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As a key element in structure-based drug design, binding affinity prediction (BAP) for putative protein-
ligand complexes can be efficiently achieved by the incorporation of structural descriptors and
machine-learning models. However, developing concise descriptors that will lead to accurate and inter-
pretable BAP remains a difficult problem in this field. Herein, we introduce the profiles of intermolecular
contacts (IMCPs) as descriptors for machine-learning-based BAP. IMCPs describe each group of protein-
ligand contacts by the count and average distance of the group members, and collaborate closely with
classical machine-learning models. Performed on multiple validation sets, IMCP-based models often
result in better BAP accuracy than those originating from other similar descriptors. Additionally, IMCPs
are simple and concise, and easy to interpret in model training. These descriptors highly conclude the
structural information of protein-ligand complexes and can be easily updated with personalized profile
features. IMCPs have been implemented in the BAP Toolkit on github ( https://github.com/debbydan-
wang/BAP).
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Binding affinity prediction (BAP) is one of the key problems in
structure-based drug design (SBDD) [1,2]. BAP is generally oriented
toward putative protein-ligand complexes, and aims to create a
bridge between the structures of these complexes and the binding
affinities in them. Scoring functions (SFs) are well-acknowledged,
efficient BAP approaches among many others [3,4], however, they
mostly prioritize prediction efficiency over accuracy. Accurate BAP
remains a challenging problem in SBDD [5].

SFs, whether classical or machine-learning [6], rely heavily on
the descriptors extracted from complexes’ structures. Classical
SFs adopt a simple linear combination of interaction energy terms
(descriptors) to predict binding affinity [7–9], which hardly yields
a high BAP accuracy. In contrast, a wide range of descriptors and
machine-learning methods have been employed to construct
machine-learning SFs, often leading to more accurate BAP [5,10].

In recent years, the descriptors for BAP either becomemore spe-
cialized and method-oriented, or stay simple and generic. Descrip-
tors (e.g. voxel representations) used by deep-learning SFs are
examples of the former [11,12]. But these SFs only result in mar-
ginal accuracy improvement in BAP, hardly compensating the
increasingly complex descriptors and less interpretability of model
details. On the contrary, simple descriptors have gained wide-
spread popularity due to the easier manipulation, better collabora-
tion with classical machine-learning models and higher
interpretability of SFs. The arguably first machine-learning SF,
RF-Score, simply adopts 36 types of atom-pair counts as descrip-
tors and has achieved a good BAP accuracy [13]. Here we term
these descriptors as intermolecular contacts (IMCs). Inspired by
RF-Score, Zheng et al. further subdivided these IMCs through map-
ping their distances into different distance bins (IMCiDBs), and
constructed an accurate deep-learning SF based on these descrip-
tors [14]. Later, IMCiDBs were slightly modified to represent the
contacts between protein residues and ligand atoms in different
distance bins [15]. Extended connectivity interaction features
(ECIFs) are another group of descriptors that originate from IMCs
and perform well in BAP. Different from using simply the atom
types to define IMCs (e.g. C � O contacts), atoms’ connectivity
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information was taken into account to subdivide IMCs into ECIFs
(e.g. C=connectivity1 � O=connectivity2 contacts). IMCs can be
regarded as a special type of protein-ligand interaction fingerprints
(IFPs) [16], and a variety of IFPs have been developed in past dec-
ades for BAP. P’erez-Nueno et al. considered pairs of IMCs, classi-
fied these pairs into different categories and counted the
members in each category to construct the atom-pair-based inter-
action fingerprints (APIFs) [17]. Da et al. developed the structural
protein-ligand interaction fingerprints (SPLIFs), by considering
the environments of the endpoint atoms in each IMC and mapping
the environment pairs into specific fingerprint positions [18].
Based on SPLIFs, W’ojcikowski et al. adopted multiple pairs of radii,
rather than a fixed pair, for extracting atomic environments, lead-
ing to the proposal of protein-ligand extended connectivity finger-
print (PLEC FP) [19]. By separately considering the environments of
the endpoint atoms in each IMC and mapping them to two finger-
print fragments, we proposed the proteo-chemometrics interac-
tion fingerprints (PrtCmm IFPs) in an earlier work [20]. Some of
these IFPs have been shown to collaborate nicely with classical
machine-learning methods for accurate BAP [19,20].

Although aforementioned descriptors have been demonstrated
to perform well in BAP, they either result in SFs that are not accu-
rate enough (e.g. IMCs) or form feature sets that are very large and
redundant (e.g. IFPs). Reaching a balance between BAP accuracy
and the complexity of descriptors thus remains an active area of
research. Herein, we expand IMCs to IMC profiles (IMCPs) by taking
into account the average distance for each type of IMCs, which
improves the BAP accuracy but keeps the descriptors’ simplicity
and model interpretability.

2. Method and algorithm

2.1. Intermolecular contact profiles (IMCPs)

Using the counts of different types of IMCs as descriptors and
random forests (RFs) as regression methods, RF-Score has been
constructed through a training process on the data from PDBbind
database [13,21,22]. Given a protein-ligand complex structure,
the contacting atoms are first identified by setting a distance
threshold (< 12 Å). The IMCs between the protein and ligand are
then categorized into a series of groups, based on the types of their
endpoint atoms. 4 types of protein atoms (fC;N;O; Sg) and 9 types
of ligand atoms (fC;N;O; F; P; S;Cl;Br; Ig) are considered, forming
36 groups of IMCs (fC � C;C � N;C � O; . . . ; S� Br; S� Ig). The
counts of these IMCs constitute the descriptors of RF-Score,

DIMC ¼ ðnC�C ;nC�N;nC�O; . . . ;nS�Br;nS�IÞ ð1Þ
After extracting DIMC for each of the training complexes, RFs can

be employed to find the relation between DIMC and the experimen-
tal binding affinities. This leads to the birth of RF-Score, which is
simple but efficient.

In DIMC, each IMC group (type of x� y) is profiled by the number
of group members (nx�y), which is apparently a coarse representa-
tion. Using more features to profile each group will promisingly
results in more powerful descriptors for SFs. The average distance
of each IMC group, as a commonmetric (Eq. 2), can be incorporated
as a profile feature (Eq. 3).

�dx�y ¼

X
i

di
x�y

nx�y
ð2Þ

DIMCP ¼ ðfnC�C ;
�dC�Cg; fnC�N;

�dC�Ng; fnC�O;
�dC�Og; . . . ;

fnS�Br;
�dS�Brg; fnS�I;

�dS�IgÞ ð3Þ
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For a simplified scenario where only Carbon and Oxygen atoms
in the protein and ligand are considered, the procedure to extract
DIMCP is outlined in Fig. 1.

Above is an oversimplified scenario for DIMCP-extraction. In real
cases, a protein-ligand complex may contain much more IMCs than
above. Fig. 2 shows the frequency of IMCs in complexes from a
dataset generally used for descriptor-extraction and SF-
construction (PDBbind refined set). The average distance of each
IMC group, which is a common statistical metric of the distance
distribution, shows the average contacting level of this specific
type of IMCs.

2.2. Intermolecular-contact profiles in distance bins (IMCPiDBs)

IMCPs can be further refined referring to the idea of IMCiDBs,
which were the descriptors to construct Onionnet [14]. In this
method, the space between a pair of protein and ligand is parti-
tioned by a series of boundaries (fb0; b1; . . . ; bng), and two consec-
utive boundaries form a distance bin ½bi�1; biÞ. According to these
distance bins (fbinijbini ¼ ½bi�1; biÞ; i ¼ 1; . . . ;ng), each IMC of type
x� y can be further assigned to a subgroup bini if its distance ful-

fills bi�1 6 dIMC
< bi. Suppose p types of protein atoms

(x1; x2; . . . ; xp) and q types of ligand atoms (y1; y2; . . . ; yq) are consid-
ered, then the following group of descriptors (p� q� n) are
formed,

DIMCiDB ¼ ðnbin1
x1 ;y1 ; . . . ;n

bin1
x1 ;yq ; . . . ;n

bin1
xp ;y1 ; . . . ;n

bin1
xp ;yq ;

. . .

nbinn
x1 ;y1

; . . . ;nbinn
x1 ;yq

; . . . ;nbinn
xp ;y1

; . . . ;nbinn
xp ;yq

Þ
ð4Þ

DIMC employed by RF-Score is a special case of DIMCiDB, where
n ¼ 1 (bin1 ¼ ð0;12 ÅÞ), p ¼ 4 and q ¼ 9. In the Onionnet work, 8
atom types for both protein and ligand atoms
fC;N;O;H; P; S;HAX;DUg, where HAX indicates halogen atoms
(fF;Cl;Br; Ig) and DU the remaining atoms, were adopted. 60 dis-
tance bins, including ð0;1Þ; ½1:0;1:5Þ; ½1:5;2:0Þ; . . . ; ½29:5;30:0Þ and
½30:0;30:5Þ, were used.

Similar to IMCPs, IMCPiDBs can be extracted by profiling the
atoms in each subgroup (type of x� y and distance bin of bini)
using the atom counts and average distance, in Eq. 5.

DIMCPiDB ¼ ðfnbin1
x1 ;y1 ;

�dbin1
x1 ;y1g; . . . ;fnbin1

x1 ;yq ;
�dbin1
x1 ;yqg; . . . ;fnbin1

xp ;y1 ;
�dbin1
xp ;y1g; . . . ;fnbin1

xp ;yq ;
�dbin1
xp ;yqg;

. . .

fnbinn
x1 ;y1

;�dbinn
x1 ;y1

g; . . . ;fnbinn
x1 ;yq

;�dbinn
x1 ;yq

g; . . . ;fnbinn
xp ;y1

;�dbinn
xp ;y1

g; . . . ;fnbinn
xp ;yq

;�dbinn
xp ;yq

gÞ
ð5Þ

For a simplified scenario where we only consider Carbon and
Oxygen atoms for IMCs and adopt two distance bins

(ð0;6 ÅÞ; ½6 Å;12 ÅÞ), the procedure to extract DIMCPiDB is outlined
in Fig. 3.

On the other hand, smaller distance bins often contain less
IMCs, which makes averaging the IMC distances has less statistical
meaning. In an extreme case where the bins are tiny and each only
contains one or zero IMC, the average distance of a specific type of
IMCs in each bin will degrade into the boundaries of the bin. In this
regard, a small number of bins is useful for extracting more mean-

ingful DIMCPiDB.

2.3. ICMP-based SFs

When DIMCP or DIMCPiDB is regarded as a set of simple 1D descrip-
tors, it can be fed into classical machine-learning algorithms, such
as RFs [13,23,24], for BAP. Inspired by RF-Score, we first build
ICMP- and ICMPiDB-based SFs with the assistance of RFs. As the
binding affinities to be predicted are continuous values, RF regres-



Fig. 2. Frequency of IMCs (distances < 12 Å) in complexes from the PDBbind refined set (v2020).
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Fig. 1. An outline of IMCP extraction.
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sion models are required here. An RF regression model is composed
of a forest of regression trees, and outputs the average of the pre-
dictions from these individual trees. To prevent overfitting, each
tree draws a random sample from the whole training data when
generating its splits, and randomly selects a number of features
to split each tree node. The number of trees (ntree), which was fixed
on 500 in the RF-Score work [13], is one of the key parameters in RF
construction, and we tuned this parameter in this work. Beside RFs,
gradient boosted decision trees (GBDTs) are another type of
widely-applied regression models for BAP. A GBDT model fits a
weak learner (tree) in each stage to reduce the loss, and uses the
weighted sum of the predictions from these trees. Such models
were also employed in this work, with the boosting stages (nstage)
regarded as a key parameter for tuning.

Beyond 1D descriptors, DIMCPiDB can also be arranged as 2D
descriptors, corresponding to dimensions of n� ðp� q� 2Þ or
n� ðp� qÞ � 2 (2 channels). Guided by Onionnet that uses IMCiDBs

and convolutional neural networks (CNNs) for BAP, 2D DIMCPiDB are
expected to collaborate friendly with deep-learning algorithms in
SF-construction. The CNN architecture employed by Onionnet
includes three convolutional layers (with 32, 64 and 128 filters
respectively), one feature-flattening layer and four fully-
connected layers (with 400, 200, 100 and 1 unit respectively) to
output the final prediction. In the convolutional layers, kernel size
of 4 and stride of 1 were adopted uniformly. The rectified linear
units (ReLU) activation function was employed for both the convo-
lutional and fully-connected layers. A customized loss function (Eq.
8), which combines the correlation between the experimental and
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predicted affinities (corr, Eq. 6) and the root-mean-square error
(RMSE, Eq. 7), was used when training the CNN model.

corr ¼
Pn

i¼1ðypredi � �ypredÞðyexpi � �yexpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðypredi � �ypredÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyexpi � �yexpÞ2

q ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðypredi � yexpi Þ2

n

s
ð7Þ

loss ¼ 0:8� ð1� corrÞ þ 0:2� RMSE ð8Þ
Besides, an SGD optimizer, a batch size of 128, L2 regularization

added to the hidden layers and an early-stopping strategy were
adopted during the training process. In this work, we adopted this
architecture but altered the optimizer to Adam for an easier
convergence.
3. Implementation

3.1. Training and validation data

Training a machine-learning SF is generally accomplished on a
set of protein-ligand complex structures with known binding
affinities (experimental, Kd or Ki), and the trained SF will be eval-
uated on separate validation sets to measure its generalization
ability. The training and validation sets should never overlap for
a fair evaluation. The PDBbind database ( http://www.pdbbind.

http://www.pdbbind.org.cn/
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org.cn/), which originates from the Protein Data Bank (PDB) [25]
and recruits experimental binding data for the structures in PDB,
is highly accessed for BAP works [13,26,12,19,14,15,27]. The
PDBbind refined set of the newest version (v2020) was employed
as our training data in this work. The CASF-2016 set in PDBbind
and the three high-quality (HiQ) sets in the community structure
activity resource (CSAR) database ( http://www.csardock.org
[28]) were used for evaluating and comparing machine-learning
SFs. The sizes of training and validation sets are listed as follows.

� PDBbind refined set (v2020): 5,316 complexes. When training
each type of SFs, this set was further randomly partitioned
(90% : 10%) for parameter-tuning, with 90% of data for SF con-
struction and 10% for parameter evaluation.

� CASF-2016 set: 285 complexes.
� CSAR-HiQ Set 1: 176 complexes.
� CSAR-HiQ Set 2: 167 complexes.
� CSAR-HiQ Set 3: 123 complexes.

The overlapping complexes between the training and four vali-
dation sets were removed from the training set. Treating a
machine-learning SF as a regression model, the independent vari-
ables are the structural descriptors extracted from the protein-
ligand complexes and the dependent variable is �logðKd=iÞ. Given
a descriptor model and a machine-learning method, the
parameter-tuning phase includes 1) constructing SFs with different
parameters (e.g. ntree for RFs) on 90% of the training data, and 2)
selecting the SF that performs best on the rest 10% of training data.
This selected SF will be further evaluated on the four validation
sets, yielding its generalization performance. In this work, the per-
formance of an SF was evaluated according to corr (Eq. 6) and RMSE
(Eq. 7).

3.2. Comparison between IMCP-based SFs and RF-Score

As RF-Score was commonly regarded as a benchmark BAP
method, we first compared our IMCP-based SFs with RF-Score. To
make a fair comparison, RFs were adopted to build IMCP-based
SFs. When training IMCP-based SFs and RF-Score, the parameters
of RFs were uniformly tuned (ntree from 300 to 700 at a step of
100). In addition to model parameters, the distance threshold for
IMC- or IMCP-extraction can also influence the BAP accuracy.
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Herein, we compared IMCP-based SFs and RF-Score with regard
to different distance thresholds
(4:5 Å;6 Å;10 Å;12 Å;15 Å;18 Å;21 Å;24 Å;27 Å;30 Å and 30:5 Å),
with the commonly used values (4:5 Å;12 Å and 30:5 Å) taken into
consideration. Referring to the original work of RF-Score, IMCs
were grouped according to 4 types of protein atoms (fC;N;O; Sg)
and 9 types of ligand atoms (fC;N;O; F; P; S;Cl;Br; Ig). The compar-
isons between IMCP-based SFs and RF-Score on corr and RMSE are
presented in Fig. 4, where performances of these SFs in the
parameter-tuning phase (tested on 10% of training data) and on
the four validation sets (CASF-2016 set and CSAR-HiQ Sets 1�3)
are shown. We can see that IMCP-based SFs consistently outper-
form RF-Score in all the examined scenarios, in both parameter-
tuning and validation phases. This demonstrates that using more
detailed profiles of IMCs instead of using simply the counts can
improve the BAP accuracy. As shown in Fig. 4, distance thresholds
such as 10 Å and 18 Å for generating IMCP-based SFs can lead to
relatively better BAP accuracies for all the validation sets. Distance
thresholds such as 6 Å result in better RF-Score performance for
the validation sets. For easier interpretation, only the validation
results of SFs are presented hereinbelow.
3.3. Comparison between IMCPiDB- and IMCiDB-based SFs

By partitioning the space between a pair of protein and ligand
into a series of distance bins, IMCiDBs and IMCPiDBs can be
extracted. They were grouped based on 8 atom types
(fC;N;O;H; P; S;HAX;DUg) for both protein and ligand atoms, and
a number of distance bins. To further investigate the importance
of profiling the IMCs in a bin using their average distance, we
extracted another sets of descriptors (denoted as IMCiDB2) by

replacing the average distance (�dbini
xj ;yk ) with the midpoint of the

bin (bi�1þbi
2 ) in DIMCPiDB (Eq. 5). Different sets of distance bins were

used to generated DIMCPiDB;DIMCiDB and DIMCiDB2 in this work.
IMCPiDBs and IMCiDBs can be simply regarded as 1D descrip-

tors. We adopted RFs to absorb them and construct SFs for BAP.
In addition to the set of distance bins (60 bins;
fð0;1Þ; ½1:0;1:5Þ; ½1:5;2:0Þ; . . . ; ½30:0;30:5Þg) used in the Onionnet
work [14], other sets of distance bins were also considered in
descriptor extraction and SF construction, as follows.

http://www.pdbbind.org.cn/
http://www.csardock.org
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� 2 bins: fð0;15Þ; ½15;30Þg.
� 3 bins: fð0;10Þ; ½10;20Þ; ½20;30Þg.
� 4 bins: fð0;7:5Þ; ½7:5;15Þ; ½15;22:5Þ; ½22:5;30Þg.
� 5 bins: fð0;6Þ; ½6;12Þ; ½12;18Þ; ½18;24Þ; ½24;30Þg.
� 6 bins: fð0;5Þ; ½5;10Þ; ½10;15Þ; ½15;20Þ; ½20;25Þ; ½25;30Þg.
� 8 bins: fð0;3:75Þ; ½3:75;7:5Þ; ½7:5;11:25Þ; . . . ; ½26:25;30Þg.
� 10 bins: fð0;3Þ; ½3;6Þ; ½6;9Þ; . . . ; ½27;30Þg.
� 15 bins: fð0;2Þ; ½2;4Þ; ½4;6Þ; . . . ; ½28;30Þg.
� 30 bins: fð0;1Þ; ½1;2Þ; ½2;3Þ; . . . ; ½29;30Þg.

The performances of SFs are displayed in Fig. 5. Compared to the
marginal performance difference between IMCiDB- and IMCiDB2-
based SFs, that between IMCiDB- and IMCPiDB-based SFs is more
evident. This demonstrates the importance of using the average
distance of IMCs as a profiling feature in SF-construction. In addi-
tion, as smaller bins contain less IMCs that averaging their dis-
tances is less statistically meaningful, a smaller number of bins
often result in more useful IMCPiDBs and more accurate BAP. This
can be observed in Fig. 5, where IMCPiDBs generated based on
more bins commonly lead to worse predictions. Considering the
number of bins for extracting IMCPiDBs as a parameter, an optimal
number can be obtained in the parameter-tuning phase. Accord-
ingly, an optimal number of 3 bins (fð0;10Þ; ½10;20Þ; ½20;30Þg)
was derived in our work, leading to the following scoring
performances.

� CASF-2016: corr ¼ 0:791=RMSE ¼ 1:452.
� CSAR-HiQ Set 1: corr ¼ 0:738=RMSE ¼ 1:602.
� CSAR-HiQ Set 2: corr ¼ 0:769=RMSE ¼ 1:428.
� CSAR-HiQ Set 3: corr ¼ 0:646=RMSE ¼ 1:352.

IMCPiDBs and IMCiDBs can also be arranged as 2D descriptors.
Given n distance bins and 64 contact types (8 types for both the
protein and ligand atoms), IMCiDBs can be organized as n� 64-
shaped features, and IMCPiDBs as n� 128- or n� 64� 2-shaped
(2 channels) features. Representative sets of distance bins (15, 30
and 60) were used for extracting such descriptors, which were
fed into two deep-learning models for SF construction. The first
model (CNN1) is the one proposed in the Onionnet work, including
Fig. 4. Comparisons between IMC- and IMCP-based SFs in the parameter-tuning and v
examined, and RFs are used for constructing the SFs. These SFs are evaluated accordi
predicted affinities.
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three convolutional layers, one feature-flattening layer and four
fully-connected layers. The other model (CNN2) possesses four
additional dropout layers, with one between the feature-
flattening layer and the first fully-connected layer, and the other
three each between two consecutive fully-connected layers. Incor-
porating each type of descriptors and each CNN model results in a
specific deep-learning SF, whose performance is presented in Fig. 6.
As shown in this figure, these deep-learning SFs perform generally
worse than aforementioned classical machine-learning SFs. This
implies the inapplicability of these simple descriptors to complex
deep-learning models. Moreover, these SFs have encountered sev-
ere overfitting problems, as revealed by the poor performances on
the CASF-2016 set. Adding dropout layers can marginally mitigate
the situation for IMCPiDB-based SFs, while no clear trends among
other SFs are found. In this regard, the architecture of deep-
learning models should be carefully developed to combat with
the overfitting problem. The best predictions for the four validation
sets belong to the following models.

� CASF-2016: IMCiDBs (30 bins) combined with CNN2 model,
corr ¼ 0:345=RMSE ¼ 1:594.

� CSAR-HiQ Set 1: IMCPiDBs (15 bins) combined with CNN2
model, corr ¼ 0:686=RMSE ¼ 1:692.

� CSAR-HiQ Set 2: IMCPiDBs (60 bins) combined with CNN2
model, corr ¼ 0:690=RMSE ¼ 1:543.

� CSAR-HiQ Set 3: IMCPiDB_2Cs (30 bins) combined with CNN2
model, corr ¼ 0:663=RMSE ¼ 1:332.

3.4. Comparisons among different SFs

To further evaluate the roles of IMC-related descriptors in BAP,
we compared SFs that are based on different descriptors, including
IMCPs (proposed), IMCPiDBs (proposed), IMCs, IMCiDBs, ECIFs,
APIFs, SPLIFs and PLEC FPs. The details for extracting these descrip-
tors are tabulated in Table 1. For IMCPs, IMCPiDBs, IMCs and
IMCiDBs, the distance thresholds and bins were selected according
to their performances in BAP for CASF-2016 set (Figs. 4 and 5). For
the remaining descriptors, the suggested parameters in their orig-
inal works were adopted. RFs and GBDTs were employed to train
alidation phases. Different distance thresholds for extracting IMCs and IMCPs are
ng to the correlation and root-mean-square error between the experimental and



Fig. 5. Comparisons between IMCiDB-, IMCiDB2- and IMCPiDB-based SFs. Different sets of distance bins for extracting descriptors are examined, and RFs are used for
constructing the SFs. These SFs are evaluated according to the correlation and root-mean-square error between the experimental and predicted affinities.

Fig. 6. Comparisons between IMCiDB- and IMCPiDB-based SFs. Different sets of distance bins are used for extracting IMCiDBs and IMCPiDBs, which are arranged as two-
dimensional descriptors (IMCiDB: n� 64, IMCPiDB: n� 128, IMCPiDB_2C: n� 64� 2;n ¼ 15;30;60). Two deep-learning models (CNN1 and CNN2) are used for constructing
the SFs. These SFs are evaluated according to the correlation and root-mean-square error between the experimental and predicted affinities.
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SFs. During the training phase, ntree was tuned from 300 to 700 at a
step of 100 for RFs, and nstage was tuned from 300 to 700 at a step of
100 for GBDTs. Specifically, the length of fingerprint (descriptors)

was regarded as a parameter (2l; l ¼ 3;4; . . . ;12) when training
SPLIF- and PLEC FP-based SFs.

Moreover, to provide comparisons between above machine-
learning SFs with classical SFs (employed by docking programs),
we scored the complexes in the validation sets using AutoDOCK
Vina [30]. Two AutoDOCK SFs, using either Vina [30] or Vinardo
1093
[31] force fields, were investigated. For each protein-ligand com-
plex, the docking grid space was automatically centered around
the ligand with fixed dimensions (20 Å� 20 Å� 20 Å). To align
with the predictions (�logðKd=iÞ) by machine-learning SFs, the orig-
inal AutoDOCK scores (in kcal/mol) were rescaled to �logðKd=iÞ
according to DG ¼ RTlnKd (T ¼ 300K).

The performances of different SFs are now presented in Fig. 7.
As shown in this figure, the classical SFs evidently underperform
the machine-learning SFs. For machine-learning SFs, those devel-



Table 1
Details of the descriptors used for developing machine-learning SFs.

Descriptor Distance threshold (Å) Number of distance bins Length of descriptorsa Other parameters References

IMCP 18 1 72 – proposed
IMCPiDB 30 8 1,024 – proposed

IMC 10 1 36 – [13]
IMCiDB 30 30 1,920 – [14]
ECIF 6 1 489 – [27]
APIF 10 1 294 – [17,29]
SPLIF 4.5 1 2l Rprotein ¼ 1;Rligand ¼ 1 [18]

PLEC FP 4.5 1 2l Rprotein ¼ 5;Rligand ¼ 1 [18]

a The length of SPLIF or PLEC FP was tuned (2l; l ¼ 3;4; . . . ;12) during the training process, and the best performer was retained.

Fig. 7. Comparisons among machine-learning SFs that are based on different descriptors, including IMCPs, IMCPiDBs, IMCs, IMCiDBs, ECIFs, APIFs, SPLIFs and PLEC FPs. RFs
and GBDTs are used for constructing these SFs. AutoDOCK SFs (using Vina or Vinardo force fields) are also examined for comparisons between classical SFs and machine-
learning SFs. All the SFs are evaluated based on the correlation and root-mean-square error between the experimental and predicted affinities.
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oped from RFs generally perform better than those from GBDTs. In
the SFs developed from RFs, those based on IMCPs, IMCPiDBs and
IMCiDBs are the top three best performers on CASF-2016 set,
CSAR-HiQ Set 1 and CSAR-HiQ Set 2. For CSAR-HiQ Set 3, the RFs
based on ECIFs, PLEC FPs and IMCPiDBs are ranked the top three.
This indicates that IMCPiDBs, IMCiDBs and IMCPs collaborate
nicely with classical machine-learning methods in BAP works.
Beyond that, the lengths of IMCPiDBs and especially IMCPs are
shorter than that of IMCiDBs (Table 1), showing the simplicity
and conciseness of IMCPiDBs and IMCPs as descriptors. Overall,
the descriptors proposed in this work (IMCPiDBs and IMCPs) are
simple but promising for BAP.
3.5. Interpretability of IMCP-based SFs

Most of current machine-learning SFs, especially deep-learning
SFs, lack of model interpretability. However, simple descriptors,
such as IMCPs proposed in this work, are easy to interpret for the
constructed SFs. Herein, we investigated the importance of IMCPs
for training the SFs in Fig. 4. The top 20 important descriptors with
regard to a number of distance thresholds (10 Å;12 Å;18 Å and
24 Å) are displayed in Fig. 8. In these scenarios, the top 20 descrip-
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tors are highly superposed, and the 14 mutual important descrip-
tors include nC�C ;

�dC�C ;nC�N;
�dC�N;nC�O;

�dC�O;nN�C ;
�dN�C ;nN�O;

�dN�O;

nO�C ;
�dO�C ;nO�N and nO�O. These mutual important descriptors are

composed of 8 counts and 6 average distances of IMCs, showing
that efficiently profiling the IMCs is necessary for accurate BAP.
For the top 10 or 30 important descriptors, 5 (nC�C ;

�dC�C ;

nC�N;nN�C and �dC�O) or 27 descriptors (nC�C ;
�dC�C ;nC�N;

�dC�N ;nC�O;
�dC�O; nC�S;

�dC�S; nN�C ;
�dN�C ; nN�N;

�dN�N; nN�O;
�dN�O; nO�C ;

�dO�C ; nO�N;
�dO�N;nO�O;

�dO�O;nS�C ;
�dS�C ;nS�N;

�dS�N;nS�O;
�dS�O and nN�S) are mutual

for the four scenarios.

3.6. Examples of predictions

To further evaluate the predictions by the proposed machine-
learning SFs, some examples predicted by a representative SF were
investigated. This SF was constructed based on IMCPs (distance
threshold: 12 Å) and RFs, and trained on the PDBbind refined set
(Fig. 4). The validation samples (from CASF-2016 set and CSAR-
HiQ Sets 1�3) were grouped according to the target proteins. Sev-
eral large groups are listed as follows.

� Group 1: HIV-1 PROTEASE with ligands



Fig. 8. The top 20 important IMCPs for constructing SFs based on RFs. n ðx� yÞ indicates the counts of contacts with type x� y and d ðx� yÞ the average distance of contacts
with type x� y. Each subfigure corresponds to a specific distance threshold (10 Å;12 Å;18 Å or 24 Å).
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� Group 2: HEAT SHOCK PROTEIN HSP90-ALPHA with ligands
� Group 3: BETA-SECRETASE 1 with ligands
� Group 4: COAGULATION FACTOR XA with ligands
� Group 5: ESTROGEN RECEPTOR with ligands
� Group 6: CELL DIVISION PROTEIN KINASE 2 with ligands
� Group 7: ALPHA-MANNOSIDASE II with ligands
� Group 8: UROKINASE-TYPE PLASMINOGEN ACTIVATOR with
ligands

� Group 9: CARBONIC ANHYDRASE 2 with ligands

The predicted (by the representative SF) and experimental
binding affinities of the samples in these groups are now presented
in Fig. 9. Given ‘y ¼ x’ as a perfect prediction trendline, the predic-
Fig. 9. Some examples of the validation results of a representative machine-learning
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tions for Groups 6 (y ¼ 0:60xþ 2:62) and 9 (y ¼ 0:55xþ 3:37) are
more favorable than those for Groups 4 (y ¼ 0:01xþ 7:66) and 5
(y ¼ 0:11xþ 6:12). Looking back on the training set (PDBbind
refined set) used for constructing the SF, it contains more samples
belonging to Groups 6 (165 samples) and 9 (408 samples) than
those belonging to Groups 4 (50 samples) and 5 (61 samples). This
to some extent verifies the strong dependence of the scoring per-
formances of SFs on the training data.

4. Conclusion and discussion

In this work, we have proposed the profiles of intermolecular
contacts as descriptors for BAP. These descriptors are simple and
SF. IMCPs (distance threshold: 12 Å) allied with RFs are used to construct the SF.



D.D. Wang and Moon-Tong Chan Computational and Structural Biotechnology Journal 20 (2022) 1088–1096
easy to generate, and collaborate nicely with classical machine-
learning algorithms in SF-construction. Compared to other similar
descriptors, the proposed IMCPs often lead to a better BAP accu-
racy, while keeping a simple form. Opposite to many black-box
machine-learning SFs, the IMCP-based SFs are easier to interpret.
According to the feature-importance evaluation, we noticed that
the counts and average distances of IMCs are both effective profile
features for SF-construction, and IMCs such as C � C and C � N are
more important among others. In future studies, additional profile
features can be explored to describe the IMCs more elaborately.

One major limitation of machine-learning SFs is that construct-
ing them relies on the quantity and quality of training data. The
latest PDBbind database provides binding affinity data for 19,443
protein-ligand complexes (the general set). Comprehensively con-
sidering factors such as structural resolution, protein coverage
and ligand diversity, the developers of PDBbind have further fil-
tered these samples into the refined set (5,316 complexes, generally
used as training data) by multistep quality control. Although such
training data are not perfect, they have benefitted many SF-
construction works that were proven to be efficient in rescoring
of docking poses, virtual screening and lead optimization. As we
have entered the age of big data, more and qualified data will be
produced and join as new training data, which will promote the
development of machine-learning SFs further.
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