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Expression quantitative trait loci (eQTL) analysis is a powerful approach
toward identifying genetic loci associated with quantitative changes in gene
expression. We applied genome-wide association analysis to a data set of
4300 000 single-nucleotide polymorphisms and 448 000 mRNA expression
phenotypes obtained by Illumina microarray profiling of 149 human surgical
liver samples obtained from Caucasian donors with detailed medical
documentation. Of 1226 significant associations, only 200 were validated
when comparing with a previously published similar study. Potential
explanations for low replication rate include differences in microarray
platforms, statistical modeling, covariates considered and origin and
collection procedures of tissues. Focused analysis revealed a subset of 95
associations related to absorption, distribution, metabolism and excretion of
drugs. Of these, 21 were true replications and 74 were newly discovered
associations in enzymes, transporters, transcriptional regulators and other
genes. This study extends our knowledge about the genetics of inter-
individual variability of gene expression with particular emphasis on
pharmacogenomics.
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Introduction

Genetic variants can affect qualitative and quantitative aspects at all levels of
gene expression, including gene transcription, splicing, transcript stability, rate
of translation, protein function and degradation, thereby contributing to inter-
subject variability and heritable metabolic, pharmacogenetic and other pheno-
types. Many variants, in particular, common single-nucleotide polymorphisms
(SNPs), affect gene expression in a quantitative manner, and the combination of
larger sets of low-impact variants is believed to explain non-Mendelian types
of inheritance, including complex quantitative traits such as body size.1–3 Typical
pharmacological phenotypes, such as drug response and toxicity, are highly
likely to depend on multiple genes. In contrast to monogenically inherited
pharmacogenetic polymorphisms, most of which have been discovered by
following up on unusual clinical drug response phenotypes,4 the basis for more
complex phenotypes remained largely unknown.5,6
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A relatively new approach to identify unknown functional
genetic variants that modulate gene expression, also termed
‘genetical genomics,’ is the mapping of expression quanti-
tative trait loci (eQTLs) using genome-wide association
(GWA) methods in cohorts of unrelated individuals.2,7 In
this strategy, individual transcript levels are determined in a
selected tissue or cell type using microarrays. In genomic
DNA of the same individuals, in the order of 105 to 106 SNPs
are genotyped in parallel. By considering each individual
gene transcript as a quantitative trait, association analysis
identifies SNPs that are significantly associated with expres-
sion.8,9 Thus, the eQTL strategy differs from the typical
GWA studies, as the majority of the 41000 published
GWA studies typically focused on a single or only a few
complex phenotypes.10

So far, only a limited number of genome-wide eQTL
studies have been performed on various human tissues.11–19

In most cases, easily accessible peripheral tissues such as
human HapMap lymphoblastoid cell lines, lymphocytes or
monocytes were investigated. For example, in one of the
earliest studies, Morley et al.20 distinguished cis- and trans-
effects, depending on the relative location of trait gene and
SNP gene to each other. Several later studies found that
trans-eQTLs were more difficult to reproduce.12–15 Only few
studies have appeared on internal tissues, including the
brain,21 adipose18 and liver.16 The latter study investigated a
cohort of 427 human liver samples (in this paper referred to
as the ‘Seattle study’) and found a multitude of new eQTLs.
Furthermore, they showed that the eQTL approach together
with network analyses can drive the identification of new
susceptibility gene loci for complex disease traits such as
type 1 diabetes.16

In this study, we investigated 149 human livers surgically
removed from Caucasian donors to identify statistically
significant associations between genetic polymorphisms
and mRNA expression levels at a genome-wide scale.
Although our study was similar in design and technology
to the former study,16 the set of human liver samples had no
overlap and differed in many aspects including ethnicity,
sampling procedures, availability and completeness of
clinical data. We focus in this paper on genes involved in
absorption, distribution, metabolism and excretion (ADME)
of drugs to allow for more detailed analyses, which resulted
in a smaller set (B20%) of truly replicated eQTLs and a
larger set (B80%) of unique eQTLs. This demonstrated that
the genetical genomics approach is useful to identify novel
genotype–phenotype relationships, and that a single study
is insufficient to uncover all existing eQTLs in a given tissue.

Materials and methods

Liver samples
Liver tissues and corresponding blood samples were pre-
viously collected from 150 patients of Caucasian ethnicity
(71 males and 79 females) undergoing liver surgery at the
Campus Virchow (University Medical Center Charité,
Humboldt University, Berlin, Germany). The average age

of the subjects was 58±14 years. This study was approved
by the ethics committees of the medical faculties of the
Charité, Humboldt University, and of the University of
Tuebingen and conducted in accordance with the Declara-
tion of Helsinki. All tissue samples were examined by a
pathologist and only histologically non-tumorous tissues
were used. Clinical patient documentation available for all
samples and shown to have significant influence on the
analysis included age, sex, medical diagnosis (primary or
secondary liver tumor, other diagnosis), presurgical medica-
tion (regular drug treatment before surgery vs no drugs),
cholestatic liver injury (based on liver function tests22) and
alcohol drinking and smoking habits. Patients with hepati-
tis, cirrhosis or chronic alcohol use were excluded. Detailed
information on sample metadata is given in Supplementary
Table S1.

Transcriptome analysis and genome-wide genotyping

RNA isolation from liver tissues was performed using
Trizol (Invitrogen, Paisley, UK) extraction and Qiagen
RNeasy-mini kit (Qiagen, Valencia, CA, USA) with on-
column DNase treatment as described previously.23 Only
high-quality RNA preparations according to Agilent Bioana-
lyzer (Nano-Lab Chip Kit, Agilent Technologies, Waldbronn,
Germany) RNA Integrity Number (RIN) assignment (47)
were used in this study. In all, 200 ng of total RNA was
amplified and labeled using the Illumina TotalPrep RNA
amplification kit (Ambion Applied Biosystems, Darmstadt,
Germany). cRNA quality was assessed by capillary electro-
phoresis on Agilent 2 100 Bioanalyzer (Agilent Technolo-
gies). Expression levels of 448 000 mRNA transcripts were
assessed by Human-WG6v2 Expression BeadChip (Illumina,
Eindhoven, The Netherlands). Hybridization was carried
out according to the manufacturer’s instructions. Genome-
wide SNP data had been generated from genomic DNA using
the HumanHap300 Genotyping BeadChip (Illumina) with
318 237 SNPs as described before.24 A comparison with the
microarray platforms used in the Seattle study is shown in
Figure 1. All data have been deposited in NCBI’s Gene
Expression Omnibus and are accessible through GEO
Series accession number GSE32504 (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE32504).

Preprocessing and quality control

Illumina BeadStudio version 3.0 (Illumina, San Diego, CA,
USA) was used for all low-level preprocessing steps of
the expression data, including background estimation and
correction, normalization and probe set summary. After
these low-level preprocessing steps, 9875 genes with high
detection P-value (40.1) or 410% missing values were
filtered out and removed from the data set.25 The remaining
missing signal intensities were estimated using the ‘k nearest
neighbor’ algorithm implemented in R BioConductor.26,27

The resulting data set was subsequently log2 transformed.
Finally, after all preprocessing steps, the raw data of 48 701
probe signal intensities were mapped and reduced to signal
intensities corresponding to 15 439 unique genes.
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A Schröder et al

13

The Pharmacogenomics Journal

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32504
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32504


Raw data preprocessing of HumanHap300 Genotyping
BeadChip was also performed using BeadStudio version 3.0.
Next, missing genotypes were estimated using the MACH
imputation algorithm, which is based on a hidden Markov
model.28 Subsequently, 15 235 SNPs with an extremely low
call rate (o95%),29 3466 SNPs with low minor allele
frequencies (o4%)16 and 201 SNPs not in the Hardy–
Weinberg equilibrium (false discovery rate p0.2), were
excluded from further analyses.16,30 Genetic similarity be-
tween samples, referred to as population substructure, may
lead to false-positive association results.31 To identify possibly
related individuals, we calculated pairwise identity-by-state
distances. Consequently, one sample was excluded because of
495% genotype identity to another sample.32 To detect
further putative population substructures, the method of
Price et al.33 based on principal components analysis (PCA)
was applied. This analysis revealed no evidence for population
substructure within our cohort of liver samples. This
comprehensive quality control analysis was performed using
the R BioConductor package ‘GenABEL’.34 The finally pro-
cessed data set was from 149 livers (71 males and 78 females,
Supplementary Table S1) and consisted of 299352 SNPs and
15 439 gene expression levels. As a further internal control, we
performed genotyping of sex chromosome-specific amelo-
genin gene variants35 and analysis of sex-specific gene
expression (for example, XIST, RPS4Y, SMCY), which revealed
100% agreement with patient documentation.

GWA analysis

GenABEL34 was used to test all 4.6 billion possible
combinations of SNPs and expression traits (299 352
SNPs*15 439 traits) for significant associations. Here, we
assumed a genetic model in which both alleles contribute to
gene expression in an additive manner, because this has
been shown to be one of the most powerful statistical
approaches.36 The SNP-trait associations were adjusted for
sex, age, smoking, alcohol consumption, diagnosis,
C-reactive protein level, cholestatic liver disease and pre-

surgical medication as covariates (Supplementary Table S1),
using an additive linear model.

Bonferroni’s multiple testing correction

All traits were tested for associations to cis- or trans-acting
SNPs individually. Study-wise individual cutoff levels were
calculated to test for cis- and trans-associations. To derive a
study-wise cis-cutoff level at significance level a¼0.05, we
first determined all cis-acting SNPs within the data set. To
allow for detailed comparisons of our results with those
of Schadt et al.,16 we used the same definitions, that is,
cis-acting SNPs are those that occur within 1 Mb upstream
or downstream of the known or predicted 50- and 30-ends
of any trait gene. Thus, the study-wise Bonferroni-adjusted
P-value threshold equals 0.05/2 607 664¼1.92�10�8, where
2 607 664 is the total number of possible cis-associations
based on the above definition. Accordingly, the study-wise
trans-specific Bonferroni’s cutoff level was computed as the
total number of tests for trans-associations, that is, 0.05/4.6
billion¼1.08� 10�11.

Further analysis of SNPs, haplotypes and genetic linkage

Information on SNPs was obtained from the dbSNP data-
base37 (http://preview.ncbi.nlm.nih.gov/snp). Polymorph-
isms occurring in an eQTL were tested for pairwise linkage
to SNPs in the neighborhood by tagging specific blocks of
genetic linkage using Haploview38 (V4.2, HapMap V3R2) or
SNAP39 (http://www.broadinstitute.org/mpg/snap; using
HapMap release 22 and 1000 genomes Pilot1) for CEU
samples each. Pairwise r2 was used as measure for linkage
disequilibrium (LD). The genomic regions of trait genes were
screened for previously described copy number variations
using the genome variation database from the Center of
Applied Genomics (http://projects.tcag.ca/variation/).

Results

GWA analysis and extraction of ADME genes

We used additive linear models in GenABEL34 to detect
associations between SNPs and expression traits, and we
considered a comprehensive set of available clinical data as
covariates (Supplementary Table S1). In total, we identified
1226 significant associations (1179 cis and 47 trans) between
1163 SNPs and 371 different expression traits (Figure 2,
Supplementary Table S2).

As we were particularly interested in genes relevant to
drug disposition and toxicity, we filtered identified eQTLs
according to their potential relevance in the context of
ADME processes. We compiled an ADME gene set compris-
ing 682 genes (Supplementary Table S3) from various
resources including the PharmaADME Working Group list
of ADME genes (http://pharmaadme.org/), the NURSA
(Nuclear Receptor Signaling Atlas) Consortium40 and the
PharmGKB knowledge base41 (http://www.pharmgkb.org/).
By requesting either SNP or trait gene or both to be an ADME
gene, we identified a total of 95 significant associations, of
which 89 were cis- or presumably cis-acting and 6 were trans-
or presumably trans-acting. Table 1 shows 21 associations

Figure 1 Distribution of SNPs among different genotyping platforms used

in the Seattle and Stuttgart study. SNP, single-nucleotide polymorphism.
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that could be validated by comparison with the Seattle
study (see below), and Table 2 shows the other 74 ADME
associations uniquely identified in our study.

Comparison and validation of eQTLs
To investigate reproducibility of our eQTL results, we
performed a detailed comparison with the Seattle study,16

which differed in several important aspects including
technology platform, origin and number of samples ana-
lyzed and available medical information. Surprisingly, only
200 of all 1262 associations (16%) were also found in the
Seattle study when Bonferroni’s adjustment was applied to
both studies (Figure 2). A more detailed analysis showed that

30 of the 200 replicated associations were exact validations,
that is, the same SNPs were found in both studies to be
associated with the same trait, whereas 170 SNPs were
validated by LD, that is, they were found to be tight linkage
(r240.8) to SNPs of the Seattle study. The remainder of the
1062 SNPs represented independent associations only found
in our study (Supplementary Table S2). Remarkably, none of
the trans-associations in either study was replicated by the
other (Figure 2). Reanalysis of the data after omitting most of
the covariates except those considered in the former study
revealed 1313 associations, whereas still only B20% of all
associations were found in both studies (data not shown).

Investigation of ADME eQTLs
Table 1 summarizes 21 of the 95 ADME associations that
represent replications, including 3 exactly replicated eQTLs
and 18 matches by LD, together mapping to 11 different
trait genes.

For example, two SNPs in a haplotype block at the CYP3A
locus on chromosome 7 were strongly correlated with
increased expression of CYP3A5 in heterozygous carriers (see
box plot in Figure 3). One of them (rs10242455) represents
an exact replication and the other (rs1859690) a replication by
LD (Table 1). Both of them were completely linked to each
other and to rs776746, the causative SNP of the well-
investigated CYP3A5*3 splice variant.42,43 Box plots showing
the genotype–phenotype correlation for one representative
SNP of each trait are compiled in Figure 3. Further analyses
regarding these replicated results are presented in Supplemen-
tary Results and Discussion and in Supplementary Table S4.

Table 2 shows the 74 ADME associations (68 cis-acting
and 6 trans-acting) uniquely identified in our study, which
mapped to 31 different trait genes. Closer analysis showed

Table 1 Significant eQTL associations filtered for ADME genes and validated by comparison with the Seattle study

Trait
gene

Trait
chromosome

SNP (Stuttgart) SNP
chromosome

SNP gene Association
P-value

(Stuttgart)

ADME
assignment

SNP
(Seattle)

Association
P-value
(Seattle)

LD (r2)

CYP3A5 7 rs10242455 7 CYP3A5 3.36e�10 T,S rs10242455 3.35e�22 Exact
GSTM3 1 rs11101992 1 GSTM5 9.73e�14 T,S rs11101992 3.35e�28 Exact
SQSTM1 5 rs565280 5 SQSTM1 4.11e�09 T,S rs565280 2.3e�20 Exact
ABCC11 16 rs11861379, rs8056100 16 ABCC11 o4.14e�15 T,S rs16946122 1.31e�12 0.925
ARNT 1 rs10888390, rs4970986,

rs4451553
1 CTSS, SETDB1 o6.48e�11 T rs10888395 3.88e�11 0.8

CYP3A5 7 rs1859690 7 ZNF498 7.02e�10 T rs10242455 3.35e�22 1
DHRS2 14 rs1866226 14 DHRS2 1.94e�11 T,S rs1885592 1.39e�33 1
GSTT1 22 rs1007888 22 MIF 3.97e�15 T rs4822458 2.69e�39 0.966
MGMT 10 rs4751104 10 MGMT 1.58e�10 T,S rs2008387 3.33e�12 0.904
SLC22A3 6 rs884742 6 SLC22A3 1.56e�09 T,S rs518295 2.59e�19 0.839
SQSTM1 5 rs10277, rs1650893,

rs1065154
5 LOC51149,

SQSTM1
o1.06e�08 T rs565280 2.3e�20 0.936

VKORC1 16 rs10871454, rs889548,
rs749767

16 STX4A, MYST1,
BCKDK

o5.24e�20 T rs4889606 1.66e�23 0.931

FMO2 1 rs1795240, rs1736565 1 FMO3, FMO6 o1.32e�08 T,S rs1795244 9.09e�17 0.846

Abbreviations: ADME, absorption, distribution, metabolism and excretion; eQTL, expression quantitative trait loci; LD, linkage disequilibrium; SNP, single-nucleotide

polymorphism.

If multiple SNPs are associated with the same trait, only the highest P-value of the respective set of SNPs is given; ADME assignment indicates if T¼ trait-gene or

S¼ SNP-gene belongs to the ADME list; LD, between SNPs of the Stuttgart and Seattle studies.

Figure 2 Venn diagram of eQTL results in the Stuttgart and Seattle

studies. Comparison of significant genetic associations detected in the

two studies after Bonferroni’s correction. Numbers in the upper box
refer to genome-wide associations (GWAs), whereas numbers in the

lower box refer to ADME genes. The number of associated expression

traits is given in brackets. ADME, absorption, distribution, metabolism

and excretion; eQTL, expression quantitative trait loci.
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that the corresponding SNPs had indeed been analyzed but
were not significantly associated with expression in the
former study.16 These unique associations included addi-
tional SNPs for traits mentioned in Table 1 but with LD of
r2o0.8 (for example, ARNT, several GSTs, VKORC1) and
additional ADME and ADME-related genes including the
histamine and diamine-oxidizing copper enzyme ABP1, the
arachidonic acid-metabolizing CYP4F12, the flavin mono-
oxygenase FMO4, thymodylate synthase (ENOSF1/TYMS)
involved in 5-fluorouracil response and the solute carrier
SLC22A10, among others. Furthermore, UGT1A1 expression
was associated with rs2070959 (located in UGT1A6), which
is closely linked (r2¼0.87) to rs8175347, the causal SNP of
the UGT1A1*28 allele.44 Remarkably, this well-known poly-
morphism had not been detected by the Seattle study.16 Box
plots of these unique eQTLs represented by one SNP each are
shown in Supplementary Figure S1.

The only true trans-association significantly identified
among ADME genes comprised six SNPs in the plasminogen
(PLG) gene on chromosome 6, a zymogen of the serine
protease plasmin, which were associated to expression of a
distant serine protease UNQ9391(PRSS55) on chromosome 8.
As depicted in Figure 4, three of the variants (rs1406891,
rs783145 and rs1247558) are simultaneously locally asso-
ciated with expression of PLG itself, thus substantiating
functional impact. Whereas rs1247558 and rs1406891 are
located in intergenic regions, rs783145 is located in an intron,
suggesting that this or a closely linked variant might be the
causative SNP.

Discussion

Several studies11–19 have shown the utility of eQTL analysis
to elucidate relationships between genetic polymorphisms

Table 2 Significant eQTL associations filtered for ADME genes and exclusively found in this study

Trait
gene

Trait
chromosome

SNP SNP
chromosome

SNP gene Association
P-value

ADME
assignment

ABP1 7 rs4725367, rs6977381, rs6956432 7 HCA112, ABP1 o2.4e�09 T,S
ARHGAP10 4 rs6535579 4 NR3C2 1.5e�10 S
ARNT 1 rs7412746 1 ARNT 2.19e�15 T,S
CAV1 7 rs1049337 7 CAV1 4.13e�12 T
CHURC1 14 rs11623705, rs2296327 14 GPX2 o6.25e�10 T
CYP4F12 19 rs4381710, rs4312419 19 OR10H2 o9.77e�09 S
DHRS2 14 rs7141385 14 DHRS2 1.41e�13 T,S
EIF5A 17 rs2292064 17 GPS2 2.97e�14 T
ENOSF1 18 rs2847153 18 TYMS 1.43e�11 S
FMO4 1 rs1963273, rs714839, rs7515001 1 FMO4 o3.48e�09 T,S
GOLGB1 3 rs9884018 3 EAF2 4.01e�24 S
GPX7 1 rs6588431, rs835342 1 GPX7 o4.82e�17 T,S
GSTM3 1 rs2274536, rs1887546, rs10735234 1 EPS8L3, GSTM3 o8.25e�09 T
GSTO2 10 rs157080, rs156699, rs156697, rs4925,

rs12769490
10 GSTO2, GSTO1,

C10ORF80
o1.32e�08 T,S

GSTT1 22 rs6003959, rs4820571, rs738809,
rs738806, rs4822442, rs875643

22 MIF, CABIN1,
SLC2A11

o1.05e�09 T

HLA-DRB4 6 rs389884 6 STK19 2.41e�09 S
HS.563390 6 rs4715326, rs9474334, rs6917325 6 GSTA1, GSTA5 o4.85e�09 S
EXOC3 5 rs12188164 5 AHRR 7.32e�10 S
MGMT 10 rs12247354, rs531572, rs4751099,

rs4750759
10 MGMT o8.55e�09 T,S

NUDT8 11 rs6591256, rs1695 11 GSTP1 o5.9e�10 S
PSMB9 6 rs2071540 6 TAP1 3.35e�11 S
SLC22A10 11 rs1201559, rs575009, rs4121881, rs494608,

rs566456, rs11231409, rs7949840
11 SLC22A9, SLC22A25,

SLC22A24
o3.08e�11 T,S

SQSTM1 5 rs248248 5 LOC51149 6.15e�09 S
TRPC4AP 20 rs2273684, rs6088590, rs6120708 20 GSS, NCOA6 o1.1e�10 S
TTC19 17 rs2285580, rs2157991, rs178810 17 NCOR1 o1.24e�08 S
UGT1A1 2 rs2070959 2 UGT1A6 6.63e�10 T,S
UNQ9391 8 rs1247558, rs1406891, rs783145,

rs9355841, rs13231, rs4252125
6 PLG o4.09e�14 S

UROC1 3 rs777498, rs777499, rs812368 3 ZXDC o8.64e�10 T
USMG5 10 rs2486758 10 CYP17A1 3.39e�12 S
VKORC1 16 rs4889490, rs7294, rs12445568 16 RNF40, VKORC1,

STX1B2
o1.65e�09 T,S

XRCC5 2 rs828704 2 XRCC5 3.8e�09 T,S

Abbreviations: ADME, absorption, distribution, metabolism and excretion; eQTL, expression quantitative trait loci; SNP, single-nucleotide polymorphism.

If multiple SNPs are associated with the same trait, only the highest P-value of the respective set of SNPs is given; ADME assignment indicates if T¼ trait-gene or

S¼ SNP-gene belongs to the ADME list.
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Figure 3 Box plots of validated ADME associations. Box and whisker diagrams include smallest gene expression values, lower quartiles, medians,

upper quartiles, largest gene expression values and outliers of the 11 validated ADME associations. The size of each genotyping group is given in
brackets along the x axis. ADME, absorption, distribution, metabolism and excretion.
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A Schröder et al

17

The Pharmacogenomics Journal



and gene expression on a genome-wide scale, thus con-
tributing to understanding the genetic basis of inter-indivi-
dual variability and heritability of complex traits. However,
limited information is so far available regarding complete-
ness, reproducibility and interpretation of such data.

Our study was performed in the human liver with a focus
on ADME genes, which have not been given special
attention in previous studies. It replicates a former study
by Schadt et al.16 (the Seattle study) in terms of general
approach and tissue analyzed, and we therefore strived to
compare the results of the two studies in detail.

The fraction of replicated observations between this and
the former study was between 16 and 20%, which included
replications by LD. As these represent eQTLs replicated in
two different studies, they should be highly reliable,
justifying in-depth analysis without further validation.
However, the large discrepancy between the two studies
was unexpected. Likely reasons include technical differences
between the two studies, in particular the different gene
expression profiling platforms applied in our (Illumina)
and the former study (Agilent Technologies), which used
different probes for most genes. This can lead to different

expression data, given the common occurrence of variant
transcripts, SNP-interference with probe hybridization and
inconsistent gene annotation.45,46 Additional technical
differences concern the genotyping arrays and differences
in data preprocessing.

Moreover, it should be noted that we applied an additive
genetic model, which implies a gene-dose effect, but also
reveals recessive or dominant associations at lower signi-
ficance. Importantly, these three types of associations
represent the biologically most meaningful possibilities. In
contrast, the eQTL association analysis by Schadt et al.16

was based on Kruskal–Wallis tests, that is, a codominant
model, which also reveals extreme deviations from additi-
vity, that is, overdominant associations in which the
two homozygous groups show similar expressions but the
heterozygotes differ significantly. This (unknown) fraction
of the eQTL associations reported by Schadt et al.16 must
therefore be expected to be not reproducible by our study.

Additional important differences between the two studies
relate to the number, origin and sampling of tissue, as well
as medical information available. Sample-related differences
should be of uttermost importance, although this is quite

Figure 4 Manhattan plot of novel trans-eQTL and related box-plots of cis/trans-associations. (a) Negative log-transformed P-values of all SNPs

tested for association to the serine protease UNQ9391 (PRSS55), which is located on chromosome 8. A set of 6 trans-acting SNPs at the plasminogen

(PLG) locus on chromosome 6 was identified to be significantly associated. The dashed line represents the P-value cutoff level for trans-associations.
The three indicated SNPs are simultaneously locally associated with the expression of PLG itself. (b) Box plots showing cis (left) and trans (right)

genotype–phenotype relationships for one selected SNP. eQTL, expression quantitative trait loci; SNP, single-nucleotide polymorphism.
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difficult to prove as no direct comparison was possible. The
Stuttgart cohort consisted exclusively of liver tissue removed
surgically from Caucasian donors in one hospital, using
only one procedure for sample collection, freezing, storage,
RNA isolation, quality assessment, DNA isolation and
microarray analysis. Although all but one sample were
resected because of liver cancer, this fact by itself should
not affect genotype–phenotype relationships because only
non-tumorous material was analyzed. In contrast the 427
samples of the Seattle cohort consisted mostly of postmor-
tem material obtained from prospective organ donors who
were presumably cancer-free, but the tissue quality may
vary more widely because of warm ischemia before pre-
servation and long storage times before cryopreservation.
Furthermore, the Seattle cohort was collected in three
independent centers, giving rise to differences among
samples regarding tissue acquisition and storage protocols,
criteria for RNA quality, etc. Another significant influential
factor in the Seattle study was ethnicity,16 in contrast to
our study in which no influence was detected using popula-
tion stratification methods. Finally, the availability of medical
information was also different in the two studies. Whereas the
former study used imputation methods to complete large
parts of missing information, medical documentation for the
Stuttgart liver samples were almost complete and comprised a
larger number of parameters.

Taken together, the many potentially influential para-
meters that differed between the two studies may well
explain why only a small fraction of eQTL results were
reproducible. Given the difficulty in validating cis-associa-
tions, it is probably not surprising that none of the trans-
associations could be reproduced, as these are based on
additional indirect downstream effects and are therefore
generally less well replicated than cis-associations.16,47

Pharmacologically relevant eQTLs were extracted based on a
comprehensive compilation of 682 non-overlapping ADME
genes, resulting in 89 cis- and 6 trans-associations. Similarly
to the entire eQTL set, only 3 of the 95 ADME eQTLs were
exactly replicated, and another 10 eQTLs were shown to be
replications by LD. More detailed information on all replicated
associations is presented in Supplementary Results and
Discussion. Several of the unique ADME gene associations
of our study concern known polymorphically expressed genes,
including UGT1A1,44 CYP4F1248 and GST subforms M3, O2
and T1. Although these were not identified in the Seattle study,
they likely relate to these biologically confirmed polymorph-
isms. Except for CYP3A5 and CYP4F12, no other CYP genes
were present among the identified eQTLs. The failure to detect
the well-known polymorphic CYPs (for example, 2A6, 2B6,
2C19, 2D6) may be explained by the mechanisms involved
which often include complex splicing events which may not
be detectable by the microarray probes.49

During revision of this manuscript, another paper
appeared,50 which similar to our paper compared the results
of an eQTL association analysis in human livers (two collec-
tives with n1¼206 and n2¼60) with the Seattle study.16

Using different validation sets, they found replication rates
between 49 and 58% for cis-eQTLs, that is, about half of

all cis-associations failed to be validated in their study.
A thorough investigation of the factors influencing repro-
ducibility revealed similar reasons as those mentioned in our
study. The lower replication rate in our study compared
with50 may be explained by more relaxed validation criteria
in their study, in particular regarding muss less stringent
multiple correction conditions. Other likely reasons for
differing replication rates include the factors discussed
above, that is, origin and sampling conditions of the tissues,
statistical modeling, as well as ethnicity and other covariates
of the liver donors.

In conclusion, we carried out a GWA analysis of 4300 000
SNPs and 48 000 expression phenotypes determined in a
cohort of 149 human surgical liver samples obtained from
Caucasian donors to identify genetic loci associated with
quantitative changes in gene expression. A subset of 95
significant genotype–phenotype relationships, which was
classified as ADME or ADME-related may be of particular
relevance for drug disposition and toxicity. Detailed com-
parison between this study and the similar Seattle study
demonstrated that quantitative trait loci are difficult to
reproduce because of a number of technical and statistical
reasons, and that several studies are required to discover the
full extent of genetic determination in quantitative traits.
Follow-up studies to elucidate the causal variants and their
biological and pharmacological relevance should therefore
concentrate on the validated results.
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