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Abstract: Macrophages in the atheroma region produce matrix metalloproteinases (MMPs) and
decrease plaque stability. Tissue oxygen tension decreases in the arterial wall of the atherosclerotic
region. Hypoxia inducible factor (HIF)-1α plays a critical role in the transcriptional activation of
hypoxia inducible genes. However, the precise roles of HIF-1α independent pathways in hypoxic
responses are largely unknown. Xanthine oxidase (XO) is an enzyme that utilizes molecular
oxygen and produces reactive oxygen species (ROS). Here, we show that ROS derived from XO
increases MMP-3, -10, and -13 expression in murine macrophages. We found that the transcript
levels of macrophage MMP-3, -10, and -13 were increased in hypoxic conditions. Hypoxia induced
MMP expression in HIF-1α deficient macrophages. N-acetylcysteine (NAC) or febuxostat, an XO
inhibitor, suppressed MMP expression in murine macrophages. Febuxostat decreased the incidence
of plaque rupture in apolipoprotein-E-deficient mice. Our results indicate that febuxostat stabilized
atherosclerotic plaque via suppressing the activities of macrophage MMP-9 and -13. Febuxostat
administration is a potential therapeutic option in the management of atherosclerotic patients.

Keywords: hypoxia; macrophage; matrix metalloproteinase; atherosclerotic plaque rupture; oxidative
stress; xanthine oxidase

1. Introduction

The incidence rate of cardiovascular events, including ischemic heart diseases and stroke,
is increasing annually worldwide. Thrombosis caused by atherosclerotic plaque rupture leads to acute
myocardial infarction, unstable angina, and sudden death from ischemic heart disease, known as acute
coronary syndrome [1–3]. Therefore, it is important to understand the mechanisms of atherosclerotic
plaque vulnerability and rupture to prevent acute coronary syndrome. The features of plaque
vulnerability include a large necrotic core, high infiltration of inflammatory macrophages, and a
thin fibrous cap composed of a small number of collagen fibers. Macrophages are immune cells
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abundant in atherosclerotic lesions, and they play pivotal roles in the initiation and progression of
atherosclerosis. Plaque macrophages express matrix metalloproteinases (MMPs) and weaken the
fibrous cap of plaque by degrading extracellular matrix molecules [4,5]. Plaques with a weakened
fibrous cap may rupture and cause thrombosis.

Hypoxic environments in plaque lesions have been shown to accelerate atherosclerosis
progression [6,7]. The arterial wall of an atherosclerotic plaque is thickened as atherosclerosis progresses;
therefore, the diffusion efficiency of oxygen is reduced [8]. In parallel, the oxygen consumption within
atherosclerotic plaque lesions is increased by the metabolic activation of infiltrated immune cells,
leading to hypoxia [9,10]. It has been suggested that hypoxia activates the expression and secretion
of MMPs in atherosclerotic lesions and contributes to plaque instability by degrading extracellular
matrix proteins [7,11]. Hypoxia has been shown to produce reactive oxygen species (ROS) [12–15],
leading to the development of atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart
failure. Hypoxia inducible factor (HIF)-1α plays an integral role during the transcriptional response
to hypoxia [16]. We and others have previously shown that HIF signaling significantly modulates
macrophage functions, including cytokine production and migratory capacity [17–19]. Xanthine
oxidase (XO) is an oxygen-consuming enzyme that oxidizes hypoxanthine or xanthine and produces
ROS. While local oxygen tension could affect XO activity and ROS production, the roles of XO in
macrophage function are not yet fully elucidated.

In this study, we tested the roles of XO in macrophage activation using an XO inhibitor, febuxostat.
Febuxostat suppressed hypoxic induction of MMP-3, -10, and -13 in murine macrophages. Furthermore,
febuxostat reduced the incidence of atherosclerotic plaque rupture in apolipoprotein-E-(apoE) deficient
mice. These results demonstrate that febuxostat administration is a potential therapeutic option in the
management of atheromatous patients as it suppresses macrophage MMP activities.

2. Results

2.1. Hypoxic Stimulation-Induced mRNA Expression of MMP-3, -10, and -13 in Thioglycollate-Elicited
Peritoneal Macrophages (TEPMs) in a HIF-1α-Independent Manner

Macrophages in atherosclerotic plaque are exposed to hypoxic conditions [20]. Therefore,
to examine the expression level of various MMP mRNAs under hypoxic conditions (1% oxygen
concentration), primary TEPMs were isolated from mice. It was found that mRNAs of MMP-3,
-10, and -13 were significantly increased under hypoxia (Figure 1), whereas the expression of other
MMPs was unaffected (Figure 1 and data not shown). HIF-1α is the central regulator of the cellular
response to hypoxia. Thus, to examine whether HIF-1α was involved in hypoxia-induced elevation of
these MMP gene expressions, primary TEPMs were isolated from hematopoietic/endothelial-specific
HIF-1α knockout mice (HIF-1αflox/flox; Tie2-cre+/− mice; HIF-1α KO) or cre-negative littermate controls.
Pgk1 mRNA, well-known as a HIF-1α target gene, was significantly reduced in HIF-1α KO TEPMs
(Figure 2a). However, MMP-3, -10, and -13 mRNAs were induced under hypoxic conditions in HIF-1α
KO TEPMs, as in wild-type TEPMs (Figure 2a,b). These results showed that hypoxia increased MMP-3,
-10, and -13 mRNAs in a HIF-1α-independent manner.
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Figure 1. MMP-3, -10, and -13 mRNAs in TEPMs are induced by hypoxia. TEPMs were exposed to 
hypoxia (1% O2), and the relative expression level of MMPs mRNAs was analyzed. Data are the means 
and SE of at least three independent experiments. The one-way ANOVA and Tukey’s multiple 
comparisons test were performed for the statistical analysis. * p < 0.05. 

Figure 1. MMP-3, -10, and -13 mRNAs in TEPMs are induced by hypoxia. TEPMs were exposed
to hypoxia (1% O2), and the relative expression level of MMPs mRNAs was analyzed. Data are the
means and SE of at least three independent experiments. The one-way ANOVA and Tukey’s multiple
comparisons test were performed for the statistical analysis. * p < 0.05.
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Figure 2. Hypoxic induction of MMP-3, -10, and -13 mRNAs is independent of HIF-1α activity. (a) 
TEPMs were isolated from hematopoietic/endothelial-specific HIF-1α knockout mice (Cre (+)) or cre-
negative littermates (Cre (-)) as a control. TEPMs were exposed to hypoxia (1% O2), and the relative 
expression levels of MMP-3, -10, and -13 mRNAs were analyzed. Quantitative PCR analysis was 
repeated in at least three independent experiments. The two-way ANOVA and Tukey’s multiple 
comparisons test were performed for the statistical analysis. * p < 0.05. (b) The deletion efficiency of 
HIF-1α mRNA in TEPMs was examined. Data are the means and SE of at least three independent 
experiments. The unpaired t-test was performed for the statistical analysis. * p < 0.05. 

2.2. The Induction of MMP-3 and -10 mRNAs by Hypoxia Was Dependent on ROS Generated through XO 
Activity 

Cells cultured under hypoxic conditions have elevated intracellular ROS [12,21]. We 
hypothesized that such elevated ROS in TEPMs might be responsible for the increased expression of 
MMP-3, -10, and -13 mRNAs. To test this, we asked whether the ROS scavenger N-acetyl-L-cysteine 
(NAC) could attenuate the expression of these MMPs under hypoxic conditions. The treatment with 
NAC significantly suppressed hypoxic elevation of MMP-3, -10, and -13 mRNAs (Figure 3a). It is 
well-known that intracellular ROS is mainly derived from mitochondria, NADPH oxidase, and 

Figure 2. Hypoxic induction of MMP-3, -10, and -13 mRNAs is independent of HIF-1α activity.
(a) TEPMs were isolated from hematopoietic/endothelial-specific HIF-1α knockout mice (Cre (+)) or
cre-negative littermates (Cre (-)) as a control. TEPMs were exposed to hypoxia (1% O2), and the
relative expression levels of MMP-3, -10, and -13 mRNAs were analyzed. Quantitative PCR analysis
was repeated in at least three independent experiments. The two-way ANOVA and Tukey’s multiple
comparisons test were performed for the statistical analysis. * p < 0.05. (b) The deletion efficiency of
HIF-1α mRNA in TEPMs was examined. Data are the means and SE of at least three independent
experiments. The unpaired t-test was performed for the statistical analysis. * p < 0.05.

2.2. The Induction of MMP-3 and -10 mRNAs by Hypoxia Was Dependent on ROS Generated through
XO Activity

Cells cultured under hypoxic conditions have elevated intracellular ROS [12,21]. We hypothesized
that such elevated ROS in TEPMs might be responsible for the increased expression of MMP-3,
-10, and -13 mRNAs. To test this, we asked whether the ROS scavenger N-acetyl-l-cysteine (NAC)
could attenuate the expression of these MMPs under hypoxic conditions. The treatment with NAC
significantly suppressed hypoxic elevation of MMP-3, -10, and -13 mRNAs (Figure 3a). It is well-known
that intracellular ROS is mainly derived from mitochondria, NADPH oxidase, and xanthine oxidase
(XO) [22,23]. To identify which ROS sources were involved in the up-regulation of MMP-3, -10, and -13
mRNAs under hypoxic conditions, selective inhibitions of mitochondrial ROS with Mito-TEMPO,
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NADPH oxidase with VAS2870, and XO with febuxostat were performed. While MMP-13 was
not suppressed by any inhibitors, hypoxic induction of MMP-3 and -10 mRNAs was significantly
suppressed by febuxostat, but not Mito-TEMPO and VAS2870 (Figure 3b–d). Moreover, ROS signaling
by XO under hypoxia did not affect the accumulation and transcriptional activity of HIF-1α protein
(Supplementary Figure S1a–c). These findings suggest that ROS derived from XO contributes to the
hypoxia-induced elevation of MMP-3 and -10 mRNAs in TEPMs independent of HIF-1α signaling.
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Figure 3. Hypoxia induces MMP-3 and MMP-10 mRNAs in TEPMs through reactive oxygen species
(ROS) derived from xanthine oxidase (XO). TEPMs were exposed to hypoxia (1% O2) after pretreatment
with dimethyl sulfoxide (DMSO) (control), (a) 10 mM N-Acetyl-l-cysteine (NAC) (anti-oxidant),
(b) 50 µM Mito-TEMPO, (c) 2 µM VAS2870, or (d) 50 µM febuxostat for 1 h. Data are the means and SE
of at least three independent experiments. The two-way ANOVA and Tukey’s multiple comparisons
test were performed for the statistical analysis. * p < 0.05.
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2.3. Hypoxia Activates MMPs via ROS Derived from XO

It was previously reported that MMP-3 and -10, also known as stromelysin-1 and 2, digest several
extracellular matrix proteins but not interstitial collagen. Furthermore, these MMPs participate in
proMMP activation for tissue remodeling. Stromelysin-1 (MMP-3) activates gelatinase B (MMP-9) in
vascular smooth muscle cells (VSMCs), and contributes to neointima formation [24]. On the other
hand, Stromelysin-2 (MMP-10) is expressed in macrophages. MMP-10-deficient macrophages reduce
collagenolytic activity, particularly MMP-13 [25]. Therefore, to examine the hypothesis that febuxostat
attenuates collagenolytic and gelatinolytic activity in macrophages, we measured MMP activity in
culture media of macrophages by in-gel zymography [9,26]. The zymographic analysis showed
that febuxostat significantly suppressed collagenolytic and gelatinolytic activity in macrophages
(Figure 4a,b). These results suggest that inhibition of XO signaling attenuated the activity of collagenase
and gelatinase in TEPMs.
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in-gel zymography. (a) The activities of MMP-9 was assayed by gelatin zymography. (b) The activities 

Figure 4. Inhibition of ROS production by XO attenuates gelatinolytic and collagenolytic activity in
TEPMs. TEPMs were cultured under normoxic (21% O2) and hypoxic (1% O2) conditions in the presence
of DMSO (control) or 50 µM febuxostat. MMP activity in the supernatants was assayed by in-gel
zymography. (a) The activities of MMP-9 was assayed by gelatin zymography. (b) The activities of
MMP-9 and 13 were assayed by collagen zymography. The quantification of MMP activity was performed
using a densitometry analytic tool (Supplementary Figure S2). Data are expressed as the means ± SD
of three independent experiments. The two-way ANOVA and Tukey’s multiple comparisons test were
performed for the statistical analysis. * p < 0.05.
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2.4. XO Inhibitor Suppresses the Rupture of Atherosclerotic Plaques in Mice

MMP production from macrophages contributes to atherosclerotic plaque instability and
rupture [4]. It was examined whether XO signaling contributed to the vulnerability of atherosclerotic
plaques using an atherosclerotic plaque rupture mouse model generated by the ligation and cuff

placement method (Figure 5a) [27]. Atherosclerotic lesions were formed (Figure 5b) as follows:
15 mg/L febuxostat was continuously administered to these mice via their drinking water for 32 days.
The mice were then euthanized to perform histological analyses. As shown in Figure 5c, the average
number of plaque rupture lesions was significantly decreased in mice that drank the water containing
febuxostat. These findings suggest that XO activity contributed to the instability of atherosclerotic
plaques through MMP.
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Figure 5. Febuxostat treatment reduces rupture events of the common carotid artery. (a) Schematic
diagram of the operation for the atherosclerotic plaque rupture model. After the carotid artery ligation,
mice were divided into the experimental and the control groups, and then fed a high-cholesterol
diet. The experimental group was given drinking water containing 0.015 mg/mL of febuxostat.
(b) Representative images of pathological alterations in the plaque rupture mouse model. Masson’s
trichrome staining were performed using sections of the common carotid artery from Apoe−/−male mice
fed a high-cholesterol diet for 4 weeks after ligation. Representative photographs show non-ruptured
and ruptured vessels. The black bar indicates 100 µm. (c) The number of plaque ruptures was
quantitatively analyzed by counting the number of internal elastic lamina breaks (arrowhead) in the
Fbuxostat group (n = 15) and the Control group (n = 15). The Mann-Whitney U test was used to
compare differences between the control group and Febuxostat group. * p < 0.05.
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3. Discussion

It is well understood that inflammatory macrophages contribute to atherosclerotic plaques’
formation and vulnerability [28]. The microenvironment in atherosclerotic plaques contains various
oxidized lipids and cytokines. Macrophages are exposed to these stimuli, resulting in the inflammatory
phenotype. These inflammatory macrophages express and secrete pro-inflammatory cytokines
and MMPs. Macrophages in atherosclerotic lesions have strong proteolytic activity and cause
the vulnerability and rupture of plaques. At the same time, it has also been reported that the
macrophage-rich region in human carotid atherosclerotic lesions is a hypoxic environment [20].
Therefore, macrophages within atherosclerotic plaques are exposed to not only inflammatory but also
hypoxic environments. However, little is known about whether hypoxic stress on macrophages affects
atherosclerotic plaque progression.

The present study reveals that hypoxic stress to macrophages induces the expression of MMP-3,
-10, and -13 mRNAs, and activates gelatinolytic and collagenolytic activity. It was previously
reported that MMP-3, -10, and -13 were involved in the development of atherosclerotic lesions and
plaque progression [29–32]. MMP-3 was one of the first MMPs identified in atherosclerotic plaques,
and it is expressed in macrophages, as well as lymphocytes and activated VSMCs [5]. The MMP-3
knockout mice showed a reduction in intimal growth caused by the ligation of carotid arteries.
MMP-10 expression in the atherosclerotic lesion is mainly localized in macrophage-like cells, and it
is necessary for collagenolytic activity. MMP-10/Apoe double knockout (DKO)mice show decreased
atherosclerotic lesion size and plaque calcification. MMP-13 mRNA was abundantly expressed in
macrophages. MMP-13/Apoe DKO mice showed the accumulation of collagen in the plaque and
resulted in plaque stabilization. These previous reports and the present study suggest that hypoxic
signaling in macrophages causes instability and rupture of atherosclerotic plaques by expressing
MMP-3, -10, and -13.

Intriguingly, the hypoxic induction of MMP-3 and -10 mRNAs was dependent on ROS generated
by XO, but not HIF-1α, which is known as the central regulator of the hypoxic response. Previous
studies have reported that hypoxia activates p38/SAPK2, JNK/SAPK, and Akt/PKB signaling [33–35].
In addition, it has been reported that ROS also activates p38, JNK, and Akt kinases [36,37]. Actually,
we confirmed that inhibitors of p38 and JNK suppress the hypoxic induction of MMP-3, -10, and -13
mRNAs (data not shown). Therefore, we consider that ROS production under the hypoxic condition
induces MMP-3, -10, and -13 mRNAs via the activation of these kinases.

At the same time, it is known that ROS interacts with the Cys thiol within the catalytic domain of
MMPs, which disrupts the interaction with the catalytic Zn2+ ion and leads to autocatalytic activation.
Previous studies report that ROS activates various proMMPs, including MMP-1, MMP-2, MMP-7,
MMP-8, and MMP-9 [38–43]. Therefore, there is a possibility that our in-gel zymographic analysis
shows the activation of gelatinase and collagenase by not only MMP-3 and -10 but also ROS as the
direct effect. Further investigations are needed to elucidate the detailed mechanisms of the hypoxic
induction and activation of these MMPs.

Moreover, febuxostat significantly inhibited the production of MMP-9 and the activation of
MMP-13 even under normoxic conditions. Previous studies reported that ROS activates MMP
secretion [44,45]. In general, the mitochondria respiratory chain (MRC) consumes most oxygen in cells,
and 2~4% of total oxygen consumption goes toward the generation of ROS instead of ATP synthesis [46].
Therefore, mitochondria constitutively produce ROS. A recent study has reported that inhibition of
xanthine oxide reductase (XDH/XO) by febuxostat causes the increment of intracellular ATP by purine
salvage pathway and reduces the production of ROS from MRC under normoxic conditions [47].
Thus, febuxostat may affect the production and activation of MMPs by reducing ROS derived from MRC
under normoxic conditions. However, future studies are required to uncover the precise mechanism of
inhibitory effects of febuxostat on MMP expression without transcriptional regulations.

Using the atherosclerotic plaque rupture mouse model, this study demonstrated that febuxostat
administration significantly reduced the number of plaque ruptures. Febuxostat also attenuated
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collagenolytic (MMP-13) and gelatinolytic activity (MMP-9) in the culture media of macrophages.
These results may indicate that the hypoxic environment accelerates atherosclerotic plaque vulnerability
and rupture by activating MMPs via XO. Previous clinical trials reported that the administration
of allopurinol, a purine inhibitor of XO, was associated with a lower rate of stroke and cardiac
events [48,49]. Febuxostat, a nonpurine inhibitor of XO, as well as allopurinol, is used for the
management of hyperuricemia in patients with gout [50]. In addition to these beneficial effects,
this study suggests that the administration of an XO inhibitor could be useful for suppressing
atherosclerotic plaque instability and rupture in patients.

4. Materials and Methods

4.1. Cell Culture

TEPMs were prepared from 7-week-old C57BL6/J mice by the intraperitoneal injection of 3%
thioglycollate media (Fluka, Sigma-Aldrich, St Louis, MO, USA). On day 4, TEPMs were collected
by peritoneal lavage with 10 mL of PBS(−) and isolated using the adherent method. TEPMs were
seeded onto φ6-cm dishes at 4× 106/dish and grown in RPMI1640 (WAKO, Osaka, Japan) containing
10% fetal bovine serum (Sigma-Aldrich, St Louis, MO, USA) at 37 ◦C in 5% CO2. TEPMs were treated
by the following inhibitors at the indicated concentrations in each experiment: N-acetyl-l-cysteine
(NAC) (10 mM), Mito-TEMPO (50 µM), VAS2870 (2 µM), and febuxostat (50 µM). In all experiments,
TEPMs were pretreated with these inhibitors for 1 h before stimulation by hypoxia. NAC, Mito-TEMPO,
and VAS2870 were purchased from Sigma-Aldrich (St Louis, MO, USA). Febuxostat was provided by
Teijin Pharma Ltd., Tokyo, Japan.

4.2. Hypoxia Treatment

Cells were placed in a personal CO2 multi-gas incubator (Model APM-30D, ASTEC, Fukuoka,
Japan) calibrated to maintain a hypoxic atmosphere (1% O2, 5% CO2, and 94% N2) under a continuous
flow of nitrogen. A standard tissue culture incubator was used for a normoxic environment (21% O2,
5% CO2).

4.3. Mouse Models of Atherosclerotic Plaque Rupture

All animal experiments were approved by the Institutional Animal Care Committee of Nagasaki
University (approval number: 1701251356). B6.129P2-Apoetm1Unc/J (ApoE−/−) mice were kindly
provided by Dr. J. Aruga (Nagasaki University, Nagasaki, Japan). To generate mouse models of
atherosclerotic plaque rupture, 9-week-old male ApoE−/− mice were fed a standard diet. The left
common carotid artery of these mice was dissected and ligated proximal to the bifurcation under
anesthesia. After the ligation, the mice were randomly divided into two groups, including the
experimental group (febuxostat) and the normal control group (Control), and fed a high-cholesterol
diet (Oriental Yeast, Tokyo, Japan). The experimental group was given drinking water containing
0.015 mg/mL of febuxostat after the ligation. At 4 weeks after the ligation of the left common
carotid artery, a polyethylene cuff (length 2 mm) was placed around the left common carotid artery
tightly adjacent to the site of ligation. At 4 days after cuff placement, mice were anesthetized and
injected intraperitoneally with heparin. Lesions were then obtained after perfusion from the left
ventricle using a normal saline solution. The vessels after cuff removal were isolated and fixed in 10%
formalin overnight.

4.4. Histological and Immunohistochemical Staining

For staining, vessels were fixed in 4% formaldehyde and embedded in paraffin. Specimens were
serially sectioned at 5 µm intervals and mounted on three consecutive slides with 60-µm intervals on
glass slides. Two slides were individually stained with hematoxylin and eosin (H&E) and Masson’s
trichrome stains. Five serial, identically stained slides were selected from the middle part of the cuff
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placement site of each vessel to count the number of internal elastic lamina breaks. The number of
ruptures was taken as the average of 5 sections.

4.5. Quantitative Real-Time RT-PCR Analysis

Total RNA was purified from culture cells using the RNeasy Mini Kit (Qiagen, Thermo Fisher
Scientific, Inc., Waltham, MA, USA). Complementary DNA (cDNA) was synthesized using the ReverTra
Ace® qPCR RT Master Mix (TOYOBO, Osaka, Japan). Quantitative real-time PCR (qPCR) was performed
using the THUNDERBIRD® SYBR® qPCR MIX kit (TOYOBO, Osaka, Japan). A melting curve analysis
was performed to confirm the detection of a single PCR product. We performed the standard curve
method for the quantitative analysis of qPCR. Then, 5, 25, 125, and 625-fold dilutions of a sample were
prepared for each gene. The standard curve was drawn from the Ct values of the samples. The expression
levels of each sample were calculated using the standard curve. The relative abundance of all genes
of interest was normalized to the housekeeping control 18S ribosomal RNA (18S rRNA). The primer
sequences of the analyzed genes are shown as follows: MMP-3 (NCBI accession number NM_010809.2):
forward 5′-TGCAGCTCTACTTTGTTCTTTGA-3′, reverse 5′-AGAGATTTGCGCCAAAAGTG-3′.
MMP-9 (NCBI accession number NM_013599.4): forward 5′-CGACATAGACGGCATCCAG-3′,
reverse 5′-CTGTCGGCTGTGGTTCAGT-3′. MMP-10 (NCBI accession number NM_019471.3):
forward 5′-GAGTCTGGCTCATGCCTACC-3′, reverse 5′-CAGGAATAAGTTGGTCCCTGA-3′.
MMP-12 (NCBI accession number NM_008605.3): forward 5′-TGATGCTGTCACAACAGTGG-3′,
reverse 5′-GTAATGTTGGTGGCTGGACTC-3′. MMP-13 (NCBI accession number NM_008607.2):
forward 5′-TGGACCTTCTGGTCTTCTGG-3′, reverse 5′-ATGGGCAGCAACAATAAACA-3′.
MMP-14 (NCBI accession number NM_008608.4): forward 5′-GAGAACTTCGTGTTGCCTGA-3′,
reverse 5′-CTTTGTGGGTGACCCTGACT-3′. Pgk1 (NCBI accession number NM_008828.3): forward
5′-CTGTGGTACTGAGAGCAGCAAGA-3′, reverse 5′-CAGGACCATTCCAAACAATCTG-3′.
IL6 (NCBI accession number NM_031168.2): forward 5′-GATGGATGCTACCAAACTGGAT-3′, reverse
5′-CCAGGTAGCTATGGTACTCCAGA-3′. 18S rRNA (NCBI accession number NR_003278.3 forward
5′-GCAATTATTCCCCATGAACG-3′, reverse 5′-GGGACTTAATCAACGCAAGC-3′.

4.6. Zymography and Quantification

TEPMs were exposed to hypoxia for 24 h in the presence or absence of febuxostat, and supernatants
were collected. Cell supernatants were clarified by brief centrifugation and concentrated using the
Amicon Ultra-2, 3-kDa nominal molecular mass cutoff filters (Millipore, Billerica, MA, USA). The protein
concentration of supernatants was determined by the BCA Protein Assay kit (Pierce, Thermo Fisher
Scientific, Inc.). Equal amounts (5 µg/well) were loaded onto 10% zymogram plus (gelatin) protein
gels (Novex; Thermo Fisher Scientific, Inc., Waltham, MA, USA) for the gelatin zymogram or 10%
SDS-PAGE containing 0.6 mg/mL rat type I collagen (Gibco, Thermo Fisher Scientific, Inc., Waltham,
MA, USA) for the collagen zymogram, and run for 90 min under a constant voltage of 125 V. Gels were
incubated in a renaturing buffer (Novex; Thermo Fisher Scientific, Inc., Waltham, MA, USA), followed
by incubation at 37 ◦C for 24 h in developing buffer (Novex; Thermo Fisher Scientific, Inc., Waltham,
MA, USA). Gels were stained with the SimplyBlue SafeStain (Invitrogen, Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). Zymograms were analyzed by densitometry analysis using the ChemiDoc Touch
Imaging System (BIO RAD Laboratories Inc., Hercules, CA, USA) (Supplementary Figure S2).

4.7. Statistical Analysis

All data are shown as means with SD. Comparisons between two groups were performed using
the unpaired t-test. p values of less than 0.05 were considered significant. Differences among more
than two groups were analyzed using one-way or two-way ANOVA followed by Dunn’s multiple
comparisons test or Tukey’s multiple comparisons test.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9059/8/11/470/s1.
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