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Automated CT LI-RADS v2018 scoring of liver observations using machine learning: A multivendor, multicenter retrospective study

318 patients with 429 liver observations

Highlights Impact and implications

� ML algorithm evaluated whether non-rim APHE,

non-peripheral washout, and enhancing capsule
were present, absent, or of uncertain presence.

� LR-5 observations were diagnosed with high spec-
ificity and good sensitivity.

� A stepwise use of the ML algorithm and the radi-
ologist’s visual analysis improved the overall per-
formance for LR-5.
https://doi.org/10.1016/j.jhepr.2023.100857
Assessment of CT/MRI LI-RADS v2018 major features leads to
substantial inter-reader variability and potential decrease in
hepatocellular carcinoma diagnostic accuracy. Rather than
replacing radiologists, our results highlight the potential
benefit from the radiologist–artificial intelligence interaction
in improving focal liver lesions characterisation by using the
developed algorithm as a triage tool to the radiologist’s vi-
sual analysis. Such an AI-enriched diagnostic pathway may
help standardise and improve the quality of analysis of liver
lesions in patients at high risk for HCC, especially in non-
expert centres in liver imaging. It may also impact the
clinical decision-making and guide the clinician in identi-
fying the lesions to be biopsied, for instance in patients with
multiple liver focal lesions.
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Background & Aims: Assessment of computed tomography (CT)/magnetic resonance imaging Liver Imaging Reporting and
Data System (LI-RADS) v2018 major features leads to substantial inter-reader variability and potential decrease in hepato-
cellular carcinoma diagnostic accuracy. We assessed the performance and added-value of a machine learning (ML)-based
algorithm in assessing CT LI-RADS major features and categorisation of liver observations compared with qualitative
assessment performed by a panel of radiologists.
Methods: High-risk patients as per LI-RADS v2018 with pathologically proven liver lesions who underwent multiphase
contrast-enhanced CT at diagnosis between January 2015 and March 2019 in seven centres in five countries were retro-
spectively included and randomly divided into a training set (n = 84 lesions) and a test set (n = 345 lesions). An ML algorithm
was trained to classify non-rim arterial phase hyperenhancement, washout, and enhancing capsule as present, absent, or of
uncertain presence. LI-RADS major features and categories were compared with qualitative assessment of two independent
readers. The performance of a sequential use of the ML algorithm and independent readers were also evaluated in a triage and
an add-on scenario in LR-3/4 lesions. The combined evaluation of three other senior readers was used as reference standard.
Results: A total of 318 patients bearing 429 lesions were included. Sensitivity and specificity for LR-5 in the test set were 0.67
(95% CI, 0.62–0.72) and 0.91 (95% CI, 0.87–0.96) respectively, with 242 (70.1%) lesions accurately categorised. Using the ML
algorithm in a triage scenario improved the overall performance for LR-5. (0.86 and 0.93 sensitivity, 0.82 and 0.76 specificity,
78% and 82.3% accuracy for the two independent readers).
Conclusions: Quantitative assessment of CT LI-RADS v2018 major features is feasible and diagnoses LR-5 observations with
high performance especially in combination with the radiologist’s visual analysis in patients at high-risk for HCC.
Impact and implications: Assessment of CT/MRI LI-RADS v2018 major features leads to substantial inter-reader variability
and potential decrease in hepatocellular carcinoma diagnostic accuracy. Rather than replacing radiologists, our results
highlight the potential benefit from the radiologist–artificial intelligence interaction in improving focal liver lesions char-
acterisation by using the developed algorithm as a triage tool to the radiologist’s visual analysis. Such an AI-enriched diag-
nostic pathway may help standardise and improve the quality of analysis of liver lesions in patients at high risk for HCC,
especially in non-expert centres in liver imaging. It may also impact the clinical decision-making and guide the clinician in
identifying the lesions to be biopsied, for instance in patients with multiple liver focal lesions.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Contrast-enhanced computed tomography (CT) and magnetic
resonance imaging (MRI) are the imaging modality of choice for
diagnosis and staging of liver lesions in patients at high risk for
hepatocellular carcinoma (HCC). The Liver Imaging Reporting and
Keywords: Hepatocellular carcinoma; LI-RADS; Major features; Computed tomogra-
phy; Machine learning.
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Data System (LI-RADS) is a comprehensive system that provides
standardisation of terminology and liver image acquisition and
interpretation in these high-risk patients.1–3 The CT/MRI LI-RADS
algorithm weights the probability for a given observation to be an
HCC, allowing non-invasive diagnosis for HCC but also identifica-
tion of lesions forwhich biopsymay be considered. To this aim,five
major imaging features are considered: non-rim arterial phase
hyperenhancement (APHE), non-peripheral washout, enhancing
capsule, observation size, and threshold growth.2 Thefirst three are
qualitatively evaluated, leading to substantial inter-reader vari-
ability and potential decrease in diagnostic accuracy.4
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Kang et al.5 recently showed that the inter-reader reliability of
CT LI-RADS major features differed significantly according to the
average reader experience and to the difference in reader expe-
rience. This may be because of observations with subtle, not easily
assessed APHE and/or washout. Another potential explanation is
the possible heterogeneous spatial distribution of APHE and
washout within lesions. Indeed, rim and non-rim APHE features –
and peripheral and non-peripheral washout – have entirely
different meanings. Although rim APHE – that is, APHE most
pronounced in lesion periphery – may be seen in HCC, especially
in the sarcomatoid subtype, and in combined tumours,6,7 this
feature is highly suggestive of non-HCC malignancy and is
therefore recognised as a LR-M feature. In the same way, periph-
eral washout – that is, washout most pronounced in lesion pe-
riphery – is also suggestive of non-HCC malignancy and thus
should lead to lesion categorisation as LR-M. Although inter-
reader variability of enhancing capsule seems to be modest,8,9 a
three-dimensional (3D) assessment is necessary as this feature
may be incomplete and therefore be underdiagnosed when ana-
lysed on a single section. Consequently, the LI-RADS algorithm
may be less widely used in non-expert centres in liver imaging.

It has been suggested that a quantitative evaluation of both
APHE and washout using two-dimensional (2D) regions of in-
terest (ROIs) may help improve the accuracy of LI-RADS tumour
categorisation and thus accuracy for the non-invasive diagnosis
of HCC.10,11 Automated major features assessment and LI-RADS
tumour categorisation may be of great help for lesion charac-
terisation, subsequent management optimisation, and help in
identifying the lesions to be biopsied,12 with different added-
value in expert and non-expert centres in liver imaging. Con-
volutional neural network-based deep learning algorithms have
shown their potential to classify focal liver lesions in a hetero-
geneous patient population of benign and malignant primary
liver lesions and liver metastases.13,14 However, the accuracy and
reproducibility of deep learning algorithms may be compro-
mised in the absence of large amounts of available data.
Conversely, machine learning (ML)-based algorithms such as
logistic regression models may require far less data for the
training process, allowing the majority of data to be dedicated to
the model validation process. To our knowledge, the feasibility
and performance of an automated ML-based 3D analysis of LI-
RADS v2018 major features and the resulting LI-RADS catego-
risation has been poorly investigated to date.

In this context, our study aimed to assess the performance
and added-value of an ML algorithm in the assessment of LI-
RADS v2018 major features and categorisation of hepatic obser-
vations at CT in patients at risk for HCC. To this aim, three sce-
narios were explored: the ML algorithm performances were first
compared with the visual assessment of independent radiolo-
gists. The optimal integration of the ML algorithm in the clinical
diagnostic pathway was then investigated by evaluating the
performance of a sequential use of the ML algorithm and inde-
pendent radiologists in a triage scenario, and in an add-on
scenario.
Patients and methods
Study participants
This multicentric study was conducted by the HECAM (HEpato-
cellular Carcinoma Multi-technological) research consortium
and was partly financed by ‘Bpifrance’ (French Banque Publique
d’Investissement) together with GE Healthcare France. The
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institutional review boards (IRB) of the study centres approved
this multicentre retrospective study, and informed consent was
waived by the IRB.

Patients with cirrhosis or chronic HBV infection or prior HCC
with pathologically proven liver lesions between January 2015
and March 2019 from seven centres in five countries (Henri
Mondor University Hospital, Créteil, France; Beaujon University
Hospital, Clichy, France; National University of Seoul, South Ko-
rea; University Hospital of Pisa, Italy; University Hospital of
Angers, Angers, France; Cetir medical center, Barcelona, Spain;
Zwanger-Pesiri Radiology Hospital, New York, USA) were
considered for inclusion. Patients were included if they had
undergone multiphase contrast-enhanced CT at diagnosis, and if
liver lesions were pathologically proven. Patients were excluded
if they had undergone lesion treatment before surgery/biopsy or
if the late-arterial and/or portal venous phase was not acquired.
A total of 326 patients (median age, 63 years; interquartile range
[IQR], 56–71 years) with 440 observations were included.
Recorded demographic characteristics and clinical data included
age, sex, presence of cirrhosis, cause of liver disease, and serum
alpha-foetoprotein (AFP) level.
CT examination
CT examinations were obtained with CT scanners from various
vendors (Table S1). All patients underwent a multiphase
contrast-enhanced CT scan of the abdomen, including at least
late-arterial and portal-venous phases. A pre-contrast (unen-
hanced) phase and a delayed phase were acquired in 322/326
(98.8%) and 279/326 (85.6%) patients, respectively. All four
phases were available in 270/326 (82.8%) of patients. The CT
acquisition parameters varied among centres according to local
routine protocols. The tube voltage was set at 120 kVp in 274/326
(84%) of cases (range, 80–140 kVp), mean effective tube current,
350 mA, median slice thickness, 1.25 mm (range, 0.625–3 mm),
and median reconstruction interval, 1.25 mm (range,
0.625–3 mm).
Readers visual assessment and ground truth definition
Five independent senior readers visually assessed the 440 ob-
servations. For each observation, the presence of features sug-
gestive of malignancy but not specific for HCC (including rim
APHE) and the presence of tumour-in-vein were first evaluated,
and observations with such features were respectively cat-
egorised as LR-M and LR-TIV. Observations categorised LR-1 or
LR-2, LR-M, or LR-TIV were excluded from the subsequent anal-
ysis. In the remaining cases, non-rim APHE, non-peripheral
washout, and enhancing capsule were visually assessed. The
corresponding LI-RADS category was then proposed. As only
baseline imaging was available, observation growth was not
considered to define the LI-RADS category.

For each observation, the ground truth was based on the
evaluation of three out of the five senior readers (SM, RS, and
MG, with 6, 5, and 3 years of experience in the use of LI-RADS,
respectively) and defined as the majority choice among them.
For each observation, one of the three readers placed a free-hand
volume of interest encompassing the entire observation.

The performances of the remaining two independent readers
(with 5 and 3 years of experience in the use of LI-RADS,
respectively), not implicated in the ground truth definition,
were evaluated and compared with those of the ML algorithm,
using the ground truth as defined above as reference standard.
2vol. 5 j 100857



Machine learning algorithm
Observations were divided into a training set (n = 84 observa-
tions) and a test set (n = 345 observations) using a stratified
approach based on LI-RADS features and common characteristics
of the observations to warrant balanced distribution of major
features in the training set. A subset of the training set was
defined as the validation set and allowed to monitor the model’s
performance during the training process.

The image processing and ML pipeline for LI-RADS major
features analysis was divided into different steps (Fig. 1): auto-
matic phases identification, non-rigid registration to enable a
voxel-wise temporal profile analysis leading to lesion sub-
segmentation and surrounding parenchyma delineation (Fig. 2).
The algorithm design was driven according to the two following
principles: accuracy and model explainability. In combination
with an extensive data augmentation strategy, this approach
allowed to train the model using few observations (see
Supplementary material).

The model outcome was a probability of major feature pres-
ence, and a threshold was set for the final decision. This
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Fig. 1. Overview and major steps of the machine learning-based algorithm.
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threshold was chosen as the value providing the highest speci-
ficity and at least 0.8 sensitivity. A scrutiny zone on both sides of
the threshold value was introduced, and the presence of a
feature was stated as uncertain in case of a probability close to
the threshold value (see Supplementary material).

Statistical analysis
Continuous variables are provided as median and interquartile
range. Categorical variables as count and percentages. Chi-square
and Fisher exact tests were used to compare frequencies of
categoric variables between the training and test sets, as
appropriate. The paired sample t test and Wilcoxon rank-sum
test were performed for continuous variables, as appropriate.

The sensitivity and specificity of the ML algorithm and of the
two independent readers for the assessment of major features
compared with the ground truth were estimated. Bootstrap
resampling was performed to estimate the precision and con-
fidence of the results by obtaining bootstrap 95% CIs. The ac-
curacy of the resulting observation categorisation and the
sensitivity and specificity for LR-5 were also calculated.
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Fig. 2. Axial multiphasic CT images in a 70-year-old man with 76-mm hepatocellular carcinoma in segment 5 of the liver. Multiphasic images are presented
(A) without and (B) with superimposition of areas in which non-rim arterial phase hyperenhancement (APHE), non-peripheral washout and enhancing capsule
were detected by the machine learning algorithm. The adjacent liver parenchyma automatically segmented for the analysis of the observation enhancement
patterns is also shown. Non-rim APHE, non-peripheral washout, and enhancing capsule were present and accurately detected by both the machine learning
algorithm and the two independent readers in this LR-5 observation.
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Subgroup analyses according to the size of observations
(<20 mm and >−20 mm observations) were also performed.

The above-mentioned analyses were performed in two
different situations. First, the major features with uncertain
presence according to the ML algorithm were categorised as
absent, in agreement with LI-RADS recommendations.13 All ob-
servations in the test set were included. Second, the major fea-
tures with uncertain presence according to the ML algorithm (i.e.
within the scrutiny zone) were excluded from the analyses.
Hence, only features for which the algorithm was able to decide
whether they were present or not were included.

To investigate how the developed ML algorithm may be
optimally integrated in the clinical diagnostic pathway, we
evaluated the sequential performances of a stepwise use of the
ML algorithm and the independent readers (Fig. 3). On one hand,
the ML algorithm was used to categorise indeterminate obser-
vations (LR-3 and LR-4 observations) after visual analysis of the
independent readers (add-on role). On the other hand, the ML
algorithm was applied to all hepatic observations (triage role),
and (i) only LR-3 and LR-4 observations per the ML algorithm
were further visually analysed by the readers (triage #1); (ii)
only observations with at least one major feature of uncertain
presence were visually analysed by the readers (triage #2).

The agreement between pairs of readers was evaluated using
Cohen’s kappa statistics, and between all readers using Fleiss
kappa. In addition, the overall inter-reader agreement was
introduced. For each observation, the overall inter-reader
agreement for each major feature was arbitrarily considered
high if at least four of the five readers agreed with each other.
Otherwise, the overall inter-reader agreement was considered
low.
JHEP Reports 2023
A p value <0.05 was considered statistically significant. Sta-
tistical analyses were conducted in Python using the scikit-learn
library.
Results
Participant characteristics
According to the ground truth, four observations were cat-
egorised LR-1 or LR-2, two observations were categorised LR-M,
and tumour-in-vein was present for five observations. After
excluding these 11 observations, a total of 318 patients bearing
429 observations were included, with a large majority of HCC
lesions (Table 1). The median tumour size was 28 mm (IQR,
18–47 mm), 129/429 observations (30.1%) were smaller than
20 mm, whereas 98/429 (22.8%) were larger than 50 mm. The
vast majority of observations had a nodular growth pattern (352/
429, 82.1%), the remaining 77/429 (17.9%) being infiltrative. Two
hundred and eighty-three (283/318, 89.0%) patients had
cirrhosis, including six with a history of HCC. The remaining 35
patients had either prior HCC (n = 4) and/or chronic HBV infec-
tion (n = 31). The median AFP serum level was 9 ng/ml (IQR,
4.9–49.8 ng/ml).

Ground truth
Non-rim APHE, non-peripheral washout, and enhancing capsule
were present in 360/429 (83.9%), 336/429 (76.1%), and 110/429
(25.6%) observations, respectively. Overall, 82/429 (19.1%), 60/
429 (14.0%), and 287/429 (66.9%) observations were categorised
LR-3, LR-4 and LR-5, respectively. Sensitivity and specificity of LR-
5 for HCC were 0.55 (95% CI, 0.48–0.61) and 0.88 (95% CI,
0.62–0.98), respectively. Those 429 observations were divided
4vol. 5 j 100857
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Fig. 3. Assessment of the performance and added-value of the developed ML algorithm in the assessment of LI-RADS v2018 major features and cate-
gorisation of hepatic observations at CT in patients at risk for HCC. The ML algorithm performance was first compared with the visual assessment of in-
dependent radiologists (replacement scenario). The performance of a sequential use of the ML algorithm and independent radiologists was then evaluated in
triage scenarios, and in an add-on scenario. CT, computed tomography; HCC, hepatocellular carcinoma; LI-RADS, Liver Imaging Reporting and Data System; LR, LI-
RADS; ML, machine learning.

Table 1. Characteristics of the study population.

Characteristics Available data (n) Training set (n = 39) Test set (n = 279) p value

Sex, n (%) 286 0.50
Men 28 (85) 196 (77)
Women 5 (15) 57 (23)

Age (years) 296 62 (54–71) 63 (56–71) 0.68
Cause of liver disease, n (%) 275 0.26

Alcohol abuse 7 (22.6) 61 (23.4)
Chronic hepatitis B 4 (12.9) 76 (29.1)
Chronic hepatitis C 10 (32.3) 70 (26.8)
NASH 10 (32.3) 48 (18.4)
Other 0 (0.0) 6 (2.3)

Cirrhosis, n (%) 318 35 (89.7) 241 (86.4) 0.80
AFP serum level (ng/ml) 122 33 (6–326) 9 (4–38) 0.11
Tumour size (mm)* 429 22 (16–39) 29 (20–49) 0.10
Type of tumour*, n (%) 429 0.45

HCC 83 (98.8) 332 (96.2)
iCCA 0 2 (0.6)
cHCC-CCA 0 6 (1.7)
Liver metastasis 1 (1.2) 0 (0.0)
FNH 0 1 (0.3)
Infection 0 2 (0.6)
Focal steatosis 0 1 (0.3)
Low-grade dysplastic nodule 0 1 (0.3)

LI-RADS classification 429 0.014
LR-3 25 57
LR-4 14 52
LR-5 45 236

Categorical data are represented using number (percentages) and continuous data using median (interquartile range). Level of significance: p = 0.05 (Chi-square and Fisher
exact tests for categoric variables; paired sample t test and Wilcoxon rank-sum test for continuous variables).
AFP, alpha-foetoprotein; cHCC-CCA, combined hepatocellular-cholangiocarcinoma; FNH, focal nodular hyperplasia; HCC, hepatocellular carcinoma; iCCA, intrahepatic chol-
angiocarcinoma; NASH, non-alcoholic steatohepatitis.
* There were 429 observations in 318 patients.

5JHEP Reports 2023 vol. 5 j 100857
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into a training set (84 observations) and a test set (345 obser-
vations). Both sets included 25 (30%)/14 (17%)/45 (54%) and 57
(17%)/52 (15%)/236 (68%) observations categorised as LR-3/LR-4/
LR-5, respectively.

Performance of ML algorithm compared with independent
readers
Performance in the training set is provided in the Supplementary
material. In the test set, by categorising features of uncertain
presence as being absent, sensitivity and specificity for non-rim
APHE were the highest (0.85 and 0.96, respectively) compared
with the ground truth, whereas sensitivity for enhancing capsule
was the lowest (0.69) (Fig. 4). Two hundred and forty-two
(70.1%) of the 345 observations were accurately categorised by
the ML algorithm. Sensitivity and specificity for LR-5 were,
respectively, 0.67 (95% CI, 0.62–0.72) and 0.91 (95% CI, 0.87–0.96)
(Table 2 and Fig. 4), whereas sensitivity and specificity of LR-5 for
HCC were 0.51 (95% CI, 0.46–0.57) and 0.78 (95% CI, 0.52–0.94),
respectively. Subgroup analyses according to the observation size
A

C

Independent readers
ML algorithm

Independent readers
ML algorithm

0

Fig. 4. Sensitivity and specificity. (A) non-rim arterial phase hyperenhancement
categorisation of ML algorithm and independent readers in the test set assessed
RADS; ML, machine learning.
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(<20 mm or >−20 mm) are presented in Tables S2 and S3. Sensi-
tivity and specificity for LR-5 were, respectively, significantly
higher and lower in >−20 mm observations compared with
<20 mm ones (sensitivity, 0.21 [0.10–0.32] vs. 0.76 [0.71–0.81],
p = 0.012; specificity, 1.00 [0.93–1.00] vs. 0.83 [0.74–0.91], p =
0.039).

Amajority of under-classifiedobservations (56/92, 60.9%) had at
least one major feature whose presence was considered uncertain
according to the ML algorithm (Fig. 5), whereas three of 11 (27.3%)
over-classified observations had at least one major feature of un-
certain presence. The performance of the ML algorithm in the
subgroup of observations without any uncertainmajor feature (n =
222) are detailed in the Supplementary material.

Compared with the ground truth, the sensitivity of the two
readers was greater than 0.90 for non-rim APHE, significantly
higher than that of the ML algorithm, whereas specificity was
lower than that of the ML algorithm, with a significant difference
for reader 1. Overall, 230 (66.7%) and 268 (77.7%) of the 345
observations were accurately categorised by reader 1 and reader
B

D

Independent readers
ML algorithm

Independent readers
ML algorithm

, (B) non-peripheral washout, (C) enhancing capsule, and (D) LR-5 observation
using bootstrap resampling. Ellipses represent 95% confidence intervals. LR, LI-
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Table 2. Performance of machine learning (ML) algorithm and independent readers in the test set.

LI-RADS features ML algorithm (n = 345) Independent reader 1 (n = 345) Independent reader 2 (n = 345)

Non-rim APHE
Present/absent/uncertain* 255/64/26 287/58 289/56
Sensitivity 0.85 (0.82–0.88) 0.93 (0.91–0.96) 0.96 (0.94–0.98)
Specificity 0.96 (0.91–1.00) 0.79 (0.69–0.89) 0.90 (0.82–0.97)

Non-peripheral washout
Present/absent/uncertain* 212/83/50 190/155 269/76
Sensitivity 0.76 (0.72–0.81) 0.70 (0.66–0.74) 0.92 (0.89–0.95)
Specificity 0.91 (0.85–0.96) 0.96 (0.93–0.99) 0.71 (0.62–0.80)

Enhancing capsule
Present/absent/uncertain* 88/192/65 131/214 84/261
Sensitivity 0.69 (0.61–0.77) 0.91 (0.85–0.95) 0.69 (0.61–0.77)
Specificity 0.91 (0.88–0.94) 0.82 (0.78–0.86) 0.92 (0.90–0.95)

LI-RADS classification, n (%)
LR-3 97 (28.1) 40 (11.6) 41 (11.9)
LR-4 77 (22.3) 50 (14.5) 53 (15.4)
LR-5 171 (49.6) 197 (57.1) 221 (64.1)
LR-1 or LR-2 — 56 (16.2) 0 (0.0)
LR-M — 1 (0.3) 24 (7.0)
LR-TIV — 1 (0.3) 6 (1.7)

LR-5 performance
Sensitivity 0.67 (0.62–0.72) 0.78 (0.74–0.82) 0.90 (0.87–0.93)
Specificity 0.91 (0.87–0.96) 0.88 (0.83–0.93) 0.82 (0.77–0.86)

Numbers in parentheses are the 95% confidence interval.
APHE, arterial phase hyperenhancement; LI-RADS, Liver Imaging Reporting and Data System; LR, LI-RADS; TIV, tumour-in-vein.
* The ML algorithm categorised each major feature as present, absent or of uncertain presence. The ‘uncertain’ category is not applicable to readers.
2. The complete description of the visual assessment of the in-
dependent readers in the test set is reported in Table 2.

Place of the ML algorithm in the diagnostic pathway of
hepatic observations
Triage scenarios
The visual assessment by independent readers 1 and 2 to cate-
gorise LR-3 and LR-4 observations according to the ML algorithm
A B

Non-peripheral washoutNon-rim APHE E

Precontrast Late arterial

Portal venous Delayed

Fig. 5. Axial multiphasic CT images in a 74-year-old man with NASH-related
Multiphasic images are presented (A) without and (B) with superimposition of are
washout, and enhancing capsule were detected by the machine learning algorith
the observation enhancement patterns is also shown. The three major features w
the two independent readers except enhancing capsule considered absent by on
considered non-rim APHE present but washout and enhancing capsule of uncert
RADS; ML, machine learning; NASH, non-alcoholic steatohepatitis.
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led to a sensitivity and specificity for LR-5 of 0.86 (95% CI,
0.82–0.90) and 0.82 (95% CI, 0.76–0.88) (reader 1), and of 0.93
(95% CI, 0.88–0.98) and 0.76 (95% CI, 0.70–0.82) (reader 2). Two
hundred and sixty-nine (78.0%) (reader 1) and 284 (82.3%)
(reader 2) of the 345 observations were accurately categorised.

The visual assessment by independent readers to categorise
only observations with at least one major feature of uncertain
presence according to the ML algorithm leaded to a sensitivity
nhancing capsule Adjacent liverUnenhanced tissue

Precontrast Late arterial

Portal venous Delayed

cirrhosis and 63-mm hepatocellular carcinoma in segment 8 of the liver.
as in which non-rim arterial phase hyperenhancement (APHE), non-peripheral
m. The adjacent liver parenchyma automatically segmented for the analysis of
ere considered present according to the ground truth (LR-5 observation) and by
e independent reader (LR-5 observation for both readers). The ML algorithm
ain presence, leading to LR-4 categorisation. CT, computed tomography; LR, LI-
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and specificity for LR-5 of 0.77 (95% CI, 0.73–0.81) and 0.88 (95%
CI, 0.83–0.93) (reader 1), and of 0.80 (95% CI, 0.75–0.85) and 0.87
(95% CI, 0.83–0.91) (reader 2). Two hundred and seventy-three
(79.1%) (reader 1) and 262 (75.9%) (reader 2) of the 345 obser-
vations were accurately categorised.

Add-on scenario
Applying the ML algorithm to further categorise LR-3 and LR-4
observations according to the visual analysis of the indepen-
dent readers led to a sensitivity and specificity for LR-5 of 0.84
(95% CI, 0.79–0.89) and 0.85 (95% CI, 0.79–0.91) (reader 1) and of
0.88 (95% CI, 0.84–0.92) and 0.77 (95% CI, 0.71–0.83) (reader 2).
Two hundred and sixty-three (74.2%) (reader 1) and two hun-
dred and seventy-one (78.6%) (reader 2) of the 345 observations
were accurately categorised.

Inter-reader agreement
The values of inter-reader agreement between pairs of readers
are summarised in Fig. 6A. Inter-reader agreement for all readers
was 0.70 for non-rim APHE, 0.50 for non-peripheral washout,
and 0.55 for enhancing capsule. The overall inter-reader agree-
ment was high in 95%, 85%, and 86% of observations for non-rim
APHE, non-peripheral washout, and enhancing capsule, respec-
tively. The overall inter-reader agreement was more frequently
low for major features classified as uncertain by the ML algo-
rithm compared with those classified as present or absent,
whatever the major feature (Fig. 6B).
Discussion
Our study demonstrates the ability of an ML algorithm to
assess LI-RADS v2018 major features and categorise liver obser-
vations at CT in high-risk patients. The ML algorithm evaluated
whether non-rim APHE, non-peripheral washout and enhancing
capsule were present, absent or of uncertain presence. Sensitivity
and specificity for non-rim APHE were the highest, while
sensitivity for enhancing capsule was the lowest. LR-5
A B
73.0 ± 2.2

73.5 ± 2.3 68.9 ± 2.2

63.0 ± 2.3 60.0 ± 2.2 60.3 ± 2.5

69.7 ± 2.2 66.1 ± 2.3 75.3 ± 2.1 54.9 ± 2.3

Reader 3Reader 1 Reader 2 Reader 4

Reader 3

Reader 2

Reader 4

Reader 5

80%

60%

40%

Fig. 6. Inter-reader agreement. (A) Inter-reader agreement between pairs of read
with low overall inter-reader agreement, according to their categorisation by the
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observations were diagnosed with 0.91 specificity and 0.67
sensitivity, reaching respectively 0.92 and 0.79 when features of
uncertain presence were not considered. When used as a triage
tool before visual analysis by radiologists or used as add-on in
the subgroup of patients with LR-3 or LR-4 lesions according to
the radiologists, the sensitivity for LR-5 significantly increased
(0.84–0.93), associated with a mild decrease in specificity (range
0.76–0.85), but a final higher percentage of accurately cat-
egorised lesions (range 74.2–82.3%).

The LI-RADS diagnostic algorithm aims at standardising
the imaging diagnosis of HCC, based on both major and ancil-
lary imaging features. Hence, accurate assessment of those
features is mandatory to warrant satisfying HCC diagnostic
accuracy in patients at high risk for HCC. Methods to quanti-
tatively assess APHE and washout appearance at CT or MRI
have been previously proposed.10,11,15,16 However, the quanti-
tative analysis of major features was limited to 2D circular ROIs,
preventing an accurate analysis of the observation heteroge-
neity and potentially failing to detect presence of the major
features, as APHE and washout appearance do not need to
coincide in the same observation part.17 Deep learning-based
approaches were also proposed for automated classification
of liver observations, requiring large amounts of available
data.18 In the present study, an ML algorithm was developed,
requiring far less data for the training process and thus
allowing the majority of data to be dedicated to the model
validation process. Moreover, bootstrap resampling was
implemented to assess the precision and confidence of the
results obtained.

The ML algorithm presented in this study detects the pres-
ence of non-rim APHE, non-peripheral washout, and enhancing
capsule by estimating a probability of presence associated with
each one of these features. An original and major strength of this
study is the definition of an uncertainty area in which probability
values were considered too close to the cut-off (i.e., in the
scrutiny zone) to confidently affirm or reject the presence of the
features. In that case, the presence of the feature was stated as
0%

5%

10%

15%

20%

25%

Non-rim APHE Non-peripheral washout Enhancing capsule

All observations Yes/no Uncertain

ers in the test set (Cohen’s kappa). (B) Percentage of observations of the test set
machine learning algorithm (present, absent, or uncertain).
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uncertain. Such an approach allows first to identify the most
challenging cases and to warn readers about it. Noteworthy, the
agreement between independent readers was significantly lower
in features of uncertain presence compared with those un-
equivocally categorised as present or absent by the ML algo-
rithm, suggesting that features of uncertain presence were more
challenging for readers to analyse. Hence, in a potential triage
application of automatic analysis of observation enhancement
features, our approach would allow to accurately separate ob-
servations with typical enhancement profiles from those that
would require further expert reader visual analysis. Second, the
introduction of an uncertainty area may also prevent from
overdiagnosis of HCC. This point is of paramount importance, as
one of the aims of the LI-RADS v2018 algorithm is to maximise
specificity for HCC by applying major features only when their
presence is unequivocal.17

Performances of the ML algorithm for LR-5 were similar to
those of the independent readers when features of uncertain
presence were excluded, both in terms of sensitivity and speci-
ficity. When features of uncertain presence were considered
absent, the specificity for LR-5 remained as high as that of in-
dependent readers, while an expected decrease in sensitivity –

from 0.79 to 0.67 – was seen. However, the major point in
identifying features of uncertain presence was to highlight ob-
servations that would require further expert reader visual anal-
ysis, leading to a combined analysis of the observation by both
the ML algorithm and the reader. To achieve these goals, the
optimal integration of such artificial intelligence applications in
the clinical pathway should be defined.19 Rather than replacing
radiologists, our results highlight the possible value of using the
developed artificial intelligence (AI) algorithm as a triage tool or
as an add-on to the radiologist’s visual analysis, highlighting the
potential benefit from the radiologist–AI interaction in
improving focal liver lesions characterisation in patients at risk
for HCC. We believe that such an AI-enriched diagnostic pathway
may help standardise and improve the quality of analysis of liver
lesions in patients at high risk for HCC, especially in non-expert
centres in liver imaging. Because our algorithm provides a
probability of HCC for each analysed lesion, it may also
impact the clinical decision-making and guide the clinician in
identifying the lesions to be biopsied, for instance in patients
with multiple liver focal lesions.

The dataset split was performed according to developed
model. Indeed, our ML model is a logistic regression model with
only few physical features as input (<10 parameters). As the
JHEP Reports 2023
performance of traditional ML techniques grows according to a
power law and then reaches a plateau after a certain quantity of
input training samples, our model was trained on 82 represen-
tative patients using stratified sampling. With our data
augmentation technique used, the model was trained on 4,100
samples which was enough to fit the hyperplane of RN<10. This
splitting strategy allowed us to keep the large majority of the
data in the test set to reliably validate the model and to reduce
the 95% CIs, which in practice increases the generalisability of the
model.

Some limitations should be noted. First, this is a retrospective
study, which may cause selection bias. However, multiple centres
from different Western and Asian countries were involved,
which may reinforce the external validity of our results in
different populations. Second, only pathologically proven ob-
servations were included with a large majority of HCC, which
may have an impact on the evaluated diagnostic performance of
both the developed ML algorithm and the independent readers.
However, considering pathology-proven lesions is of paramount
importance when evaluating the diagnostic performance of a
new algorithm.

Further improvements of this work may include a better
characterisation of APHE and washout spatial distribution to
distinguish between rim and non-rim APHE, and between pe-
ripheral and non-peripheral washout, as they contain diagnostic
and prognostic information.20 The ability of the developed ML
algorithm to further improve readers performances has also to
be investigated. Last, as for all AI applications, the ML algorithm
is bound to be evolutive, to match potential evolutions of LI-
RADS criteria and also to potentially include MR data.

In conclusion, our study demonstrates that the proposed ML
algorithm can assess LI-RADS v2018 non-rim APHE, non-
peripheral washout, and enhancing capsule and categorise liver
observations at CT which could help radiologists to standardise
their reports according to the latest recommendations. Rather
than replacing radiologists, our results highlight the potential
benefit from the radiologist–AI interaction in improving focal
liver lesions characterisation in patients at risk for HCC by using
the developed ML algorithm as a triage tool or as an add-on to
the radiologist’s visual analysis. The proposed ML algorithm is a
step towards a more robust and automated analysis of focal liver
lesions in patients at risk of HCC through a wider use of the LI-
RADS algorithm even in non-expert centres. Our algorithm
may also impact the clinical decision and guide the clinician in
identifying the lesions to be biopsied.
Abbreviations
2D, two-dimensional; 3D, three-dimensional; AFP, alpha-foetoprotein;
APHE, arterial phase hyperenhancement; cHCC-CCA, combined hepato-
cellular-cholangiocarcinoma; CT, computed tomography; FNH, focal
nodular hyperplasia; HCC, hepatocellular carcinoma; iCCA, intrahepatic
cholangiocarcinoma; LI-RADS, Liver Imaging Reporting and Data System;
ML, machine learning; MRI, magnetic resonance imaging; NASH, non-
alcoholic steatohepatitis; ROIs, regions of interest.

Financial support
This work was supported by a national grant by Bpifrance with financial
support by GE Healthcare France. Authors acknowledge Medicen Pôle de
compétitivité Paris - Ile de France, domaine d’action stratégique imagerie
médicale and Bpifrance for their support in promoting the HECAM
project.

Conflicts of interest
Five authors (VM, RQ, LD, JHL and NC) are GE Healthcare France em-
ployees. The remaining authors, who are not employees of or consultants
for GE Healthcare, had control of inclusion of all data and information
that might present a conflict of interest for authors who are employees
for GE Healthcare.

Please refer to the accompanying ICMJE disclosure forms for further
details.
9vol. 5 j 100857



Research article
Authors’ contributions
Conceptualisation: SM, MR, JHL, NC, VV, AL. Data curation: SM, MR, MG,
RS, GC, ER, VM, RQ, LD. Formal analysis: MG, RS, GC, VM. Methodology:
SM, MR, JHL, NC, VV, AL. Writing – original draft: SM, MR. Writing – re-
view and editing: all authors.

Data availability statement
The data shown in this article are available from the corresponding au-
thors upon a reasonable request.

Supplementary data
Supplementary data to this article can be found online at https://doi.org/1
0.1016/j.jhepr.2023.100857.

References
Author names in bold designate shared co-first authorship

[1] Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al.
Diagnosis, staging, and management of hepatocellular carcinoma: 2018
practice guidance by the American Association for the Study of Liver
Diseases. Hepatology 2018;68:723–750.

[2] Tang A, Bashir MR, Corwin MT, Cruite I, Dietrich CF, Do RKG, et al. Evi-
dence supporting LI-RADS major features for CT- and MR imaging-based
diagnosis of hepatocellular carcinoma: a systematic review. Radiology
2018;286:29–48.

[3] Chernyak V, Flusberg M, Law A, Kobi M, Paroder V, Rozenblit AM. Liver
imaging reporting and data system: discordance between computed to-
mography and gadoxetate-enhanced magnetic resonance imaging for
detection of hepatocellular carcinoma major features. J Comput Assist
Tomogr 2018;42:155–161.

[4] Haimerl M, Wächtler M, Zeman F, Verloh N, Platzek I, Schreyer AG, et al.
Quantitative evaluation of enhancement patterns in focal solid liver le-
sions with Gd-EOB-DTPA-enhanced MRI. PLoS One 2014;9:e100315.

[5] Kang JH, Choi SH, Lee JS, Kin KW, Kim Sy, Lee SS, et al. Inter-reader reli-
ability of CT Liver Imaging Reporting and Data System according to im-
aging analysis methodology: a systematic review and meta-analysis. Eur
Radiol 2021;31:6856–6867.

[6] Rhee H, An C, Kim H-Y, Yoo JE, Park YN, Kim MJ. Hepatocellular carcinoma
with irregular rim-like arterial phase hyperenhancement: more aggres-
sive pathologic features. Liver Cancer 2019;8:24–40.

[7] Seo N, Kim M-J, Rhee H. Hepatic sarcomatoid carcinoma: magnetic
resonance imaging evaluation by using the liver imaging reporting and
data system. Eur Radiol 2019;29:3761–3771.

[8] Ehman EC, Behr SC, Umetsu SE, Fidelman N, Yeh BM, Ferrell LD, et al. Rate
of observation and inter-observer agreement for LI-RADS major features
JHEP Reports 2023
at CT and MRI in 184 pathology proven hepatocellular carcinomas. Abdom
Radiol (NY) 2016;41:963–969.

[9] Cannella R, Ronot M, Sartoris R, Cauchy F, Hobeika C, Beaufrere A, et al.
Enhancing capsule in hepatocellular carcinoma: intra-individual com-
parison between CT and MRI with extracellular contrast agent. Diagn
Interv Imaging 2021;102:735–742.

[10] Stocker D, Becker AS, Barth BK, Skawran S, Kaniewska M, Fischer MA, et al.
Does quantitative assessment of arterial phase hyperenhancement and
washout improve LI-RADS v2018-based classification of liver lesions? Eur
Radiol 2020;30:2922–2933.

[11] Liu YI, Shin LK, Jeffrey RB, Kamaya A. Quantitatively defining washout in
hepatocellular carcinoma. Am J Roentgenol 2013;200:84–89.

[12] Allaire M, Bruix J, Korenjak M, Manes S, Maravic Z, Reeves H, et al. What to
do about hepatocellular carcinoma: recommendations for health au-
thorities from the International Liver Cancer Association. JHEP Rep
2022;4:100578.

[13] Hamm CA, Wang CJ, Savic LJ, Ferrante M, Schobert I, Schlachter T, et al.
Deep learning for liver tumor diagnosis part I: development of a con-
volutional neural network classifier for multi-phasic MRI. Eur Radiol
2019;29:3338–3347.

[14] Nam D, Chapiro J, Paradis V, Seraphin TP, Kather JN. Artificial intelligence
in liver diseases: improving diagnostics, prognostics and response pre-
diction. JHEP Rep 2022;4:100443.

[15] Fronda M, Doriguzzi Breatta A, Gatti M, Calandri M, Maglia C,
Bergamasco L, et al. Quantitative assessment of HCC wash-out on CT is a
predictor of early complete response to TACE. Eur Radiol 2021;31:6578–
6588.

[16] Kloeckner R, Pinto Dos Santos D, Kreitner K-F, Leicher-Düber A,
Weinmann A, Mittler J, et al. Quantitative assessment of washout in he-
patocellular carcinoma using MRI. BMC Cancer 2016;16:758.

[17] Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, Bashir MR, et al.
Liver imaging reporting and data system (LI-RADS) version 2018: imaging
of hepatocellular carcinoma in at-risk patients. Radiology 2018;289:816–
830.

[18] Wang CJ, Hamm CA, Savic LJ, Ferrante M, Schobert I, Schalchter T, et al.
Deep learning for liver tumor diagnosis part II: convolutional neural
network interpretation using radiologic imaging features. Eur Radiol
2019;29:3348–3357.

[19] Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, Barfett J, et al.
Canadian Association of Radiologists white paper on artificial intelligence
in radiology. Can Assoc Radiol J 2018;69:120–135.

[20] Petukhova-Greenstein A, Zeevi T, Yang J, Chai N, DiDomenico P, Deng Y,
et al. MR imaging biomarkers for the prediction of outcome after radio-
frequency ablation of hepatocellular carcinoma: qualitative and quanti-
tative assessments of the liver imaging reporting and data system and
radiomic features. J Vasc Interv Radiol 2022;33:814–824.e3.
10vol. 5 j 100857

https://doi.org/10.1016/j.jhepr.2023.100857
https://doi.org/10.1016/j.jhepr.2023.100857
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref1
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref1
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref1
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref1
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref2
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref2
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref2
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref2
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref3
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref3
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref3
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref3
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref3
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref4
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref4
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref4
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref5
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref5
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref5
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref5
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref6
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref6
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref6
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref7
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref7
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref7
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref8
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref8
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref8
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref8
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref9
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref9
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref9
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref9
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref10
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref10
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref10
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref10
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref11
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref11
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref12
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref12
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref12
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref12
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref13
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref13
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref13
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref13
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref14
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref14
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref14
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref15
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref15
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref15
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref15
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref16
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref16
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref16
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref17
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref17
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref17
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref17
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref18
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref18
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref18
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref18
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref19
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref19
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref19
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref20
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref20
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref20
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref20
http://refhub.elsevier.com/S2589-5559(23)00188-X/sref20

	Automated CT LI-RADS v2018 scoring of liver observations using machine learning: A multivendor, multicentre retrospective study
	Introduction
	Patients and methods
	Study participants
	CT examination
	Readers visual assessment and ground truth definition
	Machine learning algorithm
	Statistical analysis

	Results
	Participant characteristics
	Ground truth
	Performance of ML algorithm compared with independent readers
	Place of the ML algorithm in the diagnostic pathway of hepatic observations
	Triage scenarios
	Add-on scenario

	Inter-reader agreement

	Discussion
	Financial support
	Conflicts of interest
	Authors’ contributions
	Data availability statement
	Supplementary data
	References


