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Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central
nervous system. The current treatment of Multiple sclerosis is based on anti-inflammatory
disease-modifying treatments, which can not regenerate myelin and eventually neurons.
So, we need new approaches for axonal protection and remyelination. Amniotic epithelial
stem cells amniotic epithelial cells, as a neuroprotective and neurogenic agent, are a proper
source in tissue engineering and regenerative medicine. Due to differentiation capability
and secretion of growth factors, AECs can be a candidate for the treatment of MS.
Moreover, sphingosine-1-phosphate (S1P) receptor modulators were recently approved
by FDA for MS. Ponesimod is an S1P receptor-1 modulator that acts selectively as an anti-
inflammatory agent and provides a suitable microenvironment for the function of the other
neuroprotective agents. In this study, due to the characteristics of AECs, they are
considered a treatment option in MS. The conditioned medium of AECs concurrently
with ponesimod was used to evaluate the viability of the oligodendrocyte cell line after
induction of cell death by cuprizone. Cell viability after treatment by conditioned medium
and ponesimod was increased compared to untreated groups. Also, the results showed
that combination therapy with CM and ponesimod had a synergistic anti-apoptotic effect
on oligodendrocyte cells. The combination treatment with CM and ponesimod reduced the
expression of caspase-3, caspase-8, Bax, and Annexin V proteins and increased the
relative BCL-2/Bax ratio, indicating inhibition of apoptosis as a possible mechanism of
action. Based on these promising results, combination therapy with amniotic stem cells
and ponesimode could be a proper alternative for multiple sclerosis treatment.
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INTRODUCTION

Multiple sclerosis (MS) is a neurodegenerative and inflammatory disease that affects both the central
nervous system (CNS) and the immune system (Esposito et al., 2018). MS is the second most
common cause of non-traumatic neurological disability among young adults (Vargas and Tyor,
2017). The hallmark of MS is immune-mediated demyelination and axonal degeneration which leads
to myelin sheath deficiency and subsequent neurological dysfunctions (Podbielska et al., 2013).
Today, the management of MS is based on disease-modifying therapeutics (DMTs) which decrease
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relapse and disability by reducing inflammation; but their long-
term benefits stay indeterminate. These drugs include interferons,
glatiramer acetate (GA), and monoclonal antibodies (mAb) such
as natalizumab. All of the DMTs are injections that reduce patient
compliance (Hauser and Oksenberg, 2006; Safaeinejad et al.,
2018). To overcome this problem, the first oral drug was
approved by the FDA in 2010. Sphingosine-1-phosphate (S1P
receptor modulators are the new therapeutic agents for MS that
are orally administered. The prototype of these drugs is
fingolimod that regulates five subtypes of S1P receptors
(Brossard et al., 2014). The results of clinical trials have shown
that fingolimod effectively reduces the number of relapses, new
plaques on MRI, and the progression of disability, and prevents
the reduction of brain volume. Unfortunately, this drug causes
cardiovascular complications due to its nonspecific effects on
sphingosine 1-phosphate (S1P) receptors (with an off-target
effect on S1P3). Another drug of this group is ponesimod
which acts more selective and specific (Chaudhry et al., 2017;
Chun et al., 2021). It targets the protein S1P1 and traps immune
cells in lymph nodes, which prevents them from doing damage to
the CNS. It has been shown that this drug can significantly reduce
plaque volume as well as myelin and axon destruction in the
brain, spinal cord, and cerebellum in the mouse model of MS
(You et al., 2013). Ponesimod can cross the blood-brain barrier
and attach to neurons, oligodendrocyte progenitor cells,
astrocytes, and microglia in the CNS by binding to its receptor
(D’Ambrosio et al., 2016).

Despite the palliative and preventive effects of these drugs,
there is no cure for MS and patients suffer a chronic and
progressive disability. Thus, effective regenerative treatment
with fewer side effects is needed. New therapies must have
three main characteristics containing an immunomodulatory
effect in the CNS to inhibit the activity of inflammatory cells
and their mediators, a neuroprotective role to prevent the
destruction of remaining healthy neurons, and finally,
neurogenesis capability to produce neural cells (especially
oligodendrocytes) to replace damaged cells with new and
functional cells (Zhornitsky et al., 2013).

From the regenerative point of view, stem cell therapy is a
promising approach to treat multiple sclerosis. The first attempts
to use stem cell therapy for MS have been done more than
15 years ago. It has been shown that myelin degradation has
decreased using stem cells in an animal model of MS (Rahim
et al., 2018). A variety of stem cells has been employed in MS-
related cell therapies. Their positive features such as
immunomodulatory and anti-inflammatory effects (El-
Akabawy and Rashed, 2015), neural differentiation (Joggerst
and Hatzopoulos 2009), and neuroprotective and neurotrophic
properties in animal models (Connick et al., 2012) make them a
suitable candidate for the regeneration of neural damage in MS
(Soleimani et al., 2016; Barati et al., 2020). Among the stem cells,
amniotic epithelial cells (AECs) are a promising source for cell
transplantation in the treatment of MS due to their specific
characteristics. Low immunogenicity, lack of ethical
considerations, extraction of a large number of cells from a
placenta, and secretion of growth factors are some
characteristics that have largely circumvented the challenges of

stem cells (Lavallard et al., 2018). These cells are pluripotent and
can differentiate into three embryonic cells: ectoderm (neuronal
and glial cells), mesoderm (heart cells), and endoderm (pancreas
and liver). They also have self-renewal property without being
tumorigenic. hAECs express immunomodulatory factors such as
IL-10, TGF-β, IDO, HGF, prostaglandin E2, and HLA-G. They
also do not express HLA-B (CLASS I) and HLA-DR (CLASS II),
which result in the reduced possibility of immunological
reactions and cell transplant rejection. Moreover, these cells
have anti-inflammatory and antimicrobial properties) AECs
express growth and angiogenic factors EGF, GRO, VEGF,
TIMP-1, PDGF, IGF-1, G-CSF, and GM-CSF. AECs release
several neurotrophic factors such as brain-derived
neurotrophic factor (BDNF), and neurotrophin (NT3)
(Niknejad et al., 2008; Miki et al., 2005; Zhang et al., 2015)
which play an important role in stimulating the growth and
direction of neural cells (Wang et al., 2013). Also, recent studies
revealed that hAECs release anti-apoptotic factors include GDF5/
9/11, TGF-β1/2/3, and BMP15 (Zhang et al., 2017). These
characteristics suggest AECs as an appropriate choice in cell
therapy of MS.

Because the pathogenesis of MS is complex, it is assumed that
combination therapy of hAECs conditioned medium (CM) and
ponesimod can be effective in the treatment of MS. This study
aimed to evaluate the effects of AECs derived CM and ponesimod
and their possible synergistic effects on the oligodendrocyte cell
viability after induction of apoptosis by a toxic cuprizone model
to investigate the direct influence of cuprizone on cell viability
in vitro. Moreover, the expression of caspase three and caspase 8,
Bax, and Annexin V (as apoptotic markers), and the expression of
BCL-2 were assessed following treatment of oligodendrocyte cells
with hAECs-CM and ponesimod. In this study, we used
cuprizone for induction of apoptosis in oligodendrocytes.
Cuprizone is a toxic agent which induces apoptosis in the
oligodendrocytes in vitro and in vivo. It is generally used as an
inducer of multiple sclerosis (Rodnichenko and Labunets, 2018).

MATERIALS AND METHODS

Isolation of AECs and Conditioned Medium
Collection
All experimental procedures were done following the guideline
for laboratory research after approval by the ethics committee of
Shahid Beheshti University of Medical Sciences.

The human placenta was received after elective cesarean
delivery from Erfan hospital. The informed consent was
received from the parents. Isolation of AECs was done as
described in our previous study (Biniazan et al., 2020). Briefly,
the amnion layer of the human placenta was mechanically peeled
off from the chorion, and incubated by the 0.15% trypsin-EDTA
at 37°C for 10 min. Then the supernatant was discarded to
exclude debris. AECs were isolated from the second and third
40-min digests. Then AECs suspended in DMED/F12 containing
100 U/ml penicillin/streptomycin solution and 10% heat-
inactivated FBS and cultured in T25 flasks at a density of
2×104 cells per cm2 for 5 days. After reaching confluency
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(80%), the culture medium was removed and the cells were
washed twice with phosphate-buffered saline and incubated
again with only 15 ml DMED (without serum and antibiotic).
After an additional 24 h, the replaced medium was separated
from the cells. The collected supernatant filtered through a 0.22-
μm filter to remove all the possible epithelial cells from the
medium.

Ponesimod Preparation
Ponesimod [(Z, Z)-5-[3-chloro-4-((2R)-2,3-dihydroxypropoxy)-
benzylidene]-2-propylimino-3-o-tolyl-thiazolidin-4-one]
(Adooq Bioscience, United States of America) was dissolved in
DMSO and then diluted to the suitable concentrations. Also,
different concentrations of ponesimod (0, 2.85, 5.7, 10, 100, and
1,000 nM) on untreated oligodendrocytes were investigated.

Cuprizone Treatment
The stock solution (1 ml) of the cuprizone was provided freshly.
For this purpose, cuprizone [bis(cyclohexanone)
oxaldihydrazone] powder (Sigma-Aldrich, United States) was
dissolved in 50% ethanol at 37°C under stirring 250 rpm for
20 min to obtain the concentration of 1 mM (8). Then this stock
was diluted to reach the concentrations 0, 25, 50, 75, 100, 125, and
150 μM of cuprizone. To check the toxicity of the vehicle, the
same concentrations of 50% ethanol (0, 25, 50, 75, 100, 125, and
150 μM) were used.

Cell Culture and Cytotoxicity Assay
The cytotoxic effect of cuprizone was evaluated using OLN-93, as
an oligodendroglial cell line (Pasteur Institute, Iran). These
cryopreserved cells were defrosted and resuspended in
Dulbecco’s modified Eagle’s medium (DMEM) (Gibco,
United Kingdom), 10% heat-inactivated fetal bovine serum
(Gibco, United Kingdom), and 100 U/ml penicillin-
streptomycin (Thermo Fisher, United States) and cultured in
flasks at 37°C and atmosphere of humidified air enhanced with
5% CO2. After reaching 75% confluence, the cells were detached
by 0.15% Trypsin/EDTA enzyme and seeded in the 24-well plates
with a density of 2.5 ×105 cells per cm2 for 24 h in 5% CO2 at 37°C
overnight. To evaluate the cytotoxic effect of each sample, the
OLN-93 cells were treated with different concentrations (0, 25,
50, 75, 100, 125, and 150 µM) of cuprizone for 24 and 48 h at
37 °C in 5% CO2. The cells treated with alone DMEM were
considered as control. The medium in the well without cells was
used as blank. As described above, the same concentration of
ethanol 50% was used as a vehicle group. The IC50 (half maximal
inhibitory concentration) of cuprizone was estimated in this step.
After the OLN-93 cell line was exposed to the IC50 concentration
of cuprizone for 24 h, they were treated with different
concentrations of CM of AECs (0, 2.5, 5, 10, 25, 50,
100,150 µl), ponesimod in 5.7 nM (EC50), or both of them.
Also, the concentration of CM to increase the proliferation of
OLN-93 by 50% was determined as half-maximum effective
concentration (EC50) of hAECs- CM.

Cell survival was examined using MTT assay (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)
(Sigma-Aldrich, United States of America), as we described

previously 22. In brief, for obtaining a stock solution, 5 mg of
MTT was dissolved in 1 ml PBS and filtered. 40 µl of MTT was
added into each well of a 24-well plate and plate incubated in 5%
CO2 at 37°C for 4 h. After that, MTT was discarded and after
adding 900 µl DMSO per well, the absorbance of dissolved
formazan was evaluated at 570 nm by spectrophotometer
(BioTek, United States). The viability rate was determined via
the following equation:

Viability Percentage � [abs]treatment − [abs]blank
[abs]control − [abs]blank × 100

Moreover, to determine the effect of CM on the proliferation of
untreated oligodendrocyte cell line, 2.5×104 OLN-93 cells were
cultured in the 24-well plates at 37°C with 5% CO2. Then,
oligodendrocyte cells (without pretreatment with cuprizone)
were incubated with different concentrations of CM (0, 2.5, 5,
10, 25, 50, 100, and 150 μls) for 7 days. Finally, the proliferation of
oligodendrocytes was examined by MTT assay.

Apoptosis Assay by Flow Cytometry
Flow cytometric assay of apoptosis was performed via the
Phosphatidyl Serine Detection kit (Annexin V FITC, IQ
products) according to the manufacturer’s protocol. The early
phase of apoptosis is detected by Annexin V positive cells, while
uptake of propidium iodide (PI) is an indicator of necrosis. Flow
cytometry was performed by a fluorescence-activated cell sorter
(BD FACS Calibur; BD biosciences, San Jose, CA, United States of
America), and data were analyzed by FlowJo software.

Western Blotting
After the treatment of the OLN-93 cells with CM and ponesimod
for 24 h, total proteins were extracted from the OLN-93 cell line
with lysis RIPA buffer (MgCl2 1.5 mM, HEPES 20 mM, EGTA
5 mM, EDTA 2 mM, dithiothreitol 0.1 mM,
phenylmethylsulfonyl fluoride 0.1 mM, pH 7.5) (Santa Cruz
Biotechnology) and spun down 12,000 rpm for 20 min. The
concentration of protein was measured by the Bradford assay
(detergent compatible Bradford assay kit, Thermo Scientific).
Then cell lysates were diluted in RIPA buffer (NaCl (1 M),
Sodium deoxycholate (0.5%), 1 mM sodium orthovanadate,
Nonidet P-40 (1%),1 mMNaf, protease Inhibitors tablet
(Roche), Tris (50 mM, pH 7.4), SDS (0.1%), ddH2O) to the
gel-loading concentration of proteins (2.5 μg/μl) and mixed
with equal volumes of sample buffer. The proteins of samples
were separated using the electrophoresis process on SDS-PAGE
gels. Then proteins were blotted on polyvinylidene fluoride
membranes (PVDF) for 3 h by a blotting apparatus. The
membrane was blocked with 5% BSA in Tris-buffered saline
for 25 min and then incubated at 4°C with primary antibodies
overnight: anti-Bax (1:1,000, cat.No #2772, Cell Signaling), anti-
BCL-2 (1:1,000, cat.No #2876, Cell Signaling), anti-Caspase-3 (1:
2,000, cat.No 235412, Merck Millipore), anti-Caspase-8 (1:1,000,
cat.No #9496, Cell Signaling) and anti-GAPDH (1:1,000, cat.No
#5174, Cell Signaling). The membranes were washed 3 times
(5 min each time) after the incubation with buffer containing
0.1% Tween-20 and incubated with the secondary horseradish
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peroxidase-conjugated (HRP) goat anti-rabbit IgG (1:1,000,
cat.No #7074s, Cell Signaling) for 2 h at room temperature.
The membranes were consequently washed and
immunoreactive bands were visualized using the
chemiluminescent substrate (ECL). The intensity of protein
bands was measured by digital densitometry ImageJ software
(National Institutes of Health, Bethesda, MD, United States). The
GADPH was used as an internal standard.

Statistical Analysis
All experiments were repeated at least triplicates and performed
independently four times to confirm reproducible results. Data
are presented as the mean ± SEM. The statistical analysis was
done by Graph Pad Prism software. The results of treated groups
were compared by analysis of variance (ANOVA) followed by
Tukey’s test. p-value <0.05 was considered a significant
difference.

RESULTS

Inhibitory Effects of Cuprizone on the
Viability of OLN-93 Cells
Cytotoxicity assay was performed to determine the in vitro
cytotoxicity of cuprizone. Different cuprizone concentrations
(0, 25, 50, 75, 100 µM) were evaluated in 24 and 48 h on the
OLN-93 cell line using MTT assay. The results revealed that
cuprizone decreases cell viability dose-dependently, but we
observed no differences between 24 and 48 h (Figure 1). The
vehicle was not toxic in any concentration. As shown in Figure 2,
the IC50 of cuprizone for OLN-93 cells was determined which was
49.89 µM.

The Effect of hAECs-CM and Ponesimod on OLN-93
Viability
After induction of cell death by cuprizone, the effect of AECs-CM
in different concentrations (0, 2.5, 5, 10, 25, 50, 100, and 150 μls)
was investigated on the OLN-93 cells for 24 h. The CM inhibited
in vitro cell death of OLN-93 in a dose-dependent manner
(Figure 3A). According to the results, EC50 of CM was
estimated after treating the oligodendrocyte cells with IC50 of
cuprizone, which was equal to 30.78 µl (Figure 3B). The vehicle
had no toxic effects on oligodendrocyte survival. To evaluate the
synergistic effects of the CM and ponesimode, the EC50 of CM
and Ponesimod (in a concentration of 5.7 nM (EC50)) were used
simultaneously. The combination treatment of the OLN-93 cells
with CM + Ponesimod increased the viability of the cells up to
91% (Figure 3C).

The Effect of Ponesimod on the Oligodendrocyte Cells
To investigate the effects of ponesimod on the OLN-93 cell line
survival, oligodendrocyte cells (without cuprizone treatment)
were treated with Ponesimod in different concentrations (0,
2,85, 5.7, 10, 100, 1,000 nM). The results showed that the
serial concentrations of ponesimod had no significant effects
on the viability of OLN-93 cells (Figure 4).

FIGURE 1 | Viability of OLN-93 cells treated with cuprizone at 0, 25, 50, 75, 100, 125, and 150 µM concentrations for 24 and 48 h. As shown in the graph,
cuprizone decreased the viability of oligodendrocyte cells in a concentration-dependent manner (*p < 0.05, and **p < 0.01).

FIGURE 2 | A diagram that shows the IC50 of cuprizone for induction of
cell death in the oligodendrocyte cell line after 24 h.
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The Effect of CM on the Proliferation of the Cells
To evaluate the effects of ACEs condition medium on the viability of
OLN-93 cell line, oligodendrocyte cells without any treatment are
exposed CM for 7 days. All concentrations increased proliferation and
the viability of the oligodendrocyte cells (Figures 5A–H). 150 µl of
CM increased OLN-93 cell viability up to 177% (Figure 5I).

Effect of hAECs-CM and Ponesimod on the
Expression of Annexin V
The main property of apoptosis is the incoherence of the plasma
membrane. During the early phase of apoptosis,
Phosphatidylserine (PS) proteins translocate from the inside to
the outside of the membrane that was detected by Annexin V, in
the presence of Ca2+ ions. To diagnose apoptotic from necrotic
procedures, propidium iodide (PI) was used that specified cell
necrosis. The results demonstrated that cuprizone significantly

increased the number of apoptotic cells (29.9%) whilst treatment
of oligodendrocytes with CM and ponesimod reduced the
apoptosis process as showed in Figure 6.

Effect of hAECs-CM and Ponesimod on the
Expression of Caspase-3, Caspase-8,
BCL2, and Bax
To further explore the induction of apoptosis as a mechanism of
action of cuprizone on OLN-93 cells, the expressions of apoptotic
markers were evaluated by Western blot analysis. OLN-93 cell line
incubated with cuprizone for 24 h. Then, CM and ponesimod were
added to the cells about 24 h, andfinally, the expression of Bax, BCL-2,
Caspase3, Caspase8, and GAPDH (as an internal standard) were
measured. Results revealed that the apoptotic proteins such as
Caspase3, and Caspase8 in the cuprizone group were significantly
increased while CM and Ponesimod reduced these factors (Figure 7).

FIGURE 3 | (A) Inhibition of oligodendrocyte cell death by hAECs-CM after 24 h (*p < 0.05, ****p < 0.0001). (B) a diagram that shows the EC50 of AECs-CM for cell
viability in the Oligodendrocyte cell line after exposure with cuprizone for 24 h. (C) Investigation of CM and ponesimod (at concentration of EC50 (5.7 nM)) on
oligodendrocytes survival (*p < 0.05, **p < 0.01, ***p < 0.001).

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6910995

Safaeinejad et al. Anti-Apoptosis Effects of hAECs and Ponesimod

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


The assessment of pro-apoptotic protein Bax and anti-
apoptotic protein BCL-2 revealed that cuprizone causes a
reduction in BCL-2 expression, but up-regulated the
expression of Bax. AECs-CM and ponesimod meaningfully
increased BCL-2 expression and reduced Bax expression.
Moreover, treatment with AECs-CM and ponesimod increased
significantly the relative BCL-2/Bax ratio in comparison to the
control group (Figure 7).

DISCUSSION

In this study, we evaluated the effect of hAECs-CM and
ponesimod, an S1P1 receptor regulator, on oligodendroglial
cell line viability after induction of cell death by cuprizone.

While it is not truly understood how cuprizone is toxic to
oligodendrocytes, it has been hypothesized that it may be
related to disruption of energy metabolism in oligodendrocytes
via their mitochondria which leads to apoptosis (Yamate-Morgan
et al., 2019). Cuprizone is a copper-chelating substance that
induces changes in the activity of the copper-containing
mitochondrial enzymes such as the Cu/Zn superoxide
dismutase and cytochrome c oxidase (Acs et al., 2013;
Rodnichenko and Labunets, 2018). Cuprizone reduces
activities of both Complex IV and SOD that are located in
mitochondria. Thus, the number of free radicals of reactive
oxygen species (ROS) increases in the cells, which leads to the
opening of mitochondria pores via cytochrome C that activate
cytoplasmic proteolytic proteins (caspases) released from
mitochondria (Redza-Dutordoir and Averill-Bates, 2016). The
released proteins play a notable role in the development of
apoptosis. Our result revealed that cuprizone induced
apoptosis in oligodendrocyte cells via increasing Bax, capase3,
and 8. This result was consistent with the study of Be´nardais
et al. which showed that cuprizone causes oligodendrocyte cell
death through induction of apoptosis (Bénardais et al., 2013).

To evaluate the effect of condition medium on cuprizone-
induced death of oligodendrocyte cell line, different
concentrations of CM were assayed. The results of the MTT
assay showed that treatment of cultured OLN- 93 with hAECs-
CM, inhibited dose-dependently cell death. Studies displayed that
hAEC-conditioned media include many soluble factors with a
variety of important biological effects (Uchida et al., 2000).
hAECs secret some growth factors like basic fibroblastic growth
factor (bFGF) and epithelial growth factor (EGF) which have a
critical role in the survival of neural cells (Zhang et al., 2017).
Moreover, they produce and release several neurotrophic factors,
such as brain-derived neurotrophic factor (BDNF), neurotrophin-3
(NT-3), and nerve growth factor (NGF). BDNF is a neuroprotective
factor that increases axon protection in autoimmune demyelination
(Uchida et al., 2000; Yang et al., 2013). NGF and BDNF have a

FIGURE 4 | After treatment of the oligodendrocyte cell line with the
ponesimod, cell survival was equal with control in all concentrations.

FIGURE 5 | A microscopic image of OLN-93 groups treated with different concentrations of CM (A): Control, (B):2.5 µl, (C):5 μl, (D):10 μl, (E):25 μl, (F):50 μl, (G):
100 μl, and (H):150 µl. (I) After treatment of oligodendrocytes with the CM for 7 days, cell survival was increased in all evaluated concentrations (**p < 0.01, ***p < 0.001
and ****p < 0.0001).
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remarkable effect on neuronal survival. It has been shown that these
growth factors act directly on neurons and prevent apoptosis. NGF
and BDNF bind to their receptor TrkB and activate two signaling
pathways containing the phosphatidylinositol 3-kinase (PI3K)/Akt,
which leads to the deactivation of proapoptotic targets, and the
extracellular signal-regulated kinase (ERK), which results in

inducing transcription of different neuronal survival-related genes
(Jain et al., 2013).

Moreover, the ponesimod was tested on the OLN-93 cells
death. The data illustrated that ponesimod increased the survival
of oligodendrocyte cells. It has been shown that the S1PR
modulator administration enhances survival signaling by

FIGURE 6 | Flow cytometry analysis of annexin-V surface Annexin V to determine apoptotic cells (A): control, (B): cuprizone, (C): CM, (D): ponesimod, (E): CM +
ponesimod where Q1: PI+/Annexin V− indicates necroptosis; Q2: PI+/Annexin V+ shows late apoptosis and Q3: PI−/Annexin V+ indicates early apoptosis, Q4: live cells.
(F): The Flow cytometry analysis graph that shows the percentages of live cells, early apoptosis, late apoptosis, and necroptosis.

FIGURE 7 | (A) The representative Western blot analysis of the expression of caspase3, caspase 8, BCL-2, and Bax in OLN-93 cells after treatment with CM
(30.78 µl), Ponesimod (5.7 nM), and CM + Ponesimod. GAPDH was used as an internal reference (B) Bax/GAPDH expression (C) BCL-2/GAPDH expression (D) A
histogram that shows the relative BCL-2/Bax ratio. (E, F) Detection of expressions of Caspases three and eight oligodendrocyte cell line after treatment with CM,
Ponesimod, and CM + Ponesimod. GAPDH was used as standard housekeeping marker (*p < 0.05, **p < 0.01 and ****p < 0.0001).
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increasing BCL2, Sphingosine kinase 1(SphK1), Sphingosine
kinase 2(SphK2), and ceramide kinase (CerK) gene expression
in neural cells (Angelopoulou and Piperi, 2019). Moreover, S1PR
regulators have been reported to increase BDNF levels in cortical
neuron cells through the interaction of BDNF with its receptor
tropomyosin-related kinase B (TrKB) and then the activation of
Erk1/2 signaling (Fukumoto et al., 2014).

Then, we evaluated the effect of AECs-CM concurrent with
Ponesimod and observed they can synergistically promote cell
viability. Also, flow cytometry data indicate that hAEC-CM and
ponesimod reduced cuprizone-induced apoptosis in
oligodendrocytes. In addition, our Western blotting revealed that
both treatments hAEC-CM and ponesimod increased the expression
of an anti-apoptotic marker of BCL-2 and reduced apoptotic factors
including caspase3, caspase8, and Bax. Apoptosis or programmed cell
death consists of two pathways: the extrinsic and intrinsic pathways.
The intrinsic or mitochondrial pathway happens through the
translocation of Bax to the mitochondria, the release of
cytochrome c from mitochondria, and protein movement via the
mitochondrial membrane which then results in caspases cascade
activation including caspase-8 and caspases-3 (Jiao et al., 2012). As
shown in the results, the expression of BCL-2 was up-regulated in the
OLN-93 cells after treatment with the CM and ponesimod, while the
expression of Bax was down-regulated which was led to an increase in
the relative BCL-2/Bax ratio. It seems that inhibition of anti-apoptotic
protein BCL-2 can be in part a mechanism for cell viability and anti-
apoptosis activity of CM and ponesimod. Consistent with our data, in
a mouse model of perinatal brain injury, hAEC- CM was effective at
reducing injury severity by decreasing the percentage of neural
apoptosis (Leaw et al., 2017). Meng et al. and Sankar et al. showed
that hAECs can promote the survival of neurons and alter the
microenvironment for neural repair (Qiu et al., 2020). Also, the
hAEC-CM was found to have neurotrophic effects in a spinal cord
injury (Nguyen et al., 2010; Jayapal et al., 2014).

The Western blotting results also demonstrated that ponesimod
similar to AECs condition medium increased the expression of anti-
apoptotic markers and reduced apoptotic factors caspase3, caspase8,
and Bax. Simultaneous administration of hAECs-CM and Ponesimod
was an increased anti-apoptotic marker and reduced remarkably
apoptotic molecules. Inhibition of apoptosis by ponesimod can be
through its main mechanism which is the regulation of sphingosine
receptors. Pro-apoptotic sphingosine and ceramide are factors that are
balanced with the anti-apoptotic S1P. Sphingosine and ceramide
down-regulate the PI3K-Akt pathway in the neural cells which
leads to dephosphorylation of Bad and activation of apoptotic
pathways at the mitochondria. Also, over-expression of active-Akt

neutralizes the apoptotic activity of sphingosine and ceramide
(Woodcock, 2006). Also, S1P negatively mediates apoptosis by up-
regulating the expression of anti-apoptotic proteins such as BCL-2,
and down-regulating the pro-apoptotic protein BAX (Liu et al., 2013).

CONCLUSION

We demonstrated here the increasing effects of hAECs-CM and
Ponesimod on the viability of the Oligodendrocyte cell line after
induction of death by cuprizone in an in vitro MS-like model.
Data showed that hAEC-CM and Ponesimod act synergistically
via inhibition of oligodendrocytes apoptosis. The results suggest
that hAECs concurrent with Ponesimod have the potential for use
as therapy for MS.
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