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Inflammation is an established driver of severe SARS-CoV-2 infection and a mechanism linked to the increased
susceptibility to fatal COVID-19 demonstrated by patients with cancer. As patients with cancer exhibit a higher level
of inflammation compared with the general patient population, patients with cancer and COVID-19 may uniquely
benefit from strategies targeted at overcoming the unrestrained pro-inflammatory response. Targeted and non-
targeted anti-inflammatory therapies may prevent end-organ damage in SARS-CoV-2-infected patients with cancer
and decrease mortality. Here, we review the clinical role of selective inhibition of pro-inflammatory interleukins,
tyrosine kinase modulation, anti-tumor necrosis factor agents, and other non-targeted approaches including
corticosteroids in their roles as disease-modulating agents in patients with COVID-19 and cancer. Investigation of
these therapeutics in this highly vulnerable patient group is posited to facilitate the development of tailored
therapeutics for this patient population, aiding the transition of systemic inflammation from a prognostic domain to
a source of therapeutic targets.
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INTRODUCTION

The pathophysiology of COVID-19, the pandemic disease
resulting from infection by SARS-CoV-2, relies only in part
on the direct cytopathic effect of the virus, with the host
response proving central in determining end-organ dam-
age.1-3 Accumulating evidence suggests that dysfunctional
innate and adaptive immune responses contribute to dis-
ease progression, as exemplified by heightened levels of
inflammatory markers in serum from severely ill patients.1

Patients with cancer face worse prognosis from COVID-19
compared with the general patient population, with case
fatality rates (CFRs) ranging between 17% and 33% in
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patients with cancer, compared with 1%-5% of the general
population with COVID-19.4-8

The presence of a pre-existing pro-inflammatory diathesis
at time of SARS-CoV-2 infection may explain the predispo-
sition of patients with cancer to severe COVID-19 and
increased risk of death: mortality from COVID-19 has been,
in fact, linked to pro-inflammatory cytokine excess leading
to an unopposed immune response with detrimental
multisystem effects.1,2,9-13 Oncologic disease and its asso-
ciated treatments predispose patients with cancer to an
intrinsic inflammatory state through neutrophilia resulting
from tumor-produced immune-modulating elements such
as granulocyte colony-stimulating factor (G-CSF); elevation
of circulating C-reactive protein in carcinomas; increased
serum ferritin produced by tumor-associated macrophages;
and potentially inflammatory G-CSF therapy for treatment-
related immunodeficiency.14-17 In a recent study, we
demonstrated that a number of pro-inflammatory bio-
markers including the neutrophil-lymphocyte ratio (NLR),
prognostic nutritional index, modified Glasgow prognostic
score, and prognostic index measured at time of SARS-CoV-
2 infection identify patients with cancer at greater risk of
mortality from COVID-19.18 In particular, hypoalbuminemia,
the reduction of expression of albumin that is part of a
negative phase reaction largely driven by interleukin 6
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(IL-6), and lymphocytopenia, a diagnostic hallmark of SARS-
CoV-2 infection secondary to viral replication and systemic
cytokine excess, are optimal features to define patients
with adverse outcomes from COVID-19 when considered
together as the OnCovid Inflammation Score (OIS).18-22 The
OIS is derived from albumin and lymphocyte counts, with a
lower score indicating hypoalbuminemia and lymphocyto-
penia and a greater score indicating higher albumin and
lymphocyte counts.18,23 Patients in the validation set with
an OIS �40 displayed an overall survival (OS) of 40 days
(95% confidence interval 8-72 days) and a CFR of 47.6%,
while patients with a low-risk OIS >40 did not reach median
OS (P < 0.0001) and presented a CFR of 18.8% (P <
0.0001).18

While prioritization of vaccination against SARS-CoV-2 is
expected to reduce the toll of SARS-CoV-2 on patients with
cancer, the development of anti-COVID-19 therapeutics
continues in parallel at a rapid pace to ensure patients
diagnosed with the disease can be protected from its
deleterious consequences.24 Innate and adaptive immune
dysfunction is a shared mechanism that characterizes the
host response against cancer as well as COVID-19.25,26 In
particular, systemic release of a number of pro-
inflammatory mediators including IL-6, interferon-g, and
tumor necrosis factor-a (TNF-a) is common in patients with
advanced malignancies and underlies several of the sys-
temic consequences of cancer such as anorexia, cachexia,
nutritional decline, and sarcopenia or, in hematologic ma-
lignancies, ‘B symptoms’ that are pathognomonic and
prognostic in patients with lymphoma.27-29 In COVID-19,
acute and unopposed release of pro-inflammatory media-
tors is responsible for a much more clinically serious cyto-
kine release syndrome (CRS), which has been linked with
respiratory compromise, end-organ damage, and mortality
from SARS-CoV-2.1,30-35

Besides its role as a prognostic domain in identifying
patients with adverse clinical course, up-regulation of pro-
inflammatory pathways lends itself as a potential source
of putative therapeutic targets in COVID-19.1 Treatments
targeting COVID-19-induced inflammation may provide a
therapeutic advantage in patients with concomitant can-
cer and COVID-19 over the general patient population
through modulation of cancer- and COVID-19-related
synergistic inflammation.9 In this review, we evaluate ev-
idence and rationales for the use of both targeted and
non-targeted therapeutic agents aimed at attenuating the
inflammatory response in patients with both cancer and
COVID-19. To achieve this aim, we focused on selected
therapeutic agents with recognized or postulated efficacy
on the basis of their mechanisms of action as shown in
Figure 1.

TARGETED THERAPIES

IL-6

Both advanced cancer and severe COVID-19 are character-
ized by systemic excess of IL-6, a pro-inflammatory cytokine
produced predominantly by tissue-resident macrophages
2 https://doi.org/10.1016/j.esmoop.2021.100123
upon recognition of damage- and pathogen-associated
molecular patterns (DAMPs and PAMPs) and capable of
stimulating acute phase protein synthesis, regulating
neutrophil recruitment, and inducing repression of regula-
tory T cells.1,10,36-38 In patients with cancer, increased IL-6
levels are linked to poorer prognosis via increased angio-
genesis in solid tumors through up-regulation of vascular
endothelial growth factor; tumor proliferation through
enhanced transcription of signal transducer and activator of
transcription 3 (STAT3), an oncogenic transcription factor;
and immune dysfunction through modulation of T cell ac-
tivity.39-42 Heightened concentration of IL-6 has also has
been linked to increased mortality in patients with severe
COVID-19 and consequently proposed as a therapeutic
target.1,43-45 IL-6 receptor antagonists may offer a thera-
peutic advantage in patients with cancer and COVID-19 over
the unselected patient population through prevention of IL-
6-mediated synergistic inflammation, especially considering
the use of IL-6 receptor antagonists against another patho-
physiologic similarity between COVID-19 and cancer:
CRS.9,46-49 CRS is an acute inflammatory crisis resulting from
an increase in circulating cytokines not only associated with
severe COVID-19, but also with bispecific monoclonal anti-
bodies and adoptive cell therapies including chimeric
antigen receptor T-cell therapies.46,47,49,50 Accordingly,
treatment with tocilizumab, an anti-IL-6 receptor inhibitor
traditionally utilized for rheumatoid arthritis, has been pro-
posed as a therapy for severe COVID-19 in view of its utility
in treating CRS.51-55 Initially, retrospective and prospective
analyses of the administration of tocilizumab to patients
with COVID-19-associated pneumonia admitted to hospital
revealed that receipt of tocilizumab significantly reduces
mortality.51,53 Disappointingly, the phase III COVACTA trial of
tocilizumab in hospitalized patients with COVID-19-
associated pneumonia showed no reduction in 28-day
mortality despite evidence of improvement in duration of
hospital admission.54,56 Inclusion criteria may explain
differing outcomes, such as the heterogeneity in the pre-
sentation of severe COVID-19.54 In the more recent phase III
EMPACTA trial of tocilizumab plus standard of care anti-
COVID-19 therapy versus placebo in patients hospitalized
with severe COVID-19-associated pneumonia, treatment
with tocilizumab led to a 44% reduction in the risk of pro-
gression to mechanical ventilation or death by day 28;
although, overall mortality by day 28 did not significantly
differ between patients receiving tocilizumab or placebo
(10.4% versus 8.6%, P ¼ 0.5146).52 Clinical benefit from
tocilizumab was restricted to patients not requiring me-
chanical ventilation, suggesting IL-6 blockade to be an
effective treatment only at certain stages of COVID-19
severity.52

Sarilumab, an IL-6 receptor antagonist utilized for rheu-
matoid arthritis, demonstrates similarly mixed efficacy
against COVID-19 and failure to meet primary end-
points.57,58 In an open-label study of sarilumab against se-
vere COVID-19, patients receiving sarilumab demonstrated
no differences in clinical improvement (61% sarilumab
versus 64% standard of care, P ¼ 0.94) or mortality (7%
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Figure 1. Therapeutics targeting inflammation in COVID-19.
AP-1, activator protein 1; ATII, alveolar epithelial type II; BTK, Bruton’s tyrosine kinase; CTLA4, cytotoxic T-lymphocyte-associated protein 4; ERK 1/2, extracellular signal-
regulated protein kinase 1/2; HCK, hematopoietic cell kinase; ICI, immune checkpoint inhibitor; IL1-R, interleukin 1 receptor; IL-6, interleukin 6; IL-6R, interleukin 6
receptor; JAK, Janus kinase; MHC, major histocompatibility complex; NF-KB, nuclear factor kappa B; NLRP3, neutrophil-lymphocyte ratio family pyrin domain containing
3; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; TCR, T cell receptor; TLR, toll-like receptor; TNF, tumor necrosis factor; TNFR, tumor
necrosis factor receptor.
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sarilumab versus 18% standard of care, P ¼ not significant)
compared with patients receiving standard of care.57 Sar-
ilumab treatment only demonstrated clinical improvement
and faster recovery from COVID-19 in the subset of patients
with minor lung consolidation, reinforcing opportune timing
of IL-6 blockade as a critical factor for the efficacy of IL-6
receptor antagonists against COVID-19.57 This claim is sup-
ported by results from a single-center study in Italy: lower
circulating IL-6 at baseline and lower NLR, features of earlier
Volume 6 - Issue 3 - 2021
disease, were associated with a more favorable response to
sarilumab therapy for COVID-19 and clinical improvement.58

The CORIMUNO-VIRO study of sarilumab for COVID-19 was
discontinued due to futility (ClinicalTrials.gov identifier:
NCT04341870); however, this lack of observed clinical
benefit may have resulted from administration of sarilumab
at an inopportune time in the disease course.

Evolving clinical experience suggests the need for more
precise stratification of severity in hospitalized COVID-19
https://doi.org/10.1016/j.esmoop.2021.100123 3
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patients in order to maximize benefit from IL-6 blockade.
The predictive role of baseline pro-inflammatory status
warrants further investigation, given the efficacy of sar-
ilumab only in patients with lower circulating baseline IL-
6.58 Identification of predictive biomarkers of response to
these expensive therapies may aid a more judicious clinical
use, especially given the heterogeneity emerging from
clinical trials and the lack of influence over mortality seen in
unselected hospitalized patients with COVID-19.10,52,54,56-58

Importantly, IL-6 blockade may fail to ameliorate severe
disease due to interference with the compensatory anti-
inflammatory response, a reaction to inflammation that
involves increased production of anti-inflammatory cyto-
kines, primarily IL-10, and consequent restoration of ho-
meostasis.59 IL-6 blockade may complicate the mounting of
the compensatory anti-inflammatory response and subse-
quent resolution of the inflammatory state.59 Duration and
timing of the anti-inflammatory response are linked to
outcomes in patients with infectious diseases.59

Importantly, interleukin signaling is redundant and
pleiotropic; therefore, inhibition of a single pathway may
not result in clinical benefit.60 While studies have included
patients with concomitant cancer and COVID-19 being
treated with tocilizumab in their cohorts, the outcomes of
these patients have not been independently analyzed.8

Whether cancer patients may represent a population
exquisitely sensitive to IL-6 inhibition remains to be
ascertained.
Bruton’s tyrosine kinase

A relatively unexplored avenue of therapy for COVID-19
may be a drug class commonly utilized in the treatment
of certain hematologic malignancies: Bruton’s tyrosine ki-
nase (BTK) inhibitors. Up-regulation and constitutive acti-
vation of BTK results in B-cell proliferation and survival and
is a pathophysiologic mechanism of B-cell malignancies
including lymphomas and leukemias.61,62 BTK inhibitors are
currently utilized in treatment regimens for some B-cell
malignancies including mantle cell lymphoma and chronic
lymphocytic leukemia (CLL).63,64 The BTK inhibitor ibrutinib
has been proposed as a novel therapeutic for COVID-19,
and the second generation BTK inhibitor acalabrutinib has
exhibited efficacy against COVID-19 in a small cohort of
severely ill patients receiving oxygen when administered as
a salvage therapy.65,66 Traditionally utilized as a BTK inhib-
itor in CLL, ibrutinib also serves as an inhibitor of hemato-
poietic cell kinase (HCK), a kinase involved in immune cell
recruitment within the lung by alveolar type II cells.65

Attenuation of immune cell recruitment by these alveolar
cells via ibrutinib-mediated HCK inhibition may reduce
pulmonary inflammation in patients with severe COVID-
19.65,67 In a cohort of six patients with concomitant Wal-
denström macroglobulinemia (WM), a non-Hodgkin B-cell
lymphoma, and COVID-19 already receiving ibrutinib for
WM at the time of COVID-19 diagnosis, patients receiving
the recommended 420 mg/day dosage of ibrutinib for WM
did not require hospitalization or develop COVID-19-
4 https://doi.org/10.1016/j.esmoop.2021.100123
induced dyspnea, while the patient receiving the 140 mg/
day dosage of ibrutinib demonstrated rapid clinical deteri-
oration and required mechanical ventilation, but quickly
recovered following increase of ibrutinib to 420 mg/
day.65,68 Exploration of the efficacy of ibrutinib in the
treatment of COVID-19 will elucidate the therapeutic effects
of acalabrutinib administration observed in severely ill pa-
tients with COVID-19.66 Acalabrutinib does not exhibit
binding with HCK and is highly specific for BTK; therefore,
acalabrutinib may improve clinical status in a non-HCK-
dependent manner.69 Exploration of these avenues will
also provide further insight into the interplay between the
virus-mediated cytopathic and immune system-mediated
inflammatory effects of COVID-19 given the status of alve-
olar cells as both entry points for SARS-CoV-2, due to their
surface expression of angiotensin-converting enzyme 2
(ACE2), the receptor exploited by SARS-CoV-2, and media-
tors of pulmonary inflammation.65

Study of ibrutinib or acalabrutinib treatment in patients
with cancer and COVID-19, with an emphasis on patients
with thoracic malignancies possessing heightened baseline
pulmonary inflammation before SARS-CoV-2 infection, is
necessary to understand if clinical improvement through
attenuation of local pulmonary inflammation via ibrutinib or
if clinical improvement through a separate mechanism via
acalabrutinib improves outcomes from COVID-19 and is a
viable targeted COVID-19 therapy by primary tumor
type.65,66,70 Currently, the Academic and Community Cancer
Research United is preparing to recruit >130 patients with
concomitant B-cell malignancy and COVID-19 to a pro-
spective study exploring ibrutinib treatment of COVID-19 in
this population (ClinicalTrials.gov identifier: NCT04665115).
Janus kinase

Janus kinase (JAK) inhibitors are a well-established thera-
peutic class utilized in a range of autoimmune and
inflammatory diseases.71 JAK activation is critical for
transcription of cytokines via downstream activation of
STATs; necessary for cell differentiation and hematopoie-
sis; and has been linked in its constitutively activated
forms to leukemia development via cancer cell prolifera-
tion.72 JAK inhibitors attenuate inflammation in rheuma-
toid arthritis through reduction of cytokine and
inflammatory element transcription and are being
explored as therapeutics for leukemias due to inhibition of
leukemic cell proliferation and reduction of the neoplasm-
induced inflammatory state.73,74 JAK inhibitors accordingly
may serve as an anti-COVID-19 therapeutic through
reduction of circulating cytokines and additionally confer
preferential benefit for patients with concomitant COVID-
19 and hematologic malignancies associated with aberrant
JAK signaling.72,74 The JAK inhibitor ruxolitinib, which
exhibits antileukemic activity, has been studied for its
immunosuppressive effects in severe COVID-19.75-77

Administration of ruxolitinib did not improve outcomes
from COVID-19 in severely ill patients but was associated
with faster clinical improvement and improved chest
Volume 6 - Issue 3 - 2021
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computed tomography.75 The JAK inhibitor baricitinib, a
therapeutic utilized for anti-inflammatory effects in rheu-
matoid arthritis, has been studied in combination with the
antiviral remdesivir in patients hospitalized with COVID-
19.78,79 Patients receiving baricitinib plus remdesivir
demonstrated improved clinical status and faster recovery
times compared with patients receiving remdesivir
alone.78 Despite the modest therapeutic efficacy exhibited
by remdesivir and baricitinib in patients with severe
COVID-19, JAK inhibitors may improve outcomes from CRS
in COVID-19 through inhibition of initial viral infection
and endocytosis via off-target effects of baricitinib and
reduction of expression of transcription of inflammatory
cytokines.72,80 As CRS is a shared feature of cancer and
severe COVID-19, patients with cancer may preferentially
benefit from JAK inhibitor therapy for severe COVID-
19.48,49 The University of Southern California (USC) is
recruiting patients to a study investigating baricitinib
alone and in combination with other therapeutics as a
treatment of moderate and severe COVID-19 in patients
with cancer (ClinicalTrials.gov identifier: NCT04373044).
Another phase III clinical study is recruiting hospitalized
patients with severe COVID-19 with or without cancer to
receive pacritinib, an oral JAK2 and fms-like tyrosine ki-
nase 3 (FLT3) inhibitor, as a treatment of COVID-19
(ClinicalTrials.gov Identifier: NCT04404361).81
Tumor necrosis factor

Tumor necrosis factor (TNF), a pro-inflammatory cytokine
family up-regulated in autoimmune disorders, infectious
diseases, and cancer, regulates the expression of reactive
oxygen species and other pro-inflammatory cytokines
through the nuclear factor kappa-light-chain-enhancer of
activated B cells and activator protein 1 pathways.82 TNF
family cytokines are primarily secreted by macrophages, but
also produced in smaller quantities by lymphocytes.82

Higher baseline circulating TNF cytokines have been linked
to cachexia, sepsis, and poorer prognoses from oncologic
disease.82 In patients with cancer, TNF exhibits situation-
dependent antitumoral or protumoral effects.83 TNF has
demonstrated inhibition of angiogenesis and tumor growth
in solid tumor models.83 Conversely, TNF has been identi-
fied as a causative agent in skin, hepatic, and gastrointes-
tinal carcinogenesis.83 Patients with severe COVID-19
exhibit higher circulating TNF, and higher baseline TNF is
associated with poorer outcomes from COVID-19.1,84

Accordingly, anti-TNF therapy has been proposed to
counter COVID-19 hyperinflammation.84 Anti-TNF thera-
peutics have been hypothesized to have broader anti-
inflammatory effects than IL-6 receptor antagonists, as
TNF blockade broadly reduces the expression of pro-
inflammatory mediators and clotting biomarkers, effects
not observed from IL-6 blockade.85 TNF also facilitates
SARS-CoV entry through ACE2 and may extend similar
assistance to SARS-CoV-2.86,87 Large, randomized trials are
lacking: case and small cohort reports comprise the current
body of evidence for anti-TNF as a COVID-19 therapeutic.87-89
Volume 6 - Issue 3 - 2021
A case report revealed that a patient receiving the TNF-a
inhibitor etanercept and the antimetabolite methotrexate for
spondyloarthritis, who later developed COVID-19, did not
require intensive care, and did not develop respiratory
distress or lymphopenia.88 A survey distributed in Lombardy,
Italy, to 320 patients receiving immune-modulating thera-
peutics for chronic arthritis, with 52% of patients receiving
TNF inhibitors, identified four patients with confirmed
COVID-19, four patients with symptoms highly suggestive of
COVID-19, and five patients with contact with a known
COVID-19 case.89 From this group, only one patient required
hospital admission for COVID-19 and subsequently recov-
ered; importantly, this study can only serve as anecdotal
evidence of the association between immune-modulating
therapeutics and COVID-19 risk.89 In Pavia, Italy, three pa-
tients receiving anti-TNF therapy for rheumatological dis-
eases who contracted COVID-19 did not develop dyspnea or
require hospitalization.87 No data exists for patients with
cancer and COVID-19 receiving anti-TNF therapy as a COVID-
19 therapeutic. Patients with rheumatological diseases have
comprised the current focus of anti-TNF therapy and impli-
cations for COVID-19 disease course due to concerns
regarding this immunosuppressive treatment and COVID-19
risk.87 Patients with cancer and COVID-19 warrant study, as
TNF imbalance supports tumor initiation, invasion, and
metastasis and is a noted serological marker of severe
COVID-19.90 Anti-TNF treatment may extend preferential
benefit to patients with cancer and COVID-19 who possess
heightened baseline TNF, but anti-TNF therapy may also
complicate oncologic disease management, as TNF exhibits
both protumoral and antitumoral effects.83 While short-term
anti-TNF treatment has not been associated with cancer
progression, the effects of anti-TNF therapies in patients with
cancer and infectious disease remain to be tested.84 A search
on ClinicalTrials.gov revealed no clinical trials currently
investigating anti-TNF treatment specifically for patients with
cancer and COVID-19.

NON-TARGETED THERAPIES

Corticosteroids

Corticosteroids are glucocorticoid hormones utilized for
their broad anti-inflammatory and lymphocytolytic effects
in a variety of diseases including asthma, leukemias, and
rheumatoid arthritis.91-93 Corticosteroids penetrate the
cellular membrane; bind to glucocorticoid receptors thus
allowing glucocorticoid receptor homodimerization; enter
the nucleus; and repress transcription of inflammatory
mediators via interaction with glucocorticoid response ele-
ments and interference with transcription.92,94 In patients
with leukemia, steroids alter oncogene expression and
induce cell cycle arrest and apoptosis.92 Current treatment
protocols for COVID-19 include corticosteroids such as
dexamethasone, but knowledge gaps persist regarding the
timing and duration of steroid therapies for COVID-19.95

The RECOVERY trial demonstrated that dexamethasone
administration resulted in reduced mortality among pa-
tients with COVID-19 receiving oxygen therapy, including
https://doi.org/10.1016/j.esmoop.2021.100123 5
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those receiving invasive mechanical ventilation and non-
invasive methods of oxygenation.96 Patients who did not
require respiratory support exhibited no benefit from
dexamethasone receipt.96 Dexamethasone has also been
associated with decreased mortality in patients with severe
COVID-19 in a prospective meta-analysis by the World
Health Organization (WHO).96,97 Taken together, these re-
sults provide support for dexamethasone as a treatment of
severe COVID-19, but not for mild cases.

Patients with cancer and severe COVID-19 may benefit
from corticosteroid therapy through prevention of syner-
gistic inflammation. Interestingly, the COVID-19 and Cancer
Consortium (CCC19) has shown that administration of high-
dose corticosteroids is not associated with mortality benefit
in patients with COVID-19 and cancer, but administration of
high-dose corticosteroids in combination with any other
anti-COVID-19 therapeutic is associated with increased
mortality.98 It is important to note that the exact role of
corticosteroids in patients with cancer and COVID-19 is
difficult to establish, as corticosteroids are often adminis-
tered for symptom palliation; therefore, this therapeutic
may demonstrate increased mortality only when utilized
in combination with another COVID-19 therapeutic as
observed by the CCC19, due to worse baseline clinical
conditions of patients rather than a disease-worsening
effect of corticosteroid treatment.98,99 Further, steroid-
induced immune suppression may be compounded by the
concomitant receipt of anticancer treatments that suppress
the immune system including chemotherapy.100,101 Addi-
tionally, patients included in the CCC19 study were not
necessarily severely ill from COVID-19, while patients in the
RECOVERY trial and WHO meta-analysis were severely ill,
making the role of corticosteroids harder to elucidate.96-98

Benefit of corticosteroid therapy may be limited to
severely ill patients or patients receiving oxygen therapy.
For patients with cancer and severe COVID-19 requiring
oxygen therapy, corticosteroid therapy may prevent syner-
gistic inflammation and provide an opportunity to identify
inflammatory biomarkers predictive of steroid benefit.
Corticosteroid therapy may also preferentially benefit pa-
tients with leukemia and COVID-19, especially patients with
childhood acute lymphoblastic leukemia, as steroids may
exhibit dual anti-COVID-19 and anti-neoplastic action.92

Importantly, treatment providers must consider potentially
compounded immune suppression resulting from concom-
itant receipt of steroidal and anticancer therapeutics in
patients with cancer and COVID-19.100-102 Further study will
reveal differences in immune system response between
patients with cancer and the general patient population.
Antimalarials

Hydroxychloroquine and chloroquine, widely used antima-
larial agents, were explored as therapeutics for COVID-19
due to their potential for blockage of viral entry via inter-
ference with pH-dependent endosomes and attenuation of
systemic cytokine release by interference of the antimalarial
agents with antigen processing and autoantigen
6 https://doi.org/10.1016/j.esmoop.2021.100123
presentation.103,104 The RECOVERY trial revealed a lack of
support for hydroxychloroquine as an anti-COVID-19 ther-
apeutic.105 Hydroxychloroquine administration demon-
strated the following non-significant associations: increased
mortality; reduced likelihood of being discharged alive from
the hospital within 28 days; increased incidence of me-
chanical ventilation; and increased occurrence of cardiac
deaths but not cardiac arrhythmias.105 Hydroxychloroquine
administration also raised concerns regarding potential for
cardiotoxicity; accordingly, the RECOVERY trial excluded
patients with prolonged QTc intervals from the hydroxy-
chloroquine arm.105 In contrast, OnCovid demonstrated
reduced mortality rates among patients with concomitant
cancer and COVID-19 exposed to antimalarials compared
with patients receiving no anti-COVID-19 therapy; although,
estimation of a precise effect of antimalarials over other co-
administered therapies cannot be fully appreciated due to
the retrospective design.4 These results differ from those of
the CCC19 study.4,98 In the CCC19 cohort, patients with
cancer and COVID-19 receiving hydroxychloroquine were
characterized by higher mortality compared with untreated
controls and patients receiving any other anti-COVID-19
therapeutics.98 A clinical trial hosted by Memorial Sloan
Kettering Cancer Center is recruiting patients with cancer
receiving radiotherapy to study the potential of hydroxy-
chloroquine to prevent SARS-CoV-2 infection (ClinicalTrials.
gov identifier: NCT04381988). USC is recruiting patients to
study baricitinib alone or in combination with anti-COVID-
19 therapeutics, including hydroxychloroquine, to treat
moderate and severe COVID-19 in patients with cancer
(ClinicalTrials.gov identifier: NCT04373044). Further studies
will clarify the role of hydroxychloroquine as an anti-COVID-
19 therapeutic, but serious safety concerns, including po-
tential cardiotoxicity, may be heightened in patients with
cancer who are predisposed to prolonged QTc due to
anticancer therapeutics.105-108 The practice of routinely
prescribing antimalarials for COVID-19 has largely fallen out
of favor following publication of the results of RECOVERY,
which showed no benefit from the utilization of these
therapies in the context of SARS-CoV-2 infection.105
Colchicine

Colchicine, an anti-gout agent with broad anti-
inflammatory effects, has been proposed as a putative
therapeutic agent for COVID-19.109-111 Colchicine disrupts
microtubule polymerization and gathers preferentially in
leukocytes.112 Inflammation is broadly inhibited by
colchicine: this alkaloid therapeutic inhibits neutrophil
chemotaxis, adhesion, recruitment, and superoxide pro-
duction, and suppresses the NLR family pyrin domain
containing 3 (NLRP3) inflammasome, a component of
innate immunity that regulates secretion and activation of
stimulators of pyroptosis and pro-inflammatory cyto-
kines.112,113 In a single-center cohort study, colchicine
treatment exhibited association with better survival
compared with standard of care in patients hospitalized
with COVID-19-associated pneumonia.114 Furthermore,
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treatment with colchicine was independently associated
with reduced mortality.114 In a randomized, double-
blinded, placebo-controlled trial for moderate and
severe COVID-19, colchicine treatment reduced length of
oxygen therapy (when required) and length of hospitali-
zation; however, insufficient participants were available to
study the effects of colchicine on mortality and COVID-19
severity.115 The GRECCO-19 randomized trial of colchicine
in patients hospitalized with COVID-19 revealed reduced
clinical deterioration in the group receiving colchicine
compared with standard of care and increased time to
clinical deterioration in the colchicine arm.116 Patients
with cancer and COVID-19 may preferentially benefit from
colchicine treatment compared with the general popula-
tion, as colchicine attenuates shared inflammatory
mechanisms between cancer and COVID-19 including
formation of neutrophil extracellular traps (NETs) and
NLRP3 inflammasome activation.112,117-121 Colchicine may
prevent NET- and NLRP3-mediated synergistic inflamma-
tion in this patient population. A search on ClinicalTrials.
gov revealed no clinical trials currently investigating
colchicine treatment specifically for patients with cancer
and COVID-19.
Thymosin alpha 1

Thymosin alpha 1 (Ta1), a peptide produced by and
isolated from thymic tissue, may ameliorate immune
derangement induced by SARS-CoV-2 infection.122-124 Ta1,
the active cleavage product of prothymosin alpha, acts
broadly in normal physiology to stimulate T-cell matura-
tion, antigen presentation, natural killer (NK) cell activity,
and infected dendritic cell activity.125 Ta1 exerts this
broad immune system modulation via interaction with
intracellular Toll-like receptors, a protein class responsible
for identifying PAMPs in innate immunity, in myeloid and
plasmacytoid dendritic cells.126,127 Administration of syn-
thetic Ta1 has exhibited restoration of immune system
homeostasis through lymphoid cell activation in ex vivo
human immunodeficiency virus-1 samples and through NK
cell activation in mouse models of leukemia.125,128 In
patients with severe COVID-19, Ta1 treatment demon-
strated association with reduced mortality, improved T-
cell counts, and reversal of T-cell exhaustion.124 Ex vivo
Ta1 treatment of blood cells from patients with COVID-
19 confirmed Ta1 prevents cytokine storms and reduces
T-cell exhaustion in COVID-19.123 The condition of cyto-
kine excess that accompanies cancer progression and
leads to exhausted, or hyporesponsive, T cells is a well-
known determinant of prognosis in patients with
advanced malignancies.35,129,130 It can therefore be hy-
pothesized that patients with cancer and COVID-19 may
preferentially benefit from Ta1 treatment over the gen-
eral patient population through reduction of synergistic T-
cell exhaustion from both cancer and COVID-19. The
phase II PROTHYMOS study is currently investigating Ta1
as prophylaxis for patients with cancer and severe COVID-
Volume 6 - Issue 3 - 2021
19.131 Conclusion of this study and comparative investi-
gation between patients with COVID-19, with or without
history of cancer, will help clarify whether a role exists
for this therapy in patients with COVID-19 and cancer.
Immune checkpoint inhibitors

A number of cancers are characterized by a lack of anti-
tumor T-cell reactivity.132 Cytotoxic T-lymphocyte-associated
protein 4 (CTLA4) and programmed cell death protein 1 (PD-
1) are immune checkpoint receptors on T cells that prevent
uncontrolled immune responses in normal physiology
through binding with their respective ligands B7 and pro-
grammed death-ligand 1 (PD-L1), inhibiting antigen pre-
sentation and consequent T-cell response.132 In oncologic
disease, these regulators prevent antitumor activity and
cancer cell elimination by T cells as some cancer cells ex-
press surface B7 and PD-L1.132 First utilized for metastatic
melanoma, immune checkpoint inhibitors (ICIs) aim to
restore anticancer T-cell reactivity through antibody inhibi-
tion of CTLA-4/B7 binding and PD-1/PD-L1 binding.133 As
severe COVID-19 may cause T-cell exhaustion, ICIs have
been postulated to restore T-cell function in critically ill
patients; however, only observational registries of patients
with COVID-19 and cancer undergoing ICI treatment of
oncologic disease exist, and no studies for the general pa-
tient population with COVID-19 exist.134,135 Although ICIs
may exhibit anti-COVID-19 action through reversal of T-cell
exhaustion, complications of ICI treatment, including ICI-
pneumonitis, raise concern over safety of ICI treatment
and necessitate studies balancing the reversal of T-cell
exhaustion with the risk of pneumonitis.134,136 The Thoracic
Cancers International COVID-19 Collaboration (TERAVOLT)
registry demonstrated that patients with cancer receiving
ICI therapy either alone or in combination with chemo-
therapy for oncologic disease at the time of COVID-19
diagnosis did not exhibit higher mortality rates.135 A
multicenter observational study of patients from hospitals
in North America, Europe, and Australia revealed that pa-
tients with COVID-19 already receiving ICIs for cancer did
not present higher mortality than patients with cancer and
COVID-19 not receiving ICIs at time of COVID-19 diag-
nosis.137 In a study of patients undergoing PD-1 blockade
for lung cancer and later diagnosed with COVID-19, PD-1
blockade receipt did not affect mortality and did not alter
circulating IL-6.138 While PD-1 blockade may reduce viral
load through restoration of effector function, this thera-
peutic may not reduce systemic inflammation.138 While
ongoing ICI therapy for cancer does not appear to increase
susceptibility to fatal COVID-19, there are no studies of ICIs
administered as anti-COVID-19 therapeutics. Study of ICI
treatment of SARS-CoV-2 infection in patients with cancer
and COVID-19 not previously receiving this antineoplastic
therapy will clarify the safety and utility of ICIs for reversal
of T-cell exhaustion in infectious disease. Prospective trials
of ICIs for COVID-19 for the general patient population will
elucidate differences in immune responses and mechanisms
https://doi.org/10.1016/j.esmoop.2021.100123 7
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of T-cell exhaustion between patients with or without
concomitant oncologic disease. No clinical trials testing
ICIs as anti-COVID-19 therapeutics for patients with
concomitant cancer and SARS-CoV-2 infection are regis-
tered, but nivolumab, a PD-1 inhibitor, is being explored as
a therapeutic for obese individuals with COVID-19
(ClinicalTrials.gov identifier: NCT04413838). Detailed im-
mune profiling by Hamad Medical Corporation of patients
with cancer and COVID-19, including profiling of circulating
ICI levels and subsequent COVID-19 outcomes, will clarify
patient responses at the molecular level (ClinicalTrials.gov
identifier: NCT04473131).
CONCLUSIONS

Accumulating evidence suggests that patients with cancer
and COVID-19 may uniquely benefit from therapeutics that
attenuate systemic inflammation and consequently prevent
synergistic inflammation. The heightened susceptibility of
patients with cancer to fatal SARS-CoV-2 infection may
result from higher baseline inflammation due to oncological
disease subsequently aggravated by infectious disease;
however, further study is required to determine the con-
tributions of cancer histology, state, and treatment to
inflammation and outcomes from COVID-19. In this review,
we described how therapeutic targeting of pathways
implicated in the systemic inflammatory response may
preferentially benefit patients with cancer over the general
patient population. Despite displaying higher CFRs, patients
with cancer have not been the focus of specific studies of
anti-SARS-CoV-2 therapeutics, perhaps due to the concerns
over the confounding effect of malignancy in determining
mortality.

The majority of evidence guiding treatment of patients
with COVID-19 and cancer has emerged from retrospective
registries: none of these studies can substitute prospective,
randomized, controlled studies in homogeneous patient
populations. Certain areas are still characterized by a sig-
nificant knowledge gap, and the comparison between pro-
spective versus retrospective evidence emerges perhaps
more strongly in the case of corticosteroid therapy, a
treatment for which there is a lack of benefit for patients
with COVID-19 and cancer, but improved outcomes for the
general patient population with COVID-19.96-98

Such level of uncertainty calls for the need to elucidate
the utility of anti-inflammatory agents in treating severe
COVID-19 in patients with cancer in prospective clinical
trials.139 The lack of molecular or immunologic stratification
is also a major limitation to most studies of COVID-19
therapeutics. Efficient determination of inflammatory
marker levels via enzyme-linked immunosorbent assay
profiling of patients with severe COVID-19 has been pro-
posed for personalized COVID-19 therapeutic regimens.140

Especially for patients with a heightened risk for synergis-
tic inflammation, this would aid in rapid determination of
the targeted or non-targeted therapy to be utilized. To this
end, the COVID-19 antiviral response in a pan-tumor im-
mune monitoring study (CAPTURE), a prospective study
8 https://doi.org/10.1016/j.esmoop.2021.100123
recruiting patients with concomitant cancer and COVID-19,
aims to profile the immune responses of these patients to
SARS-CoV-2 infection.141 Translational studies similar to
CAPTURE will help establish the molecular features under-
lying the progression of COVID-19 in patients with cancer
and facilitate the development of targeted and non-
targeted anti-inflammatory agents in patients who are
most likely to derive clinical benefit.

The challenge of the global COVID-19 pandemic has
proven the utility of cross-field collaboration for drug
repurposing and treatment development.136,142 Immuno-
oncologists, experienced with immune-modulating thera-
peutics, have both identified anticancer drugs that may
offer therapeutic benefit for COVID-19 and noted similar-
ities between anticancer treatment and COVID-19, including
those of ICI-induced pneumonitis and the ground-glass
opacities of COVID-19 pneumonia.136 As COVID-19 vaccine
distribution criteria vary across regions, improved treat-
ments for patients with concomitant cancer and COVID-19
will continue to be an unmet need that may be
addressed through immunomodulatory drugs.136,143-145
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