heaving envelopes γ heave-torsion coupling ratio
hrms,αrms heaving, torsional root-mean-squares ξα0, ξh0 mechanical damping ratios in still air
Hwt height of wind-tunnel test section ξt torsional damping ratio
Iu turbulence intensity ξt total damping ratio of the torsional mode
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Jm effective mass moment of inertia ξs
amplitude-dependent structural
damping ratio

kh,kα elastic heaving, torsional stiffness ξse
aerodynamic damping ratio induced by
self-excited force

K reduced frequency ρ air density
lm length of middle ‘coat’ segment ϕ torsional phase angle
L axial length of a sectional model ωt circular frequency of torsional mode

LI inertial lift per unit length, −ms ·
..
h ωt0,ωh0

torsional, heaving circular frequencies in
still air

Lse, Mse self-excited lift and torsional moment ∆h0 total drift of the heaving zero position

m effective mass per unit length ∆h0,S
heaving deformation under small
amplitude

m0,J0 added mass, mass moment of inertia ∆h0,L
heaving deformation under
large amplitude

ms,Js mass, moment of inertia of middle ‘coat’ ∆α effective attack angle induced vibration
MI inertial moment per unit length ∆α0,S drift of static attack angle relative

Mms,Lms resultant torsional moment and lift ∆β
phase difference between heaving and
torsional displacement

Mmi,
FmyiFmxi

measured force signals ϕt vector of torsional mode

M0
se,L0

se non-wind-induced force per unit length Real() the real part of a complex value
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