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Although costunolide (Cos), a natural sesquiterpene compound isolated from various
medicinal plants, exhibits antiproliferative and pro-apoptotic effects in diverse types of
cancers, the mechanism associated with the anticancer property of Cos has not been
elucidated. The present investigation was carried out to study the anticarcinogenic
influence of Cos on kidney cancer cells. Several human renal cancer cell lines were
used and biological and molecular studies were conducted. It was found that Cos
significantly suppressed renal carcinoma cell growth via stimulation of apoptosis and
autophagy in a concentration-dependent manner. Further studies revealed that Cos
increased Bax/Bcl-2 ratio, decreased mitochondrial transmembrane potential (MMP),
and enhanced cytoplasmic levels of cytochrome ¢, and activation of caspase-9,
caspase-3, and cleaved PARP, resulting in cell apoptosis. The autophagy induced by
Cos resulted from the formation of GFP-LC3 puncta and upregulation of LC3B Il and
Beclin-1 proteins. Compared with Cos treatment, the autophagy inhibitor 3-MA or
ROS scavenger NAC significantly inhibited apoptosis and autophagy. Moreover, NAC
and JNK-specific inhibitor SP600125 attenuated the effect of Cos. Taken together,
Cos exerted autophagic and apoptotic effects on renal cancer through the ROS/JNK-
dependent signal route. These findings suggest that Cos could be a beneficial
anticarcinogenic agent.

Keywords: costunolide, renal cancer, ROS - reactive oxygen species, apoptosis, autophage

INTRODUCTION

Renal cell carcinoma (RCC) comprises 3-4% of all human cancers, and it is the most lethal
kidney malignant tumor (1). Surgical intervention is the most effective therapeutic strategy for
RCC. However, up to 30% of RCC cases are diagnosed at the stage of metastasis (2). The 5-year
overall survival of metastatic RCC patients is below 10%. Typically, RCC is insensitive to traditional
chemo- and radio-therapeutic treatments (3). Moreover, the use of targeted treatment options as
first and second-line treatments have limited effect on the survival rates. Therefore, there is need
for exploring low-toxicity novel treatment strategies for RCC.

Costunolide (Cos) is a naturally occurring sesquiterpene compound present in various
medicinal plants, including Magnolia sieboldii, L aurus nobilis, and Saussurea lappa (4, 5). It has
various effects such as anti-inflammatory and antifungal properties (6, 7). Recently, Cos has been
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reported to be able to assist chemotherapeutic agents
in overcoming multidrug resistance in cancer cells (8).
Although some studies have shown that Cos exhibits potent
anticarcinogenic activity in human cancer cells through
induction of cell cycle arrest and apoptosis (9, 10), its effect on
human renal cancer cells and the possible associated mechanisms
have not been unraveled.

Cell death can be classified according to the classical
morphological criteria as apoptotic or autophagic. Apoptotic
cell death is a tightly regulated event, which is important
for sustaining tissue constancy via removal of genetically
compromised cells. The typical features of apoptosis are
membranous blebs and nuclear fragments (11). It has been
established that apoptosis may occur through either extrinsic or
intrinsic route (12). Both pathways may lead to the activation
of a related group of caspases involved in the initiation
(caspases-8 and -9) and execution (caspases-3) phases of
apoptosis (13). Autophagy is an evolutionarily preserved process
by which cells degrade macromolecules, unwanted organelles
and certain types of bacteria via double-membrane structures
termed autophagosomes (14). Autophagy performs a complex
function in cancer development and treatment (15). It can
function as a cytoprotective mechanism that protects cancer
cells from apoptotic cell death induced by various anticancer
drugs (16). On the other hand, excessive autophagy can cause
cell death and arrest tumor progression. Therefore, extensive
attention has been paid to redefining the precise function of
autophagic processes in malignancy therapy, so as to enhance
the designing, selection, and utilization of autophagy-regulating
agents (autophagy inducers or inhibitors) (17). In addition,
increasing evidence have shown that apoptosis and autophagy
may be cooperative or antagonistic to determine cell fate
depending on cell types, strength, and duration of the stress-
inducing signals, and influence of other signaling routes (18).

In this study, it was found that Cos exerted reactive oxygen
species (ROS)-induced autophagic and apoptotic effects on renal
cancer cells through ROS induction, resulting in stimulation
of JNK signal pathway. Thus, Cos could be a promising
inducer of autophagy and apoptosis, which can be used for
targeting human cancers.

MATERIALS AND METHODS

Materials and Chemicals

Cos, 3-methyladenine, and inhibitors of JNK, MAPK, and
ERK1/2 were purchased from Selleck. Cos was dissolved in
dimethyl sulfoxide (DMSO) and preserved at —20°C. RPMI-
1640, DMEM, and FBS were products of Thermo Fisher, while
N-acetyl-L-cysteine was obtained from Sigma (St. Louis, MO,
United States). Immunoglobulins against caspases-3, -9, and -8;
and Bax, PARP, Bcl-2, Cyt ¢, CoxIV, JNK, p-JNK, p38, p-p38,
ERK, phospho-ERK, LC3B, Beclin-1, and B-actin were products
of Cell Signaling Technology (Shanghai, China). Reagents for
mitochondrial transmembrane potential (MMP) and apoptosis
were obtained from Beyotime Inst. Biotech (Beijing, China).

Polyvinylidene difluoride membrane was product of Millipore
Corp, United States.

Cell Maintenance and Cultural

Conditions

Four human RCC cells (786-O, A-498, ANCH, and 769-P)
were supplied by American Type Culture Collection (Manassas,
Virginia, United States). The cell lines were cultured in medium
(786-0 and 769-P in RPMI-1640; A-498 and ANCH in DMEM)
with fetal calf serum and antibiotics. The cell culture was
done in a 37°C and 5% CO; humidified atmosphere. The
cells were grown to confluence before drug treatment. Cos was
solubilized in DMSO.

Cell Viability Assay

The CCKB8 assay was used. The cells in suspension were exposed
to graded doses of Cos (5, 10, 20, and 40 pM) for 24 h, followed
by incubation with 10 wL CCKS solution for 180 s at 37°C and
measurement of absorbance at 455 nm.

For cell counting, cell suspension was incubated for 24 h
with the same doses of Cos as in CCK8 assay. Thereafter, the
population of dead cells was determined with trypan blue dye
exclusion procedure.

Nuclear Morphologies of Apoptotic Cells
Cell suspension treated with graded doses of Cos were subjected
to fixation in paraformaldehyde and stained with DAPI away
from light. Nuclear fluorescence intensities were obtained using
Nikon fluorescence microscopy (Nikon Inc., Japan).

Flow Cytometry Analysis of Apoptosis

After treatment with Cos, the cells were rinsed in phosphate-
buffered saline (PBS) and resuspended in 200-pL binding
solution that contained 5 wL Annexin V-FITC and 10 pL
propidium iodide for 20 min away from light. All samples were
subjected to flow cytometric analysis.

Caspase Activity Assay

Caspase-3, caspase-8, and caspase-9 were assayed
fluorometrically using Beyotime Kkits (Beijing, China) in
line with respective manual protocols.

Measurement of Mitochondrial

Transmembrane Potential

The MMP (A{rm) was measured using JC-1 Assay Kit (Beyotime,
Beijing, China) in line with the manufacturers protocol. The
Cos treatment was followed with JC-1 staining for 30 min
away from light at 37°C. Cellular fluorescent photographs
obtained with microscope (Nikon Inc., Japan) were analyzed
with flow cytometry.

RNA Isolation and Real-Time

Quantitative PCR Assays
The 769-P cells were plated in six-well plates. After 12-h
incubation, the cells were exposed to Cos (10, 20, and 40 pM) for
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24 h, followed by extraction of total RNA and cDNA generation,
and RT-PCR with Bio-Rad iQ5 System, with B-actin as control.
The p-actin primers were generated as outlined previously (19).
Relative abundances of the target mRNAs were calculated.

ROS Generation

The generation of intracellular ROS was determined with a cell-
permeable probe, DCFH-DA. Following treatment of the cells
with Cos, they were subjected to incubation with the fluorescent
probe at 37°C for /2 h away from light. Fluorescent photographs
of cells were analyzed with flow cytometry.

GFP-LC3 Puncta Assay

The 769-P cells with stable expression of GFP-LC3 were plated
in six-well plates. After treatment with Cos, the cells were
PBS-rinsed and paraformaldehyde-fixed at room temperature for

10 min. Following removal of paraformaldehyde, the cells were
washed thrice with PBS and then stained with DAPI away from
light at room temperature. Fluorescent images were captured
with a fluorescence microscope.

Western Blotting

Extraction of total protein from Cos-treated 769-P cells followed
the method outlined earlier (19). Moreover, proteins from
mitochondria and cytosol were extracted using appropriate
Kits (Pierce, Rockford, IL, United States). Bicinchoninic assay
method was used for determination of protein levels. Then,
equal amounts of protein were subjected to 12% SDS-PAGE
and electro-transferred to PVDF membranes, the membranes
were blocked in 5% non-fat dry milk at room temperature
for 1 h, and then incubated with primary antibodies for
overnight at 4°C. Thereafter, the membranes were subjected to
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FIGURE 1 | Treatment with Cos decreased cell viability and induced cell death. (A) Cell viability, as determined with CCK8 assay. (B) Cell death, as measured using
trypan blue exclusion assay. All results are presented as mean + SD (n = 3). “p < 0.05; **p < 0.01, vs the control.
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FIGURE 2 | Cos induced apoptosis in 769-P cells. (A) Apoptotic nuclear morphology, as assessed using DAPI staining and visualized using fluorescence
microscopy. (B) Percentage of Cos-induced apoptosis in 769-P cells, as measured using Annexin V-FITC/PI staining and flow cytometry. The histograms indicate the
percentage of early apoptosis and late apoptosis. All results are presented as mean + SD (n = 3). *p < 0.05; *p < 0.01, vs the control.
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incubation with HRP-linked 2° conjugated secondary antibodies
at room temperature for 1 h. The signals were detected using
chemiluminescence (ECL).

Statistical Analysis

All data are expressed as mean = SD of three independent
experiments. Student’s f-test and one-way ANOVA were
employed for statistical analyses. Values of p less than 0.05 were
considered statistically significant.

RESULTS

Cos Decreased Cell Viability via
Induction of Apoptosis in RCC

To determine the cytotoxic influence of Cos on RCC cells,
the 786-O, A-498, 769-P, and ACHN cells were exposed to
different concentrations of Cos (10, 20, and 40 wM) for 24 h,
followed by CCK8 and Trypan blue exclusion assays. Figure 1A
shows that Cos significantly decreased viability of RCC cells
concentration-dependently. Moreover, Cos enhanced apoptosis

in a concentration-based fashion (Figure 1B). The occurrence
of apoptosis in Cos-treated RCC cells was determined with
DAPI staining and flow cytometry. Results revealed that the
cells without Cos treatment had rounded nuclei with well
distributed chromatin, whereas typical apoptotic features of
condensed chromatin and nuclear fragmentation were seen
following treatment with Cos (10, 20, and 40 wM) (Figure 2A).
Flow cytometric analysis showed that significant and dose-based
increases in apoptotic cell number were observed after Cos
exposure (Figure 2B).

Previous studies have demonstrated that apoptosis involves
stimulation of cysteine proteases, including both initiators and
executors of cell death (13). Thus, further evaluation was done
on the effects of Cos on the levels of caspases-8, -9, and -3
using caspase fluorometric assay kits. No significant change was
observed in the activity of caspase-8 in the Cos-treated cells,
when compared with cells with no Cos treatment. Interestingly,
Cos treatment markedly enhanced levels of caspases 9 and 3
(Figure 3A). Consistent with these results, procaspases-9 and -3
levels were lowered with increase in Cos concentration, while the
cleaved forms of caspase-9 and caspase-3 increased (Figure 3B).
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FIGURE 3 | Cos-induced apoptosis was mediated by caspases 9 and 3 in 769-P cells. (A) Activities of caspase-3, caspase-8, and caspase-9 as measured using
the colorimetric assay kits. (B) Caspases-8, -9, and -3, and PARP in 769-P cells treated with various concentrations of Cos for 24 h. (C) Effect of caspase inhibitors
on Cos-induced cell viability, as measured with CCK8 assay. (D) Inhibitory effects of caspase-8 and caspase-9 inhibitors on caspase-3 activity. The activity of
caspase-3 was assayed using colorimetric assay kit. All results are presented as mean + SD (n = 3). *p < 0.05; *p < 0.01, vs the control.
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Procaspase-8 was not affected, while PARP was apparently
cleaved following Cos treatment for 24 h (Figure 3B). In addition,
specific inhibitors of caspase-9 or caspase-3, not caspase-8,
significantly attenuated Cos-provoked apoptosis (Figure 3C).
Caspase-3 was also significantly inhibited with treatment of
caspase-9 inhibitor, but not caspase-8 inhibitor (Figure 3D). The
observations provide evidence that Cos enhanced apoptosis via
stimulation of caspases-9 and -3 only.

Cos-Activated Mitochondrial Apoptotic
Route in RCC Cells

To determine whether mitochondrial pathway mediated Cos-
induced apoptosis, MMP (A{ym) was determined with JC-
1. In normal cells, JC-1 aggregates in normal mitochondria
emit red fluorescence. In contrast, JC-1 aggregates in cytosol
emit green fluorescence when the mitochondria membrane
is depolarized. The results obtained in this study showed
a clear change from red to green fluorescence after Cos
treatment, indicating that a change in Aym was triggered by
Cos treatment in 769-P cells (Figure 4A). Flow cytometric
analysis showed that MMP-depolarized cells were enhanced
from 6.83% (normal level) to 12.99, 22.77, or 37.70% after Cos
treatment (Figure 4B).

It is known that Aym is controlled by the Bcl-2 proteins.
Therefore, the expressions of Bax and Bcl-2 were assayed using
quantitative RT-PCR and Western blot. Results showed that the
expression of Bcl-2 was significantly decreased at both mRNA
and protein levels (Figures 5A,C). In contrast, Cos treatment
significantly increased the mRNA and protein expressions of
Bax (Figures 5B,C). Moreover, Bax/Bcl-2 was elevated in Cos-
exposed cells, relative to control, indicating enhancement of
occurrence of apoptosis (Figure 5D). In addition, Cos enhanced
transfer of Bax from the cytosol to the mitochondrion, and
enhanced the release of cytochrome ¢ from mitochondria
(Figures 5E,F). Thus, Cos provoked apoptosis through the
mitochondrial pathway.

Cos Induced Autophagy in RCC Cells

To determine whether Cos induced autophagy in 769-P cells,
GFP-LC3 dot formation was performed. The results showed
that Cos treatment accentuated GFP-LC3 puncta generation
in 769-P cells in a dose-based fashion (Figures 6A,B).
Moreover, the expression of several protein biomarkers of
autophagy were assayed with Western blot analysis. The results
revealed that Cos treatment increased the protein expressions
of LC3B II and Beclin-1 (Figures 6C-E). It is known that
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FIGURE 4 | Influence of Cos on mitochondrial membrane potential in 769-P cells. (A) 769-P cells exposed to Cos (40 M) for 24 h and observed under fluorescent
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autophagy may exert protective effect on cells or contribute
to apoptosis (16). Treatment of 769-P cells with 3-MA, an
autophagic suppressor, resulted in marked increase in viability
(Figure 6F). Furthermore, 3-MA markedly decreased Cos-
induced mitochondrial depolarization (Figures 6G,H). These
results suggest that inhibiting autophagy could attenuate
apoptosis induced by Cos in 769-P cells.

Cos Induced Autophagy-Associated Cell

Death Through ROS

It is established that ROS are involved in apoptosis and autophagy
(20-22). In this study, ROS generation was determined in
769-P cells with the ROS probe DCFH-DA. Treatment with
Cos increased ROS in a concentration-dependent fashion
(Figures 7A-C). Furthermore, the increases in ROS were

significantly attenuated by pretreating the cells with the ROS
scavenger N-Acetyl-cysteine (NAC) (Figure 7D). Moreover, NAC
treatment attenuated the decrease in cell viability (Figure 8A)
and apoptosis (Figure 8B) caused by Cos treatment, and
NAC significantly decreased the levels of Bax and LC3-II and
increased Bcl-2 level (Figures 8C,D). Thus, ROS are implicated
in autophagy and cell death induced by Cos.

Cos Induced Apoptotic and Autophagic

Changes via the JNK Signaling Pathway

The MAPK signaling route is linked to apoptosis and autophagy
(23). Levels of p-ERK1/2, p-JNK, and p38 were assayed
in this study. As shown in Figures 9A-C, Cos treatment
markedly increased the level of phosphorylated JNK in a
concentration-dependent manner. Furthermore, pretreatment

Frontiers in Oncology | www.frontiersin.org

October 2020 | Volume 10 | Article 582273


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Fuetal. Costunolide Activating ROS/JNK Signaling Pathways
A B
@ 70
Cos (uM) 2z sk
10 20 40 = 60
- 3 50
ot £ 40 ok
o ©]
30
S k= %
z 20
310 .
S ol mim
S 0 10 20 40
Cos (uM)
c Cos (uM) D E
0 10 20 40 g 35 skk o 30 %%
LC3B-I s e [16 kDa g3530 *k £325 * %
LO3B-Il [ s s g g |14 kD 2 g;g £%20
9% L5 15
Beclin-1| o w0 kDa S 1.5 :_g
- agl10 £g10
G 05 8705
B-actin 43 kDa ~ 0 /M
0 10 20 40 0—"0 10 20 20
Cos (UMD Cos (uM)
F 120 G . Cos(0uM) 3-MA H
S100 * : * w 35 *
280 9 g ! 3§30
2 5’ 8525
_g 60 %})aﬂ 8.63% % 10.18% 15 3
Z 40 & Cos (20uM)  Cos (20uM) + 3-MA g8is
[ * * -
S f N o EZ10
0 Q. . a8 s
3-MA — + - o - DR 0
Cs — - + 4+ SEN. = 1% e 3MA — + - +
JC-1 monomers Cos — — + EE
FIGURE 6 | Cos exerted autophagy-mediated cell death through ROS production in 796-P cells. (A) Photomicrograph of cells showing GFP-LC3 and indicating
formation of autophagosomes. Cos-exposed cells had a punctate profile of GFP-LC3B expression. (B) Protein expressions of LC3B-I/IC3-Il and Beclin-1, as
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measured using CCK8. (F) Mitochondrial membrane potential. All results are presented as mean 4+ SD (n = 3). *p < 0.05; *p < 0.01, vs the control. (G) The
mitochondrial membrane potential were measured using JC-1 staining by flow cytometry. (H) The histograms indicate the ratio of green in JC-1 fluorescence.

with JNK inhibitor (SP600125), but not ERK1/2 inhibitor
(SCH772984) or p38 MAPK inhibitor (SB203580), significantly
attenuated cell viability caused by Cos treatment (Figure 9D).
The Cos-stimulated apoptosis was mitigated by SP600125
(Figure 9E). In addition, SP600125 decreased the protein
expressions of LC3-1I and Beclin-1 (Figure 9F). Taken together,
these results indicate the involvement of JNK in Cos-mediated
autophagy and cell death.

ROS Production Preceded JNK

Stimulation in Cos-Provoked Apoptosis
Figure 10A shows that the JNK inhibitor SP600125 did not
affect Cos-induced ROS generation, suggesting that JNK did not
enhance ROS levels. Interestingly, suppression of ROS with NAC
eliminated Cos-associated JNK2 phosphorylation (Figure 10B),
indicating that ROS generation preceded the activation of JNK
in Cos-treated 769-P cells. Taken together, these findings indicate
that ROS/JNK pathway activated by Cos treatment is involved in
the induction of apoptosis and autophagy (Figure 11).

DISCUSSION

Cos is a sesquiterpene lactone isolated from the stem bark of
M. sieboldii. It exhibits various biological and immunological
properties. Previous studies showed that Cos exerted various
anticancer effects such as blockage of the angiogenic factor
(VEGFR) signaling pathway (24), disruption of microtubule
proteins (25), inhibition of telomerase activity (26), and
triggering of apoptosis and arrest of the cell cycle (9). However,
the association between Cos-induced cell death and autophagy
has not been reported. The present study has provided evidence,
indicating that Cos induced apoptosis and autophagy in human
renal cancer cells via ROS/JNK signaling pathway.

It is well-known that apoptosis is a basic event needed
for maintenance of tissue constancy (11). Earlier reports have
shown that Cos induced apoptotic cell death in different cancers
such as breast, lung, bladder, and esophageal cancers (9, 27-
30). Consistent with these reports, the results obtained in
this study showed that Cos decreased RCC cell viability and
increased cell death. Chromatin condensation and presence of
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vs the control.

phosphatidylserine on the exterior of the cell are crucial indices
of apoptosis. These features were present in RCC cells 24 h after
Cos treatment, indicating that Cos induced RCC cell apoptosis.
The possible mechanisms underlying Cos-induced apoptosis
in 769-P cells were investigated. Cascade activation of caspases
plays important roles in apoptosis. The two major caspase
activation pathways (death receptor and mitochondrial
pathways) have been well described (12). The death receptor
pathway is initiated by binding of ligands to death receptors,
resulting in caspase-8 activation (13). Mitochondria pathway
depends on Cyt c¢ release from mitochondrion into the
cytoplasm, leading to caspase-9 stimulation and activation of
capase-3 associated with generation of typical apoptotic features.

Previous studies showed that Cos induced cancer cell death via
stimulation of caspase-8 or caspase-9, depending on cancer cell
types or other factors. For instance, it has been reported that Cos
induced apoptosis of breast and leukemia cancer cells through
the extrinsic route (9, 31). Moreover, Cos induced apoptosis
in bladder and lung cancer cells through the mitochondrial
pathway (28, 29). The results of the present study revealed
that Cos promoted caspases-9 and -3, and cleaved PARP in
769-P cells, but caspase-8 was not affected. In addition, the
caspase-8 specific inhibitor (z-IETD-fmk) did not attenuate
cell death induced by Cos treatment. Western blot and other
assays revealed that Cos treatment enhanced Bax/Bcl-2, reduced
mitochondrial membrane potential, and resulted in cytochrome
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respective protein. (D) Results CCK8 assay on 769-P cells pretreated with MEK1/2 inhibitor PD98059 (10 M), JNK inhibitor SP600125 (10 M), or the p38 inhibitor
SB203580 (10 wM) for 2 h prior to treatment with or without Cos (20 M), for 24 h. (E) Apoptosis of 769-P cells pretreated with JNK inhibitor SP600125 (10 M) for

2 h prior to treatment with or without Cos (20 wM). (F) Expression levels of autophagy-related proteins, as assayed using Western blot. All results are presented as
mean + SD (n = 3). *p < 0.05; **p < 0.01, vs the control.
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indicate that Cos induced apoptosis in 769-P cells through
mitochondrial pathway.

Protracted exposure of cancerous cells to chemotherapy
makes them resist apoptosis. Previous studies have demonstrated
that modulation of autophagic processes could be useful for
circumventing chemoresistance and enhancing the effects of
chemotherapeutics (32, 33). Autophagy is a cellular process
for clearance of damaged organelles, and it is involved in
carcinogenesis and sensitivity of cancer to therapy (16). Due to
different cell types as well as genetic factors, autophagy performs
dual roles in cancers. On the one hand, tumor cells can activate

autophagy to survive under metabolic and therapeutic conditions
by limiting tumor necrosis and mitigating genome damage,
such that cancer fighting strategy can be improved by blocking
autophagy (15, 34, 35). On the other hand, autophagy may be
beneficial in treatment of insensitive cancers (36). In recent years,
a great variety of natural products or chemotherapeutic drugs
have been demonstrated to participate in the modulation of
autophagy through different molecular mechanisms (17, 36-38).
For instance, hernandezine, an alkaloid, mediated autophagy in
drug-resistant fibroblasts or cancer cells via direct stimulation
of AMPK (39). Pirarubicin induced an autophagic cytoprotective
response via inhibition of mMTOR/p70S6K signal route in human
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bladder carcinoma (40). In this study, the results showed
that Cos-induced autophagy was evidenced by the increased
autophagic vesicle formation and LC3 conversion in 769-
P cells. Moreover, 3-MA decreased Cos-provoked cell death,
suggesting that autophagy due to Cos was involved in the cell
death. These results suggest that Cos induced pro-apoptotic
autophagy in 769-P cells.

ROS have been identified as important molecules in the
regulation of cell survival or cancer cell death (29, 36). Low
ROS concentrations participate in cellular signaling, whereas
excessive ROS impair proteins and DNA in the cell, eventually
causing autophagy or cell death (32, 41). This study has shown
that Cos induced significant increases in ROS, but pretreatment
with NAC markedly reversed Cos-associated apoptosis and
autophagy, indicating that Cos exerts apoptotic and autophagic
influences through the generation of ROS in 769-P cells. It
is well-known that ROS, acting as second messengers, exert
their biological effects via activation of downstream molecules,
mainly MAPK signaling pathways (21, 42, 43). Cinobufagin
exerted apoptotic and autophagic cell death via the ROS/JNK/p38
signaling pathway (44). The ROS-mediated JNK signal route can
also modulate autophagic cyto-protection in Ciclopirox olamine-
administered rhabdomyosarcoma (45). The results of this study
are consistent with these reports, in that among the members
of the MAP kinase family studied, only JNK, but not ERK or
P38 was activated in Cos-treated 769-P cells. The JNK inhibitor
SP600125 significantly reversed Cos-mediated apoptotic and
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